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Abstract

The feasibility of reducing the interior noise levels of an aircraft passenger cabin

through an optimization of the composite lay up of the fuselage is investigated.

MSC/NASTRAN, a commercially available finite element code, is used to perform the

dynamic analysisand subsequentoptimization of the fuselage. The numerical calcu-

lation of sensitivity of acoustic pressure to lamination angle is verified using a simple

thin, cylindrical shell with point force excitations as noise sources. The thin shell is

used because it represents a geometry similar to the fuselage and analytic solutions are

availablefor the cylindrical thin shell equationsof motion. Optimizationof lamination

angle for the reductionof interior noise is performedusing a finite element model of

an actual aircraft fuselage. The aircraft modeled for this study is the Beech Starship.

Point forces simulate the structure borne noise produced by the engines and are applied

to the fuselage at the wing mounting locations. These forces are the noise source for the

optimization problem. The acoustic pressure response is reduced at a number of points in

the fuselage and over a number of frequencies. The objective function, to be minimized,

is the maximumsoundpressurelevel at all response points in the passenger cabin and

for all excitation frequencies in the range of interest.

Results from the study of the fuselage model indicate that a reduction in interior

noiselevelsis possibleover a finite frequency range through an optimal configuration of

the lamination angles in the fuselage. Sound pressure level reductions of roughly 4 dB

were attained at multiple locations in the passenger cabin. For frequencies outside the

optimization range, the acoustic pressure response may increase after optimization. The

effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.
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Chapter 1 Introduction

Since their design and development in the early 1960’s, composite materials have

played an increasingly important role in the design and construction of many different

vehiclesandstructures[1]. As definedin Jones [2], a composite material consists of “two

or more materials . . . combined on a macroscopic scale to form a useful material.” The

materialpropertiesof compositematerials are such that they generally have very favorable

strength-to-weight and stiffness-to-weight ratios [2]. In many cases, the use of composite

materials has substantially improved the performance of the structure over what could

be attainedusing conventionalmaterials. Not surprisingly, composite materials have

found wide application in the construction of aircraft and spacecraft, vehicles for which

performance is very sensitive to changes in weight.

Although the use of composite materials offers several advantages over conventional

materials, several disadvantages are also apparent. From a design standpoint, one must

be careful to accountfor the anisotropiccharacteristicstypically displayed in composite

materials. While a compositestructuremight have great strength in one direction, it

may be structurally weak in another. Often times, it is possible to take advantage of

anisotropic behavior and tailor a structure to meet a specific design requirement.

With theincreasinguseof composite materials in the construction of aircraft, interest

has been expressed in reducing the interior sound pressure levels of passenger aircraft

built from these materials. Work by Koval for a thin composite cylindrical shell [3]

indicated that, from the perspective of noise reduction, use of composite materials in

an aircraft fuselage may enable an aircraft designer to modify the transmission loss

characteristics of the fuselage to meet a specific noise requirement. In a noise reduction

example for a composite shell from this work, the author discussed the possibility of

1



using the lamination angles to attenuate noise transmission through the structure over a

specificfrequencyrange.However, less satisfactory acoustic characteristics for the shell

may result in other frequency ranges and would have to be addressed using conventional

sound proofing measures.

Aircraft fuselageshave been modeled as thin, cylindrical shells as a means of

understanding the coupling of the structural vibration modes to the acoustic modes in

the fuselage interior [4]. The thin, cylindrical shell has been used because an analytic

solution describing its motion can be derived. The same is not true for most aircraft

structures.

Salagameetal. [5] developed analytical expressions for the sensitivity of the acoustic

power emitted by a vibrating flat plate to a change in one of the design variables of the

plate. These analytical sensitivities were compared to a numerical optimization to reduce

the acoustic power radiated by a clamped, isotropic plate through an optimal thickness

distribution through the plate. This work demonstrated the feasibility of using acoustic

sensitivitiesto structuralattributesin a noisereductionoptimization.

Lamancusa [6] discusses many different objective function formulations for the

reduction of radiated noise from a clamped, isotropic plate in which thickness is allowed

to vary. In this work, the author develops objective functions based on various acoustic

measuressuch as radiated sound power, mean-square velocity, and modal radiation

efficiency. The importance of proper objective function, design constraints, and design

variables is discussed in this work. A poorly specified optimization problem can make

it difficult to attain convergence to a global optimum with an optimization algorithm. In

a slightly different approach, Naghshinehet al. [7] first specified a minimum radiation

condition for a beam radiating in a rigid baffle. Then, an optimal distribution of Young’s

modulus and density for the beam was found to force the beam to vibrate in the minimum
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radiation mode.

Recent research has been undertaken to structurally optimize the thickness distribution

of an isotropic cylindrical shell for the purpose of minimizing the interior noise levels [8,

9]. Noise levels for a single excitation frequency were successfully reduced through the

generation of an optimum thickness distribution around and along the cylindrical shell.

In this work, the authorsnoteda strong dependance of the final optimum solution on the

starting values of the design variables of the problem.

For cylindrical shells made from laminated composite materials, considerable work

has been done in the study of the optimization of lamination angle to maximize the

bucklingstrength.The work of Rao[10] andthework of Hu [11] each demonstrated the

ability to increasethebucklingpressureof a thin, cylindrical shell through an optimization

of anglefor a varietyof boundary conditions. Many composite cylinder buckling studies,

includingthose of Hu, have been undertaken through the use of the finite element method.

MSC/NASTRAN1, a commercially available computer code, has been used as a

tool for the prediction of aircraft interior noise in a number of earlier studies [13, 14].

However, these studies have used the so-called structural-acoustic analogy [15] as a

means of calculating the acoustic pressure response of the fluid. Recent upgrades to the

MSC/NASTRAN computer code allow the user to model the fluid and compute acoustic

responses directly. Work by Fernholzet al. [16] demonstrated the feasibility of using

a fully-coupled fluid/structure analysis for a cylindrical model. More importantly to

the current work, this featuremakes it feasible to optimize the model using acoustic

responses as design variables or objectives.

The objective of the present study is to demonstrate the feasibility of sound pressure

level reduction through an optimal lamination angle configuration in a composite aircraft

1 NASTRAN is an acronym standing for NASa STRuctural ANalysis [12].
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fuselage. To achieve this reduction, the lamination angles in the fuselage are optimized

overa rangeof excitation frequencies. Unlike previous studies, the geometry of an actual

aircraft, rather than a cylindrical shell, is used in the optimization analysis. The aircraft

used is the Beech Starship, an eight- to ten-person twin turboprop aircraft. The Starship

is modeled and analyzed using the finite element method. Loads simulating the structure-

borne noise produced by the engines are applied to the model. MSC/NASTRAN is used

to performthefinite elementanalysisandsubsequent lamination angle optimization. The

effects of changing lamination angle on the overall structural integrity of the airframe

are not considered in this study.

This study is divided into five chapters.The methodology and theory of the finite

elementsolutionmethodand ply-angle optimization is outlined in Chapter 2. In Chapter

3, this methodology is applied to a thin, orthotropic cylindrical shell. Analytical solutions

for the motion of the cylinder are given. The numerical solutions and design sensitivities

are compared with analytical solutions from classical thin shell theory. In Chapter 4, the

methodology developed in Chapter 2 is applied to the Beech Starship fuselage. Because

an analytical solution for the motion of the fuselage is not available, only a numerical

analysis is performed. Finally, Chapter 5 contains a discussion of the results of this

work. Appendices include a derivation of a solution to the Donnell-Mushtari equations

of motion for a thin cylindrical shell composed of specially orthotropic materials, figures

related to the current work, and complete output data for all the response locations used

in this study.
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Chapter 2 Theory and Methodology

Because of the complexity of the aircraft fuselage and interior fluid system, much of

this work was necessarily dependent upon numerical methods of analysis. In particular, a

fully-coupledfinite elementmethodwasusedto modelboth the aircraft structure and the

air inside the passenger cabin. MSC/NASTRAN, the computer code used to perform the

finite elementanalysis,wasalsoused to optimize the lamination angles of the fuselage

composite material for the reduction of the aircraft interior noise levels.

In this chapter, methods of solving a finite element problem for a system containing

both fluid and structural components are outlined. As the finite element modeling method

is quite common and well understood, only the solution methods are provided here. For

more detail regardingfinite elementtheory, the readeris referredto the literature [12,

17, 18].

Lesscommonin standardengineeringpractice,but more critical to this particular

work, is designsensitivityandoptimization. Therefore, more of this chapter is devoted

to understandingthesemethods than to finite element analysis. In particular, close

attention is given to the specification of the objective function and constraints within

MSC/NASTRAN.

2.1: Finite Element Solution Methods

The equation of motion for a structure for the eigenvalue problem is written as [18]

[Ms]f�ug+ [Ks]fug = 0 (1)

where [Ks] represents the stiffness matrix of the structure, [Ms] the mass matrix, and {u}

the displacement vector for the structural element nodes. Assuming a harmonic solution

5



for { u}, Equation (1) becomes

([Ks]� �[Ms])f�sg = 0 (2)

where{�s} representsthe structural eigenvectors of the system. The eigenvalues� of

the problem are related to the natural frequencies through

� = !2

n (3)

where!n represents the natural frequencies of vibration in rad/sec [19]. For this work,

theLanczosmethod was used to calculate the eigenvalues of the system because it usually

representsthe best solution method for problems having a large number of degrees of

freedom [19].

For a frequencyresponseanalysis,the equationof motion of the structure is written

as [18]

[Ms]f�ug+ [Bs]f _ug+ [Ks]fug = ei!t[F (!)] (4)

where theF(!) represents a harmonic excitation to the structure and [Bs] represents

the damping matrix for the structure. If a steady-state harmonic solution is assumed,

Equation (4) becomes

�
�!2[Ms] + i![Bs] + [Ks]

�
fu(!)g = [F (!)] (5)

Here,! representsthe excitationfrequencyof the system.

Fluids aremodeledusing three-dimensional elements having one degree of freedom

at each node, that degree of freedom being the acoustic pressure. The equation of motion

for the frequency response analysis of the fluid is [20]

�
Mf

�
f�pg+

�
Kf

�
fpg + �f [C]f�ug = [0] (6)
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where [Mf] is the acoustic “mass” matrix and [Kf] the acoustic “stiffness” matrix. The

[C] matrix couplesthe motion of the structure to the acoustic pressure in the fluid. At

the fluid-structure interface, the boundary condition for the fluid is

@p

@n
= ��f

@2un

@t2
(7)

wheren is the unit outward normal vector to the surface of the structure,�f is the density

of the fluid, andun is the displacement of the structure in the normal direction. This

boundary condition is reflected in the third term of Equation (6). The fluid in turn affects

the motion of the structure by applying forces over the structural surface area of [21]

fFpg = �
h
CT

i
fpg (8)

The coupled equations of motion for the fluid and structure are thus [21]

�
Ms 0

�fC Mf

��
�u

�p

�
+

�
Bs 0

0 0

��
_u

_p

�
+

�
Ks �CT

0 Kf

��
u

p

�
= ei!t

�
F (!)

0

�
(9)

Two methods of solution can be used to solve the frequency response problem

The direct method essentially solves Equation (9) as shown for discrete excitation

frequencies [19]. This method, while generally accurate for a wide variety of structural

configurations, can be computationally expensive, particularly for a large number of

excitation frequencies.

The secondmethodthat canbe used to solve the frequency response problem is the

modal method. In this method, the physical variables of the problem (p, u) are assumed

to be a linear combination of the uncoupled acoustic and structural modes

[u] � [�s][�s(!)]e
i!t

[p] �
�
�f

��
�f (!)

�
ei!t

(10)

where�s are the uncoupled eigenvectors of the structure,�f the uncoupled eigenvectors

of the fluid, and�s and�f are the modal amplitudes for the structure and fluid respectively.
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Note that Equation (10) becomes an equality if all the modes of the system are used [19].

However, this is typically not done. Substituting this relation into Equation (9) and

pre-multiplying by the transposed transformation matrix yields [20]�
�T
sMs�s 0

�f�
T
f A�s �T

fMf�f

��
��s
��f

�
+

�
�T
s Bs�s 0

0 0

��
_�s
_�f

�
+

�
�T
sKs�s ��T

s A
T�f

0 �T
fKf�f

��
�s
�f

�
=

�
�T
s F (!)

0

� (11)

This system of equations is solved in using the direct frequency approach described

above.The numberof modes used in this solution is usually much less than the number

of physical variables in the system and the use of this method can represent a substantial

computational savings over the direct method [19]. However, a modal truncation error is

alsoassociatedwith this method.Caremustbe takento ensure that a sufficient number

of modesare usedto reducethe truncation error to an acceptable level.

2.2: Design Sensitivity and Optimization

In general, design sensitivity is the change of a structural or system response with

respect to changes in a design variable. Design optimization is the process of generating

improved designs subject to certain constraints and criteria [22]. Sensitivity analysis and

designoptimizationareclosely related, particularly in computer implementations, as the

responsescomputed in the sensitivity analysis can be used in the optimization algorithm

to determine the search direction for the objective function.

The ij -th designsensitivity coefficient�ij is definedas

�ij =
@rj

@xi
j~xo (12)

whererj is the j-th response andxi is the i-th design variable. The sensitivity coefficient

is calculated for the~xo vector of design variables [22].

The following components are included in the basic statement of a design optimization

problem [23]:

8



Objective Function

Minimize F (~x) subject to

Inequality Constraints

gj(~x) � 0 j = 1; 2; . . . ; ng

Equality Constraints

hk(~x) = 0 k = 1; 2; . . . ; nh

Side Constraints

xli � xi � xui i = 1; 2; . . . ; n where

Design Variables

~x = fx1; x2; . . . ; xng

Here, the objectivefunction represents the attribute of the system which the user is

trying to minimize. The design variables are the components of the model which the

user can change in order to minimize the value of the objective function. The equality

and inequality constraints limit the values that the objective function can assume. That

is, they limit the range over which the user can search for an optimum value for the

objective function. Likewise, the side constraints limit the values of the design variables

for the problem.

In a designoptimization problem, the MSC/NASTRAN optimizer uses the design

sensitivity and objective function gradients to locate a global objective function minimum.

When no constraints are active or violated, the Method of Steepest Descent is used [22].

However, this method is not particularly robust and there is often difficulty in converging

to an optimum value when using the Method of Steepest Descent. Thus, on subsequent

iterations, or for design cycles in which constraints are active or violated, the Modified

Method of Feasible Directions is used. With this method, one of the constraints is
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followed until a global optimum for the objective function is found. During the process

of finding this value, some of the constraints for the problem can be slightly violated [22].

For more information regarding these methods, the reader is referred to the literature [22,

23, 24].

TheMSC/NASTRANdesigncycle flow is as shown in Figure B1. At the start of each

cycle, a full finite element analysis of the model is performed. The finite element data is

then used to develop an approximate representation of the model. The approximate model

is constructed using first-order Taylor Series expansions for the responses in the system

[22]. This approximate model is used for the calculation of the design sensitivities and

constraintsfor the currentdesign cycle. Furthermore, the approximate model contains

a reduced number of constraints which in turn improves the efficiency of the optimizer

calculation [22]. Next, a check for hard convergence is performed and, if satisfied, the

optimization algorithm exits. If the conditions for hard convergence are not satisfied,

the optimizer performs an optimization using the data in the approximate model. After

completion of optimization, the optimizer checks for soft convergence. If the criteria for

soft convergence are satisfied, the optimizer exits. If not, the model is updated based on

the resultsof the optimization and a finite element analysis of the model is performed

to begin the next design cycle [24].

Convergencewith the MSC/NASTRAN optimizer can be attained in a number of

ways. First, hard convergence can be attained if the Kuhn-Tucker conditions are satisfied.

Satisfaction of these conditions indicates that a local optimum value for the objective

function has been reached. Hard convergence can also be attained if the maximum

number of design cycles for the optimizer is reached, or if no feasible solution for the

optimization problem exists. Soft convergence is attained if the absolute or the relative

change in the value of the objective function is less than some minimum value from one
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design cycle to the next [22].

2.3: Optimization Problem for the Present Work

It wasdesiredto reduce the noise levels inside the aircraft below an initial, baseline

pressure at a number of response locations and for a number of excitation frequencies.

To accomplish this, the objective function was chosen to represent the maximum acoustic

response for the set of response locations over a range of excitation frequencies spec-

ified for the problem. The value of the objective function was then minimized at all

responsepoints in the cabin and for all excitation frequencies in the range of interest.

Mathematically,the optimization problem can be written

Minimize OBJ with

OBJ( k) = max

(
10 log

10

 
jpj( k)j

2

p2
ref

!)
j;!

where (13)

 = f 1;  2; . . . ;  kg (14)

where the design variables for the problem, k
2, represented the composite lamination

angles and OBJ represented the maximum sound pressure level at thej response locations

in the problem over the range of frequencies!.

The objective function was specified in this manner so that the sound pressure level

at severalexcitation frequenciescould be reduced. Had the objective function been

formulatedto reduce the acoustic pressure response directly, it would have been feasible

to do so only for a single frequency. However, by setting the objective function equal

to the maximum response in a set of locations and frequencies, the sound pressure

levels at several frequencies were included as a design response and included within

the optimization calculation (see Figure B2).

2 The lamination angles for composite material lamina are commonly denoted in the literature (e.g. Jones [2]) by the Greek letter
�. However, this work uses� as the circumferential coordinate in the cylindrical coordinate system. To avoid confusion, 

was chosen to represent lamination angle.
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Chapter 3 The Thin, Cylindrical Shell

Before applying the methodology described in Chapter 2 to the Beech Starship

fuselage, this analysis was applied to a thin, cylindrical shell. The thin cylindrical

shell sharessomegeometricsimilarities with the fuselage, but, unlike the fuselage, it

is possible to write closed form solutions to the equations of motion of the cylinder.

Thesesolutionsare usedto ascertain the extent of the modal truncation errors in the

numerical modal solution and as a check on the numerical design sensitivity calculations

for the optimization problem.

The Donnell-Mushtari theory is applied to a thin, open, circular cylinder having

dimensions similar to those of the Starship passenger cabin section and composed of

a single-layer, specially orthotropic material. A cylindrical coordinate system is used

to describe the model with the origin located at the center of one of the open ends of

the cylinder. The positive x-axis is located along the axis of the cylinder. The ends

of the cylinder aresimply supportedin the circumferential and radial directions and are

unsupportedin the axial direction. Structural endcaps are not included in the model.

Boundaryconditions ofp=0 are applied to the fluid at the open faces at each end of

the cylinder. Two harmonic, in-phase point forces of equal magnitude are applied to the

cylinder. The forces are located 180� apartcircumferentiallyandat one-half the length

of the cylinder axially. The radial motion of the cylinder is coupled to the motion of

the fluid inside the cylinder and an analytical relation describing the acoustic pressure

at any point in the fluid is derived. Numerical modal and direct solutions are compared

to the analytical solution.

The last analysis performed on the composite cylinder is a sensitivity analysis of the

acoustic pressure response of the fluid inside the shell with respect to ply angle for angles
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near zero degrees. To determine this sensitivity analytically, it is necessary to use the

cylindrical equationsof motion for a generally orthotropic material. To include the effect

lamination angle has on bending terms in the equations of motion, it is also necessary

to use the Love-Timoshenko equations for the motion of a thin shell. A solution for

the generally orthotropic material is not developed. However, for lamination angles of

zero degrees, the generally orthotropic material becomes specially orthotropic, and the

solution developedfor thosematerialscanbe used to find the sensitivity of pressure to

lamination angle. Comparison of the numerical sensitivity to the analytical sensitivity is

made, and a difference between the two solutions is manifested.

3.1: The Specially Orthotropic Thin, Cylindrical Shell:
Displacements and Pressures

As shown in Appendix A, a solution for the specially orthotropic thin cylindrical

shell equations of motion can be written

u(�; x; t) = ei!t
1X

m=0

1X

n=0

U
mn

cos (�
m
s) cos (n�)

v(�; x; t) = ei!t
1X

m=1

1X

n=0

Vmn sin (�ms) sin (n�)

w(�; x; t) = ei!t
1X

m=1

1X

n=0

Wmn sin (�ms) cos (n�)

(15)

whereu, v, and w represent the axial, circumferential, and radial displacements of the

shell.

The acoustic pressure at any point in the fluid within the shell is given as

p(r; �; x; t) = ei!t
1X

m=1

1X

n=1

PmnJn(�mr) sin (�ms) cos (n�) (16)

In the derivation for the acoustic pressure within the shell, a partially-coupled solution

between the structure and the fluid has been assumed. The structure influences the

behavior of the fluid, but not vice versa. In MSC/NASTRAN, a fully-coupled response
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is computed. For most aircraft-type structures, the back-pressure forces on the structure

can be neglected[25]. An exploded view of the fluid-structure problem as formulated

above for the thin cylindrical shell filled with air is shown in Figure B3. Also shown

are the applied forces for this problem.

Thefinite elementmodel was constructed using quadratic quadrilateral elements with

2464 nodes for the structure and quadratic pentahedral elements with 20,501 nodes for

the fluid. The structural elements had five degrees of freedom at each node (three

displacements and two rotations) and the fluid elements had one degree of freedom

(pressure) at each node. The fluid and structure nodes were matched one-to-one on the

surfaceswheretheywerein contact. For the structural elements in the model, a structural

damping value of 1% of critical was applied while the fluid elements remained undamped.

This finite element model is shown in figure B4.

A comparisonof theanalytical and numerical frequency responses is shown in Figures

B5, B6, B7, and B8. Figure B5 shows the numerical modal solution calculated using

MSC/NASTRAN for the radial displacement of a point on the shell verses the excitation

frequency of the applied forces. Also shown in this figure is the analytical solution

derived in Appendix A. The numerical solution used 1000 structural vibration modes in

a range from 0.0 Hz to 499.67 Hz to compute the structural response. For comparison,

the analyticsolutionused1600modes. This range of frequencies was chosen to ensure

that a sufficient number of modes were specified for the excitation frequency range of

interest (1.0 to 150.0 Hz). In general, there is good agreement between the analytical and

numerical models for the cylinder. There are several reasons why the agreement between

the two responses is not as close at the higher frequencies of the range shown. First, the

number of elements in the model may be insufficient to capture the higher-order mode

shapes of the response. Secondly, different shell theories are used for the numerical and
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analytical solutions and the analytical model is partially-coupled, while the numerical

modelis fully-coupled. Also, some of the differences in the response amplitudes may be

attributable to the moderately light damping which was applied.

The comparison between the analytical and numerical solutions for sound pressure

level at a point in the fluid is shown in Figure B6. A total of 300 fluid modes over a

range of 41.52 Hz to 627.2 Hz were used in the numerical solution to represent the fluid

response.As was the case for the structural response, this range was chosen to minimize

the modal truncation error for the excitation frequency range of interest. The major

response peaks of the system are captured by both methods. However, a discrepancy

betweenthe two solutionsis apparentat approximately 105 Hz. The analytical solution

showsa response peak in this region, but there is no corresponding peak in the numerical

solution. Likewise there are substantial differences between the two solutions in the

amplitudes of the first two response peaks. These differences can again be attributed to

the reasons outlined above for the solutions for the structural displacement.

FiguresB7 andB8 showa similar comparisonfor the same model. For these figures,

thenumericaldirect frequencyresponseis plotted verses excitation frequency. The direct

responsewas computed for two smaller frequency ranges, one from 20 to 60 Hz and

the other from 90 to 110 Hz. This was done because a direct frequency response is

computationallymore expensivethan a modal solution, particularly if the model has a

largenumberof degreesof freedom,or if responses for a number of excitation frequencies

are desired. The first frequency range, 20 to 60 Hz, was chosen to see how well the

numerical solution would resolve the fluid response near 41 Hz. The second frequency

range, 90 to 110 Hz, was chosen to compare the analytical and numerical solutions for

the anti-resonance at approximately 100 Hz.

From Figure B7, a close agreement between the analytical and numerical finite
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element solutions is again apparent. Both solutions capture the vibration characteristics

of the structureover the range of excitation frequencies. There are slight differences

between the two solutions, again attributable to differences in the shell theories used for

each solution method. Figure B8 shows the acoustic response for a point in the fluid

interior to the shell. A close agreement is noted between the analytical and numerical

direct solutions.

From an analysis of these models, it can be concluded that the numerical solutions

calculatedusingthefinite elementmethod provides a solution very close to that predicted

by analytical models, particularly for the structural portions of the system. However, care

must be exercised when using the modal solution method. One must ensure that modal

truncationerrorshavebeenminimized,or at leastreducedto an acceptablelevel. As a

checkon the modal solution for caseswherean analyticalsolution is not available, it

may be advisableto run a direct solution over the frequency range of interest.

3.2: Analytical and Numerical Pressure Sensitivities
to Composite Lamination Angle

The shell equations of motion for a single-layer, generally orthotropic material were

usedto developan analyticalmodel of the sensitivity of acoustic pressure to lamination

angle. To account for the effect lamination angle has on the bending terms in the

equations of motion, the Love-Timoshenko equations were used. A general solution

for the generally orthotropic equations was not developed, but for a lamination angle of

zero degrees, the shell material becomes specially orthotropic, and the solution developed

in Appendix A for specially orthotropic materials can be used. This solution was used to

calculate the sensitivity of the acoustic pressure to a change in lamination angle at zero
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degrees. Through comparison to Equation (12), we see that we are essentially calculating

� =
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j =0o (17)

If this quantityis positive,then the acoustic response inside the shell will increase as the

lamination angle is changed from zero degrees.

The Love-Timoshenkoequationsof motion for a single-layer generally orthotropic

thin cylindrical shell can be written [29, 26]
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h represents the lamina thickness,s = x
a
, k = h2

12a2
, and �Qij represents theij —th reduced

stiffness in the global coordinate system. TheAij , Bij , and Dij terms are commonly

denotedin the literature[26] as the stretching, bending-stretching coupling, and bending

submatrices,respectively. TheBij submatrix has been included here for completeness.

For a single-layer laminate, such as the cylinder used in this chapter, theBij submatrix

becomes zero.

The principal material axesof an orthotropic material are not, in general, aligned

with the natural body axes of a given problem (see Figure B9). The lamination angle

 relates the reduced stiffnesses in the global coordinate system to the stiffnesses in the

material coordinate system. These relations are written [2]
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where the bar over theQij indicates that the reduced stiffnesses have been transformed

to the global coordinate system. The angle represents the angle between the global
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x-axis and the local 1–axis, measured counter clockwise from the x-axis [27]. Note that

for  =0� and =90�, the material becomes specially orthotropic.

Figure B10 shows a comparison between analytical and numerical solutions of@p
@ 

versusfrequencyfor  =0� in the thin, cylindrical shell. For this case, the numerical

solution is a direct frequency response. Figures B11 and B12 show the analytical radial

displacement of the shell and the acoustic pressure response of the fluid respectively at

the same location as the sensitivity shown in Figure B10. Each of these figures shows a

response over the frequency range 20 to 50 Hz. The range of excitation frequencies was

chosen because it contained both structural and acoustic resonances.

From these figures, it is evident that the greatest sensitivity of acoustic pressure to

laminationangleis displayedin thevicinity of the resonantpeaksof thesystem.For this

frequencyrange,theresonantresponsesoccuratapproximately24.70Hz (structuralmode

1,6),32.05Hz (structuralmode1,4),41.52Hz (fluid mode 1,0,1), and 47.58 Hz (structural

mode1,10)3. Thereis goodagreementbetween the analytical and numerical sensitivities.

In particular, the peaks in the sensitivities occur at roughly the same frequencies and the

signs of the sensitivities are the same between the solutions. To simplify the analytical

solution, damping was not applied to either the numerical or the analytical solutions. The

absence of damping is likely the cause of the difference in the sensitivity amplitudes.

A difference between the analytical and numerical solutions is apparent near the

acoustic peak in the response. The numerical solution for acoustic pressure sensitivity

shows a sensitivity to lamination angle near this peak, while the analytical solution

does not. This is attributable to the different assumptions that were made for each

solution. In the analytical solution, only one structural mode couples to each acoustic

3 For structural mode shapes, the first number indicates the order of the axial component of the mode and the second number
indicates the order of the circumferential component of the mode. For fluid mode shapes, the first number corresponds to the
radial order of the mode, the second to the circumferential order, and the third number indicates the axial order of the mode.
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mode as the fluid and structural modes are assumed to be orthogonal. This assumption is

enforcedevenfor the generally orthotropic material. The influence of the structural mode

associated with the fluid resonance near 41 Hz is very slight. Thus, the sensitivity of that

response to lamination angle will likewise be very small. In the numerical solution for

the generally orthotropic material, the fluid and structure modes are no longer orthogonal

and the modal amplitudes of a number of structural modes, rather than a single mode,

can be quite substantialfor the acousticpeaks of the response. Thus, the sensitivity of

acoustic pressure to lamination angle will likewise be larger in the numerical solution.

This difference points out some of the limitations of the analytical solution used for this

analysis.In general,thereis a goodcorrelationbetweenthe analytical solutions and the

numericalsolutionscalculatedusing MSC/NASTRAN. In particular, the calculation of

sensitivityof acousticpressure to lamination angle appears valid and can be used for the

optimization of the Starship fuselage.
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Chapter 4 The Beech Starship

The primary aim of this work is the demonstration of the feasibility of reducing the

noiselevels in the interior of an actualaircraft fuselage through the optimization of the

lamination angles in the aircraft fuselage. The Beech Starship is the aircraft used for

this study. The Starshipfuselage and passenger cabin interior is modeled and analyzed

using the finite element method. Because this work is concerned with the acoustics of

the fuselage interior, no attempt was made to model the wings of the aircraft.

In this chapter, the optimization problem for the fuselage is formulated to reduce the

acoustic pressure at a number of response points in the cabin interior and over a range

of excitation frequencies. The objective function is minimized with the constraint that it

be greater than the acoustic pressure at the response locations. The fuselage lamination

anglesare usedas the optimizationdesignvariables.

Point forces are applied to the fuselage at the wing mounting locations. These forces

represent the structure-borne noise in the aircraft produced by the engines and they are

the noise source for the optimization problem.

It was desired to use the modal frequency response solution for the present work

because a substantial time savings is typically associated with the use of this method

over the use of the direct method. A preliminary modal frequency analysis is performed

on the model and, to ascertain the extent of the modal truncation error associated with

this model, a direct frequency response analysis is performed over the range of the

optimization frequencies.

The results of the optimization of lamination angle for the reduction of interior noise

are next discussed. The design cycle histories for the objective function and design

variables are charted. A modal frequency analysis using the final lamination angles
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calculated by the optimization algorithm is used to measure the decrease in interior

soundpressurelevel.

4.1: The Finite Element Model of the Starship

The Beech Starship is an eight- to ten-passenger twin turboprop aircraft designed

and developedin the early 1980’s by the Beech aircraft company [30]. It is a unique

aircraft in many respects. The main wing is located on the aft section of the aircraft,

with two smaller canards in front. These canards pivot automatically with the main wing

flaps to maintain pitch and trim [30]. The two engines are mounted on the main wing

in a “pusher” configuration. Lastly, much of the aircraft structure is constructed from

compositematerials.

Using data provided by the Raytheon Aircraft Company, the NASA Langley Re-

search Center developed a geometric representation of the Starship. Included in this

representation were the passenger cabin windows, the cockpit windows, passenger cabin

door, and the aircraft emergency escape hatch. Because the present work concerned the

acoustics of the aircraft cabin no attempt was made to model the wings of the Starship.

An isometric view of the geometric model of the Starship is shown in Figure B13. The

Cartesian coordinate system used for the analysis of the Starship is also shown in this

figure for reference. More detail regarding this system and the location of the origin for

the problem is contained in Appendix C.

This geometric model was used for the generation of both the structural and fluid

finite element meshes. Like the geometric model, the finite element models for this study

were constructed by the NASA Langley Research Center. The structure of the fuselage

was modeled using several different element types. Most of the aircraft, including the

fuselage and windows, was modeled with quadratic quadrilateral elements. The nose
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of the aircraft was modeled with quadratic trilateral elements. Stringers and stiffeners

presentin the Starship were modeled using beam elements. These beams were used

primarily as reinforcement around the windows and doors of the aircraft. A total of

10,620 nodes, each having five degrees of freedom, were used to model the Starship

structure. An isometric view of the structural finite element mesh is shown in Figure

B14. Figure B15 shows the location of the beam elements in the model.

The final aspect of the Starship which was modeled was the air inside the passenger

cabin. This was the only region of the aircraft where the fluid was modeled. Similar

fluid models were not created for the cockpit or baggage sections of the aircraft. The

air within the passengersection was modeled using linear tetrahedral elements and 6887

nodes. Each of the fluid nodes had one degree of freedom. Linear elements were used

in the fluid to ensure proper coupling to the structure at the fluid-structure interfaces of

the model. An isometric view of the fluid portion of the Starship model is shown in

Figure B16. In the complete model, the aircraft structural finite element mesh enclosed

the finite element mesh of the fluid. On the surfaces where the two were in contact, the

fluid nodes were each matched to a structural node. No structural details of the passenger

cabininterior weremodeled.Therefore, this section of the model did not include interior

trim panels or a floor.

Most of the fuselageis constructed from a single section of sandwich composite

material. The middle layer of this composite is a 0.75”-thick honeycomb core. Four

graphite epoxy face sheets, each between 0.0085”- and 0.010”-thick are symmetrically

applied to either side of the core [31]. Properties consistent with those of aircraft glass

were assigned to the windows of the aircraft. The beams in the model were given the

material properties of aluminum. Figure B17 shows the location of the various property

sections in the model.
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It was assumed that the structure-borne noise produced by the engines would enter

the aircraft through the wing mounting points on the fuselage. Therefore, this noise

source was modeled with a total of sixteen point forces applied to the eight locations

where the wings would attach to the fuselage, as shown in Figure B18. Two wing mounts

are located on each side of the fuselage. Two more mounting points are located on each

of the bulkheads below the baggage compartment. All the forces applied to the fuselage

were steady-state,harmonic,and in-phase.

A structural damping coefficient of 3% of critical was applied to the composite

structures in the problem. This value is typical for composite materials [32]. The window

structures in the aircraft were given a damping value of 5% of critical in an attempt to

reduce the influence of those modes on the overall acoustic solution. Though structures in

the passenger cabin interior such as trim panels, seats, and passengers were not modeled

directly, it wasfelt that someaccountingshouldbe madefor the effect of these features

on the acousticbehaviorof the cabin. Therefore,the fluid elements in the model were

assigneda dampingvalue of 3% of critical to account for the noise attenuating effects

of the aforementioned items.

4.2: Formulation of the Optimization Problem for the Starship

To reduce the acoustic pressure at a number of points inside the Starship fuselage, the

objective function was minimized with the constraint that it be larger than the maximum

sound pressure level for all the response points in the aircraft and for all excitation

frequencieswithin the range of optimization.

For the optimization problem, a total of ten fluid grid points were used as acoustic

pressure response locations. These points were chosen to represent the approximate

listening locations of the passengers in the cabin. The acoustic pressure at each of these
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points was used as a constraint in the optimization problem. The objective function was

minimizedat 25 frequencies equally spaced over the range of 185 Hz to 210 Hz. Thus,

there were a total of 250 constraints for the optimization problem.

As wasdone for the cylinder sensitivity analysis in Chapter 3, the lamination angles

in the fuselage composite material were used as the design variables for the problem.

Unlike the cylinder, which consisted of a single-layer composite and therefore only had

one lamination angle, a total of eight lamination angle design variables were available

for the Starship fuselage. The lamination angles were optimized for the fuselage as one

large section. As discussed above, this arrangement reflected the actual construction of

the aircraft. Not included in this optimization were the windows, the passenger cabin

door, and the bulkhead at the aft end of the passenger cabin.

The objective function was minimized over a range of frequencies, rather than a single

frequency, in recognition of the fact that in a typical aircraft environment the structural

modes can “shift” in frequency due to changes in pressure and temperature. Specification

of a singleoptimizationexcitationfrequencywould be of limited application. Thus, to

accommodatethesefactors, the effect of lamination angle over a range of excitation

frequencieswas considered.

4.3: Dynamic Analysis and Optimization of the Starship

To determine the modal truncation error in the frequency range of interest for the

optimization problem, a direct frequency response was run on the same model for an

excitation range of 185 to 210 Hz. The fuselage was analyzed over a wide frequency

range using the modal forced frequency response method. Damping of 1% of critical was

applied to the structure. No damping was applied to the fluid. A total of 500 structural

and 200 fluid modes were used to model the behavior of the Starship fuselage and interior
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over an excitation frequency range of 50 to 250 Hz. The 500 structural modes covered

a rangeof excitation frequencies from 0.0 to 650.4 Hz and the 200 fluid modes covered

a frequency range from 36.23 to 480.94 Hz.

A comparisonof theseanalysesfor two structural and two fluid locations in the model

are shown in Figures B19, B20, B21 and B22. From these figures, there is very good

agreementbetweenthenumerical direct and modal solutions over the frequency range of

interest for this study. Thus, it was felt that the modal solution method could be used for

the analysis and optimization of the fuselage. It was assumed that these results, which

were attained for a structural damping of 1% of critical, would also be valid for the 3%

dampingwhich wasappliedto the fuselagefor the optimization analysis.

The lamination angles in the Starship model were next optimized to reduce the

interior soundpressurelevels. A total of elevendesigniterationswere allowed for the

optimization algorithm. Figure B23 showsthe designcycle history for the objective

function for theseeleveniterations. Figure B24 displays the same information for the

laminationanglesin the model. Here, angles one through four represent the angles for

the face sheets on the outer surface of the fuselage, while angles five through eight are the

lamination angles for the graphite epoxy face sheets on the inner surface of the fuselage.

The actual design variable history for the objective function from the data deck is shown

below. Complete numerical data for all the design variables of the problem are shown

in Table 1.
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***************************************************************
S U M M A R Y O F D E S I G N C Y C L E H I S T O R Y
***************************************************************

(HARD CONVERGENCE ACHIEVED)

NUMBER OF FINITE ELEMENT ANALYSES COMPLETED 12
NUMBER OF OPTIMIZATIONS W.R.T. APPROXIMATE MODELS 11

OBJECTIVE AND MAXIMUM CONSTRAINT HISTORY
-------------------------------------------------------------------------------------------------

OBJECTIVE FROM OBJECTIVE FROM FRACTIONAL ERROR MAXIMUM VALUE
CYCLE APPROXIMATE EXACT OF OF
NUMBER OPTIMIZATION ANALYSIS APPROXIMATION CONSTRAINT

-------------------------------------------------------------------------------------------------

INITIAL 1.000000E+02 2.135050E-02

1 1.013803E+02 1.013803E+02 0.000000E+00 -8.522272E-03

2 1.001399E+02 1.001399E+02 0.000000E+00 5.675554E-04

3 9.959965E+01 9.959965E+01 0.000000E+00 8.283854E-04

4 9.902927E+01 9.902927E+01 0.000000E+00 3.115296E-03

5 9.873276E+01 9.873276E+01 0.000000E+00 1.069272E-02

6 9.869451E+01 9.869451E+01 0.000000E+00 5.217791E-03

7 9.844659E+01 9.844659E+01 0.000000E+00 8.577228E-03

8 9.706750E+01 9.706750E+01 0.000000E+00 2.523625E-02

9 9.831521E+01 9.831521E+01 0.000000E+00 -2.052307E-03

10 9.738248E+01 9.738248E+01 0.000000E+00 1.018381E-02
11 9.730855E+01 9.730855E+01 0.000000E+00 4.118681E-03

Cycle Obj. Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6 Angle 7 Angle 8

0 100.00 63.00 108.0 18.00 108.00 108.00 18.00 108.00 63.00

1 101.38 59.56 86.82 21.60 86.36 86.40 21.60 86.40 57.01

2 100.14 52.74 94.59 25.94 92.78 84.21 25.92 83.39 45.61

3 99.60 45.66 113.50 31.19 111.34 87.16 31.12 66.71 40.90

4 99.03 41.23 114.45 37.43 126.82 104.59 37.38 53.36 37.85

5 98.73 40.70 137.37 36.94 124.94 83.67 30.91 42.69 34.83

6 98.69 39.68 118.42 29.54 107.71 66.94 37.09 47.46 27.85

7 98.45 39.18 134.95 32.28 129.56 61.36 32.52 37.97 26.65

8 97.07 38.61 108.15 34.32 143.55 49.09 39.03 45.56 26.82

9 98.32 38.15 118.95 30.89 132.42 45.62 37.15 42.78 26.43

10 97.38 39.10 130.85 33.98 120.35 50.21 40.87 47.06 25.34

11 97.31 38.93 123.31 37.38 126.05 46.23 41.40 44.49 25.53

Table 1 Summary of the design cycle history of each design variable used in the optimization problem.
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The data output listing provides several indicators of the validity of the optimization

run. First, the fractional error of approximation is the difference between the values

of the objective function calculated from the approximate model and the finite element

analysis for each design cycle. A large fractional error would indicate that the move

limits for the problem were too large and that smaller limits should be used. The error

for each iteration of the present analysis was zero. Therefore, the move limits which

were usedwere not too large.

The data output also indicates the maximum value of the constraints for each design

cycle. From comparison to Equation (13), it would be expected that this value be negative

for this optimization. However,becausetrying to achieve exactly zero in a computer

application is not meaningful, constraints are not considered violated unless they are

larger than some small positive number. Thus, not all the values listed in the data output

necessarily represent violated constraints.

Not shown in the data output above, but contained in the data file, is the ending density

of thedesignsensitivitymatrix. Thedesignsensitivitymatrix is a table listing the design

sensitivitiesfor eachof theresponsesof the problem as calculated with MSC/NASTRAN.

The density indicates the percentage of nonzero terms appearing in the matrix. The

ending density of this matrix for the present optimization was 91.93%. That is, 91.93%

of the designresponseswere showing a sensitivity to changes in the design variables. A

small densityvaluewould be an indicatorthat very few design responses were changing

with changes in the design variables and that the problem may be poorly or incorrectly

specified. The value for this run was quite large and indicated that nonzero sensitivities

were being calculated in the optimization.

The optimization algorithm achieved hard convergence when the maximum number

of design iterations allowed for the problem (eleven) was reached. The objective function
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moved from a starting value of 100 dB to a final value of 97.31 dB. However, initial

analysisof the cabin interior indicated that the maximum acoustic pressure in the cabin

at the start of the optimization process was 101.31 dB. Thus, the initial objective function

value of 100 dB was in violation of the design constraints of the problem and the value

of the objective increased on the first iteration. This increase moved the objective and

design variables into a usable and feasible solution region. Subsequent design cycles each

reducedthe valueof the objectivefunction with the exception of iteration number nine.

In Figure B24, it is apparent that the composite material is no longer symmetric

after optimization. From a starting lay up of (63/108/18/108/core/108/18/108/63), the

laminationangleshavemovedtowarda lay up of (38/123/37/126/core/46/41/44/25). The

four face sheets on the outer surface of the composite appear to be moving toward a

cross-ply orientation (i.e. 35/125/35/125), while three of the four inner face sheets are

moving to a lamination angle of 40�.

Figure B25 is a comparison of the sound pressure level before and after lamination

angle optimization. Shown is the pressureover the rangeof optimization frequencies

at the responsepoint locatednearthe rear window in the starboard side of the aircraft.

Eachpeakin this region of the response corresponds to a fluid resonance. This was the

response location in the passenger cabin having the largest sound pressure peak prior to

optimization.A generaldecreasein the sound pressure levels at this location is apparent

over the frequencyrangeof optimization. In particular, the highest response peak in the

region has been reduced from 101.31 dB to 97.28 dB, a reduction of 4.03 dB.

The comparison of the acoustic pressure at this same location before and after

optimization is shown for a broad range of excitation frequencies in Figure B26. The

limits of the optimization range are shown in this figure for reference. While the noise

levels have decreased over the range of optimization frequencies, they have increased
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for other frequencies in the response. In particular, a substantial increase in the acoustic

pressureresponseis noticeable in the range from 110 Hz to 160 Hz. Comparisons of

the acoustic response before and after optimization for the remaining response points in

the fluid are provided in Appendix C.

The peak sound pressure level in the response occurs at an excitation frequency of

203Hz. A fringe plot of this response before optimization is shown in Figure B27. Note

that this response is very similar to a cylindrical mode shape of (1,2,3). A fringe plot

of the acoustic pressure response at this same frequency after optimization is shown in

Figure B28. While the shape of the response has not changes appreciably from before

optimizationto after, the magnitudeof the response has been decreased.

Similar fringe plots are shown for the structural response at 203 Hz in Figures B29

(prior to optimization) and B30 (after optimization). From these figures, a change in the

structural response is evident in the region at the bottom of the fuselage forward of the

rear passenger compartment bulkhead.

To reducethe soundpressurelevels in the passenger cabin, the structural modes

are modified suchthat they no longer couple efficiently with the acoustic modes in the

rangeof optimization frequencies. The structural modes are modified by changing the

lamination angles of the fuselage sandwich composite material. The fringe plots of the

structuralresponseshow that in the areaswherethe responsehaschanges appreciably,

it appearsto be moving to a response shape which will couple less efficiently with the

acoustic response shape at 203 Hz. As structural modes decouple from a particular fluid

mode, they may couple with other fluid modes, thus increasing the response at those

excitation frequencies. Thus, as shown in the figures for this work, the sound pressure

level may actually increase at frequencies outside the range of optimization frequencies.

Recall that for this work, the optimizer did not have control over the lamination
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angles in the windows of the aircraft. It was not possible to modify the response

characteristicsof theseregions. However, the modes of the windows appeared to be

significant contributors to the acoustic response in the passenger cabin. In particular,

it was noted that the locations of the windows approximately coincided with the “anti-

nodes” of the fluid response at 203 Hz. The contribution of these window modes coupled

with the fact that contribution could not be modified with this optimization scheme may

havepreventeda further reductionin the passenger cabin sound pressure levels.

The acoustic pressure levels at the response points in the passenger cabin have been

successfully reduced through an optimization of the lamination angles in the cabin. As

anticipated,an increasein soundpressurelevel was noted in areas of the response outside

the rangeof the optimization frequencies.
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Chapter 5 Conclusions

The BeechStarshipwas modeledand the lamination anglesin the fuselage were

optimized to achieve a reduction in the interior noise levels. Point forces simulating

the structureborne noise produced by the engines were applied to the model. These

forces were the noise source for the problem. Optimization of the lamination angles was

performedover a frequency range of 185 Hz to 210 Hz. Ten response locations in the

fluid were used to define the constraints of the problem. The objective function was

minimized with the constraintthat it be equal to the maximum sound pressure level in

the set of responselocations. This formulation had the potential to reduce the sound

pressurelevel at several locations and frequencies in the fuselage cabin.

Prior to optimization of the fuselage, the optimization formulation was applied to a

thin, cylindrical shell. Boundary conditions and point forces were applied to the shell

to facilitate the solution of the shell equations of motion by analytical means. These

analytical solutions were used to validate numerical solutions for the motion of the shell

and for the sensitivity of acoustic pressure to lamination angle. Particular attention

was given to differences between the partially-coupled analytical solution and the fully-

coupled numerical solution.

Results from the analysis of the cylinder showed good correlation between the

analytical and numerical solutions. The importance of the coupling of the fluid to the

motion of the cylinder became apparent in the design sensitivity analysis. The acoustic

peaks in the numerical response should show some sensitivity to changes in lamination

angle. The analytical solution used in this work was partially-coupled, and, as anticipated,

such a sensitivity was not present in the analytical solution.
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The peak acoustic response in the Starship was reduced by 4.03 dB through an

optimization of the lamination angles of the structure. Similar sound pressure level

reductions were attained at other locations in the passenger cabin. The optimization

run was terminated after 11 iterations. The fuselage composite material was no longer

symmetric after optimization. The outer four face sheets appeared to be moving toward a

cross-ply configuration, while three of the four inner face sheets were moving toward the

samelaminationangle. Soundpressurelevel increasedat several excitation frequencies

not included in the range of frequency optimization range.

Not all areas of the fuselage structure were included in the optimization. Modes

outsidethe portion of the structureincluded in the optimization were still manifested

in the acoustic response after optimization and may have prevented a further reduction

in noise level.

This work has successfully demonstrated the feasibility of reducing aircraft interior

noise over a range of excitation frequencies through optimization of the composite

lamination anglesof the aircraft. Significantly, this noise reduction was attained on

anactualaircraftmodel,ratherthana thin, cylindrical shell fuselage model. A reduction

in soundpressure level was also achieved at a number of points in the cabin interior and

over a range of excitation frequencies.

Carefulconsiderationmustbegivento which areas of the aircraft are to be optimized

and over what frequency range the optimization should take place. Areas of the fuselage

which are not included in the lamination angle optimization may still have an effect upon

the acoustic response after optimization. For frequencies not included in the optimization

range, the acoustic pressure can increase after optimization. Care must be exercised to

ensure that an acoustic response field is not created that passengers would find more

unpleasant than the original acoustic field.
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This work did not consider any effects that lamination angle optimization might have

upon the structuralintegrity of the aircraft. Clearly, these effects cannot be ignored by

the aircraft manufacturer and they would take precedence over the acoustic benefits of

this analysis.

This work used point sources to model the structure-borne noise produced by the

engines. As an extension of this work, the model could be modified to include other

noise sources. Some of these sources might be propeller noise or boundary layer noise.

The effects of changing the mounting locations of the engine could also be investigated.

For example, many small airplanes the same size class as the Starship have engines

mountedon the aft portion of the fuselage, rather than on the wings. Investigations of

thesetypeswould be of great applicability to the aircraft manufacturing industry.
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Appendix A Equations of Motion for a Thin,
Specially Orthotropic Cylindrical Shell

In this appendix, a solution for the thin cylindrical shell equations of motion for

speciallyorthotropicmaterialsis developed.The Donnell-Mushtari equations of motion

are summarized. More detailed theories are available. For these theories, the reader is

referredto the literature [29, 34]. A solution for a particular set of boundary conditions

and applied forces is given. This solution was in turn used for work appearing in Chapter

3 of this research. A solution is also developed for the fluid inside the shell.

The Donnell-Mushtari equations of motion for a thin, specially orthotropic single-

layer circular cylinder including damping effects are given by [29, 33]:2
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where

s =
x

a
(A3)

Here, u, v, and w representthe axial, circumferential, and radial displacements of the

middle surface of the shell,h represents the shell thickness,a its radius and
 is the

structural damping coefficient. On the right-hand side,fx; f�; fr represent forces applied

to the cylinder in the longitudinal, circumferential, and radial directions respectively. If

boundary conditions of

v(�; 0) = v(�; l) = 0

w(�; 0) = w(�; l) = 0

u; v; w(�; x) = u; v; w(� + 2n�; x) (periodicity)

(A4)

are appliedand one assumesa harmonictime dependance, then a general solution for

Equation(A1) can be written

u(�; x; t) = e
i!t
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cos (�ms)[Umn cos (n�) + U
?

mn
sin (n�)]

v(�; x; t) = e
i!t

1X

m=1

1X

n=0

sin (�ms)[Vmn sin (n�) + V
?

mn
cos (n�)]

w(�; x; t) = e
i!t

1X

m=1

1X

n=0

sin (�ms)[Wmn cos (n�) +W
?

mn
sin (n�)]

(A5)

where

�m =
m�a

l
(A6)

The boundary conditions shown in Equation (A4) are commonly referred to as the

boundary conditions for a “shear diaphragm” , or “free support” [29]. It should be stressed

that this particular set of boundary conditions was applied so as to make it possible to

write a closed-form solution for Equation (A1). Proceeding with this derivation, if point
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forces of

fx = 0
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(A7)

are applied to the cylinder, the radial force can be expanded in terms of the eigen

functions of the cylinder’s radial displacement
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Note thatF ?

mn
becomeszero for this particular choice of~f . Substituting Equations (A5)

and (A8) into Equation (A1) yields, after some rearrangement
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where
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Notethat the structural damping coefficient
 hasbeen replaced by a frequency-dependent

modal damping term� where




a2�sh
= 2�!mn (A14)

It can be seen from examination of Equations (A10) and (A11) that it is not necessary

to carry along both sets of terms. Either the starred or unstarred terms can be used as a

complete solution. For the case of eigenvalue analysis, both Equations (A10) and (A11)

will yield the same eigenvalues. Furthermore, for the forced frequency response analysis

where the applied forces are as shown in Equation (A7), the right-hand side of Equation

(A11) becomes zero. Thus, the starred coefficients are also zero. This work uses the
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unstarred terms of Equation (A5) as a complete solution. That is
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For thefluid-filled regioninsidethecylindrical shell, the wave equation in cylindrical

coordinates can be used to describe the acoustic pressure at any point in the fluid. The

wave equationis given by
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Choosing boundary conditions of

p(r; �; 0; t) = p(r; �; l; t) = 0
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(A18)

allows one to couple the motion of the fluid to that of the cylinder and still write a

relatively simple closed-form solution for the acoustic pressure in the fluid. It should be

noted that this particular set of boundary conditions is chosen so that a simple closed-

form solutioncanbedevelopedfor validationand comparison to numerical finite element

solutions. This same method was used by SenGuptaet al. [15] for the same purpose.

Applying these boundary conditions and using the results for the cylindrical shell yields

the following expression forp

p(r; �; x; t) = ei!t
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whereJn represents then-th order Bessel function of the first kind and, written in closed-

form,

Pmn =
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As was the case for the structure, note that for the forces applied to the cylinder as shown

in Equation (A7), the starred terms in Equation (A19) become zero. This work will take

p(r; �; x; t) = ei!t
1X

m=1

1X

n=1

PmnJn(�mr) sin (�ms) cos (n�) (A22)

45



Appendix B Figures
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Figure B1 MSC/NASTRAN design cycle flow chart [24].
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Figure B2 Schematicrepresentationof objectivefunction andacoustic response. As the
objective function is minimized, the sound pressure level is likewise reduced.
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Figure B3 Exploded view of the fluid-structure problem for the thin, cylindrical shell
filled with air. The forces applied to the model for this analysis are also shown.
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Figure B4 Finite element fluid-structure model for the thin, cylindrical shell filled with air.

50 100 150

10-4

10-3

Frequency (Hz)

D
is

pl
ac

em
en

t, 
lo

g 10
 (

in
)

w Analytic

w Numeric

Figure B5 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies. Displacement is
calculated at the pointr = a; � = 0; x =

l

2
. Analytical and numerical modal solutions shown.
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Figure B6 Sound pressure level within the thin, cylindrical shell over a range of excitation frequencies. Pressure is
calculatedat the fluid point at r = a

2
; � = 0; x =

l

2
. Analytical andnumericalmodal solutionsshown.
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Figure B7 Radial displacement of a thin, cylindrical shell over a range of excitation frequencies.
Displacement is calculated at the pointr = a; � = 0; x =

l

2
. Analytical and numerical

direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz.
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Figure B8 Sound pressure level in a thin, cylindrical shell over a range of excitation frequencies.
Displacementis calculatedat the point r = a

2
; � = 0; x = l

2
. Analytical and numerical

direct solutions shown. The numerical solution is for the ranges of 20 to 60 Hz and 90 to 110 Hz.
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Figure B9 Global and local material axes for a single-ply laminate. The lamination angle 

is measured counter clockwise from the global x-axis to the local material 1–axis [27].
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Figure B10 Sensitivity of acoustic pressure in the orthotropic cylinder with respect to changes in
laminationangle . Data for  =0� at fluid location r = 0:88a ; � = 75:61o; x = 0:21l.
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Figure B11 Analytical radial displacement at structural location� = 75:61o; x = 0:21l.
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Figure B12 Analytical acoustic response at fluid locationr = 0:88a ; � = 75:61
o

; x = 0:21l.

Figure B13 Isometric view of the Starship fuselage.
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FigureB14 Isometricview of the finite element mesh of the Starship fuselage. The fluid portion
of the model is not visible, as it is completely enclosed by the structural elements of the model.
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Figure B15 Isometric view of the beam elements in the Starship finite element model.
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FigureB16 Isometricview of the finite element mesh of the fluid inside the Starship cabin. In the
completemodel of the Starship,theseelementsare completely enclosed by structural elements.

Figure B17 Isometric view of the Starship structure showing the location of the different materials used in the model.
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Figure B18 View of the Starship fuselage showing forces applied for this study. Shown are
the forceson the wing mountsand the forward bulkheadbelow the baggage compartment.
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Figure B19 Forced frequency response for the Starship finite element model. Structural displacement magnitude at
the point x=253.63, y=-34.71, z=99.93 (see Appendix C for an explanation of the Starship coordinate system).
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Figure B20 Forcedfrequencyresponse for the Starship finite element model.
Structural displacement magnitude at the point x=293.09, y=-22.57, z=131.7.
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Figure B21 Forced frequency response for the Starship finite element model.
Acoustic sound pressure level at the point x=189.44, y=30.10, z=105.43.
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Figure B22 Forced frequency response for the Starship finite element model.
Acoustic soundpressurelevel at the point x=259.05,y=-18.52,z=129.15.
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Figure B23 Design cycle history for the objective function used in the optimization problem.
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Figure B24 Design cycle history for the design variables (i.e. the lamination angles) used in the optimization problem
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Figure B25 Sound pressure level verses excitation frequency before and after lamination angle optimization. Shown
is the optimization frequency range for the response location at the rear window on the starboard side of the aircraft.
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Figure B26 Sound pressure level versus excitation frequency before and after lamination
angleoptimization. Shownis the full excitation frequency range and the limits of the optimization

range for the response location at the rear window on the starboard side of the aircraft.
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Figure B27 Acoustic pressure response in the passenger cabin at an
excitation frequency of 203 Hz prior to lamination angle optimization.
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Figure B28 Acoustic pressureresponsein the passengercabin at an
excitation frequencyof 203 Hz after laminationangleoptimization.
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Figure B29 Structural displacement magnitudes at an excitation
frequency of 203 Hz prior to lamination angle optimization.
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Appendix C Sound Pressure Level at All
Response Points for the Optimization Problem

This appendix presents the acoustic pressure response before and after optimization

of the lamination anglesat all ten response locations used for the optimization. Also

included is a brief explanation of the coordinate system used for the model and a table

of the (x,y,z) locations of the response points.

A Cartesian coordinate system was used to describe the locations of the nodes in

the finite elementmodel. The x-axis wasalignedwith the longitudinal (roll) axis of the

aircraft andthez-axiswasalignedwith the vertical (yaw) axis of the Starship. The nose

of the aircraft was located at the point (0,0,72). Additional points of reference in the

model are listed in Table C1.

Reference Point
Flight Station

(x-location, in.)

Nose of aircraft 0

Front of passenger cabin 170

Forward wing mounting brackets 237

Aft wing mounting brackets 324

Rear of passenger cabin 357

Forward bulkhead below baggage compartment 357

Aft bulkhead below baggage compartment 416

Tail of aircraft 537

Table C1 Table listing the flight stations (x-axis locations) of a number of geometrically
significant points in the Starship finite element model. Stations are listed in inches.

A total of ten fluid nodes were used as response locations for the optimization

problem. These grids were chosen to represent the approximate listening locations of
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the passengers within the cabin. Table C2 provides a listing of the (x,y,z) locations for

eachof thesenodes.

Node Description x-coordinate y-coordinate z-coordinate

First window, port side 220.3 -15.6 122.3

First window, starboardside 221.50 15.2 125.6

Second window, port side 249.7 -12.4 123.3

Secondwindow, starboardside 250.5 14.9 125.14

Third window, port side 282.8 -22.6 124.9

Third window, starboardside 279.1 16.8 120.8

Fourth window, port side 310.1 -19.8 122.5

Fourth window, starboard side 312.5 13.22 124.7

Fifth window, port side 337.3 -15.5 122.9

Fifth window, starboard side 339.6 19.9 119.7

Table C2 Table of response node locations in the model. Locations are in inches.

Figures C1 through C10 show the acoustic pressureresponseverses excitation

frequencyfor eachof thenodesin Table C2. The responses before and after optimization

and the frequencyrange of optimization are also shown.
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FigureC1 Soundpressurelevel before and after optimization for the response location at the first
window on the port side of the aircraft. The peak response has been reduced by 4.01 dB.
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Figure C2 Sound pressure level before and after optimization for the response location at the first
window on the starboard side of the aircraft. The peak response has been reduced by 3.81 dB.
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FigureC3 Soundpressurelevel before and after optimization for the response location at the second
window on the port side of the aircraft. The peak response has been reduced by 3.96 dB.
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Figure C4 Sound pressure level before and after optimization for the response location at the second
window on the starboard side of the aircraft. The peak response has been reduced by 3.79 dB.
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FigureC5 Soundpressurelevel before and after optimization for the response location at the third
window on the port side of the aircraft. The peak response has been reduced by 3.76 dB.
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Figure C6 Sound pressure level before and after optimization for the response location at the third
window on the starboard side of the aircraft. The peak response has been reduced by 3.77 dB.
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FigureC7 Soundpressurelevel before and after optimization for the response location at the fourth
window on the port side of the aircraft. The peak response has been reduced by 4.07 dB.
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Figure C8 Sound pressure level before and after optimization for the response location at the fourth
window on the starboard side of the aircraft. The peak response has been reduced by 3.85 dB.
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Figure C9 Sound pressure level before and after optimization for the response location at the fifth
window on the port side of the aircraft. The peak response has been reduced by 3.97 dB.
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Figure C10 Sound pressure level before and after optimization for the response location at the fifth
window on the starboard side of the aircraft. The peak response has been reduced by 4.03 dB.
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Appendix D Computer Codes

This appendix contains a source code listing of the FORTRAN andMathematica4

programs written in support of this work. Also included in this Appendix is a portion

of the MSC/NASTRAN bulk data file showing the structure of the optimization used

for the present work. The codes listed in this Appendix have been written specifically

for this study and shouldbe considered to be research code only. They are provided

for completeness. Their successful operation cannot be guaranteed outside the scope of

the present work.

D.1: FORTRAN Program compfreq.f

This is a program written in the FORTRAN language and it was used in the present

work to calculatethe forcedfrequencyresponseof thefluid/structurecylinder in Chapter

3. This code makes calls to Bessel function algorithms. These algorithms can be found

in the literature [35]. The structure is assumed to be specially orthotropic and the fluid

is ideal. Material properties for the structure are read from the file “layers.dat”. The

Donnell-Mushtari theory is used to describe the motion of the cylinder. The cylinder

displacements are coupled to the fluid in the cylinder. However, the fluid backpressure

is not coupled to the structure.

As outlined in Appendix A, the boundary conditions applied to the structure are those

for a simplesupport.Boundaryconditionsof p=0 areapplied to the fluid endcaps of the

system. The natural vibration frequencies for the structure can be output to a separate file.

4 Mathematicais a registered trademark of Wolfram Research, Inc.
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program compfreq
c
c Program to calculate the nautral frequencies of free vibration
c for a laminated orthotropic cylindrical shell and the forced
c frequency response. The shell contains an ideal fluid (air) and the
c acoustic response of this fluid to the vibration of the shell is
c determined. Bounday conditions are those of simple support,
c with no constraints in the axial direction.
c
c Input files include layers.dat, a file which contains data about
c the number of lamina in the shell and the material properties for
c each.
c
c Output files include:
c freq.out, a file which contains the mode numbers and natural
c frequencies of the cylinder.
c disp.out, contains displacement information at a point on the shell
c and acoustic pressure information at a point in the fluid.
c
c Declarations
c

implicit real(a-h,o-y)
implicit complex(z)
real l,lam,nu12,nu21,hh,kk

c
character*15 infile

c
parameter (pi=3.141592654,maxf=150,moden=40,modem=40)

c
dimension C(4,3,3),A(3,3),DS(3,3),D(3,3),h(4,2),

& u(maxf),v(maxf),w(maxf),p(maxf),frequency(maxf)
c

logical print
c
c Begin program
c

zi=cmplx(0.0,1.0)
c
c Specify geometry of the shell
c

l=164.0
r=35.0
rzero=0.0
small=10.0E-25

c
c Density of the fluid (air) (slugs/in**3)

rhof=1.17e-7
c Acoustic speed of sound (in/sec)

co=13620.0
c Structural damping

eta=0.0
c Applied force (lbs.)

Fo=0.3
c Acoustic reference pressure (psi)

pref=2.9e-9
c
c Specify location of interest (tt in radians)
c

rr=34.99991502
tt=1.1781
yz=(23.4285)/r

c
c Frequency increment (Hz)

step=1.0
c Starting frequency

freq=1.0*(2.0*pi)
c Print natural frequencies once

print=.FALSE.
c Input file

infile="layers.dat"
c
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do 50 i=1,3
do 55 j=1,3

A(i,j)=0.0
D(i,j)=0.0
DS(i,j)=0.0

55 continue
50 continue

c
c Get material properties from layers.dat file
c

open(unit=10,file=infile,status=’old’)
c

read(10,1000)layers
c

do 100 k=1,layers
read(10,*)E11,E22,nu12,nu21,G
write(*,*)E11,E22,nu12,nu21,G
read(10,*)hh,rhos
write(*,*)hh,rhos

100 continue
c

close(10)
pause

c
c Prepare tecplot natural frequencies output file

if (print) then
open(unit=20,file=’freq.out’,status=’unknown’)
write(20,1005)’TITLE = "Variation of Frequency with m"’
write(20,1005)’VARIABLES = "m","n","‘w_1","‘w_2","‘w_3"’

endif
c
c Prepare tecplot displacement output file

open(unit=30,file=’disp.out’,status=’unknown’)
write(30,1005)’TITLE="Forced Fluid/Structure Cylinder Resp."’
write(30,1005)’VARIABLES="Freq","u","v","w","p"’
write(30,1005)’ZONE T="Analytic"’

c
do 305 k=1,maxf

c
zu=cmplx(0.0,0.0)
zv=cmplx(0.0,0.0)
zw=cmplx(0.0,0.0)
zp=cmplx(0.0,0.0)

c
do 300 n=0,moden

c
if (print) write(20,1010)’ZONE T="n=’,n,’"’

c
do 350 m=1,modem

c
lam=(m*pi*r)/l
kk=hh*hh/(12.0*r*r)

c
c Calculate alpha’s
c

p11=(-lam*lam-n*n*(G*(1.0-nu12*nu21)/E11))
p12=lam*n*((nu12*E22+G*(1.0-nu12*nu21))/E11)
p13=lam*nu12*E22/E11
p21=lam*n*((nu12*E22+G*(1.0-nu12*nu21))/E11)
p22=-lam*lam*(G*(1.0-nu12*nu21)/E11)-n*n*E22/E11
p23=-n*E22/E11
p31=-lam*nu12*E22/E11
p32=n*E22/E11
p33=E22/E11+kk*(lam*lam*lam*lam+2.0*n*n*lam*lam*

& ((nu12*E22+2.0*G*(1.0-nu12*nu21))/E11)+(E22/E11)*
& n*n*n*n)

c
c Define cubic equation constants
c

C1= (p11+p22-p33)
C2= (p11*p22-p11*p33-p22*p33+p23*p32-p12*p21+p13*p31)
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C3= (p11*(p23*p32-p22*p33)+p12*(p21*p33-p23*p31)+
& p13*(p31*p22-p21*p32))

c
c Solve equation for omega squared.
c

cc=(1.0/3.0)*(3.0*C2-C1*C1)
dd=(1.0/27.0)*(2.0*C1*C1*C1-9.0*C1*C2+27.0*C3)

c
delta=(dd*dd/4.0)+(cc*cc*cc/27.0)

c
if (delta.LT.0.0) then

partone=-dd/2.0
parttwo=SQRT(-1.0*delta)
zPP=cmplx(partone,parttwo)
zQQ=cmplx(partone,-parttwo)

else
partone=-dd/2.0
parttwo=SQRT(delta)
zPP=cmplx((partone+parttwo),rzero)
zQQ=cmplx((partone-parttwo),rzero)

endif
c

zPP=zPP**(1.0/3.0)
zQQ=zQQ**(1.0/3.0)

c
zfirst=-0.5*(zPP+zQQ)
zsecnd=-0.5*(zPP-zQQ)*SQRT(3.0)*zi

c
partone=real(zfirst)+real(zsecnd)
parttwo=imag(zfirst)+imag(zsecnd)
parttre=real(zfirst)-real(zsecnd)
partfor=imag(zfirst)-imag(zsecnd)

c
zroot1=zPP+zQQ-C1/3.0
zroot2=cmplx((partone-C1/3.0),parttwo)
zroot3=cmplx((parttre-C1/3.0),partfor)

c
zfreq1=SQRT(zroot1*E11/(rhos*r*r*(1-nu12*nu21)))
zfreq2=SQRT(zroot2*E11/(rhos*r*r*(1-nu12*nu21)))
zfreq3=SQRT(zroot3*E11/(rhos*r*r*(1-nu12*nu21)))

c
if (imag(zfreq1).NE.0.0.OR.

& imag(zfreq2).NE.0.0.OR.
& imag(zfreq3).NE.0.0) then

write(*,1005)’Warning: Non-zero imaginary frequency’
endif

c
if (print) then

write(20,1015)m,n,real(zfreq1/(2.0*pi)),
& real(zfreq2/(2.0*pi)),
& real(zfreq3/(2.0*pi))

if (n.EQ.moden) then
close(20)
print=.FALSE.

endif
endif

c
c Output for non-dimensional parameters
c
c if (print) then
c x=lam/pi
c zout1=SQRT(zroot1)
c zout2=SQRT(zroot2)
c zout3=SQRT(zroot3)
c write(20,1020)x,n,real(zout1),
c & real(zout2),
c & real(zout3)
c if (n.EQ.modes) close(20)
c endif
c

call magnitude(zfreq1,freq1)
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call magnitude(zfreq2,freq2)
call magnitude(zfreq3,freq3)

c
Cls=E11/(rhos*(1.0-nu12*nu21))

c
c Calculate force coefficient
c

Fmn=r*(2.0/(pi*l))*Fo*sin(m*pi/2.0)*(1.0+cos(n*pi))
c

rootA=-SQRT(-(Cls/(r*r))*(lam*lam*G*(nu12*nu21-1.0)+
& n*n*(E22-E11+G*(1.0/nu12-nu21)))/E11)

c
rootB=-SQRT(-(Cls/(r*r))*(lam*lam*(nu12*nu12*E22-E11+

& nu12*G*(1.0-nu12*nu21))+n*n*G*(nu12*nu21-1.0))/
& E11)

C
beta =(Cls/(r*r))*(lam*lam+n*n*G*(1.0-nu12*nu21)/E11)
gamma=(Cls/(r*r))*(lam*lam*G*(1.0-nu12*nu21)/E11+n*n*E22/E11)
xi =(Cls/(r*r))*(lam*n*nu12*E22+G*(1.0-nu12*nu21))/E11

c
discr=SQRT((beta+gamma)*(beta+gamma)+4.0*(xi*xi-beta*gamma))

c
omegaC=0.5*((beta+gamma)+discr)
omegaD=0.5*((beta+gamma)-discr)

c
rootC=SQRT(omegaC)
rootD=SQRT(omegaD)

c
zdet=cmplx((freq*freq-freq3*freq3),2.0*eta*freq*freq3)*

& cmplx((freq*freq-freq2*freq2),2.0*eta*freq*freq2)*
& cmplx((freq*freq-freq1*freq1),2.0*eta*freq*freq1)

c
zcofA=cmplx((freq*freq-rootA*rootA),2.0*eta*freq*rootA)
zcofB=cmplx((freq*freq-rootB*rootB),2.0*eta*freq*rootB)
zcofC=cmplx((freq*freq-rootC*rootC),2.0*eta*freq*rootC)*

& cmplx((freq*freq-rootD*rootD),2.0*eta*freq*rootD)
c

zAmn=-(Fmn/(rhos*hh))*zcofA/zdet*1.0/(r*r)
zBmn= (Fmn/(rhos*hh))*zcofB/zdet*1.0/(r*r)
zCmn=-(Fmn/(rhos*hh))*zcofC/zdet*1.0/(r*r)

c
c Sum displacements
c

zu=zu+zAmn*cos(lam*yz)*cos(n*tt)
zv=zv+zBmn*sin(lam*yz)*sin(n*tt)
zw=zw+zCmn*sin(lam*yz)*cos(n*tt)

c
c Solve for pressure coefficient
c

alphasqr=(freq*freq)/(co*co)-lam*lam/(r*r)
c

if (alphasqr.LT.0.0) then
alph=SQRT(-1.0*alphasqr)
call cofimag(small,r,alph,n,bottom)
zDmn=(zCmn*rhof*freq*freq)/bottom
call bessimag(small,rr,alph,n,press)

elseif (alphasqr.GT.0.0) then
alph=SQRT(alphasqr)
call realcof(small,r,alph,n,bottom)
zDmn=(zCmn*rhof*freq*freq)/bottom
call bessreal(small,rr,alph,n,press)

elseif (alphasqr.EQ.0.0) then
write(*,*)’Alpha = 0.0’

endif
c

c Sum pressure
c

zp=zp+zDmn*press*sin(lam*yz)*cos(n*tt)
c

350 continue

73



300 continue
c
c Dummy print

write(*,*)’Complex pressure = ’,zp
write(*,1)’Complex data calculated for ’,k

c
c Convert complex displacements, pressure to magnitudes
c

call magnitude(zu,u(k))
call magnitude(zv,v(k))
call magnitude(zw,w(k))

c
c Convert pressure to dB scale

call magnitude(zp,p(k))
p(k)=20.0*(0.4342944819*log(p(k)/pref))

c
c Write to tecplot file
c

frequency(k)=freq/(2.0*pi)
write(30,1025)frequency(k),10.0E-10,v(k),w(k),p(k)

c
c Increment frequency

freq=freq+step*(2.0*pi)
c

305 continue
c

close(30)
c

1 format(a28,i4)
1000 format(i2)
1005 format(a)
1010 format(a10,i2,a1)
1015 format(i3,1x,i3,3(1x,f12.2))
1020 format(f12.6,1x,i3,3(1x,f12.6))
1025 format(f7.2,4(1x,e16.9))

c
stop
end

c
c **********************************************************************

subroutine magnitude(z,x)
c
c Subroutine to return the magnitude x of a complex argument z
c

implicit real(a-h,o-y)
implicit complex(z)

c
partone=real(z)
parttwo=imag(z)

c
x=SQRT(partone*partone+parttwo*parttwo)

c
return
end

c
c **********************************************************************

subroutine realcof(tiny,a,alph,n,out)
c
c Subroutine to return the denominator of the pressure coefficient term.
c Used when the argument of the n-th order bessel function is real.
c

implicit real(a-h,o-y)
implicit complex(z)

c
zi=cmplx(0.0,1.0)

c
x=alph*a

c
if (n.EQ.0) then

term1=BESSJ0(x)
term2=BESSJ1(x)
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elseif (n.EQ.1) then
term1=BESSJ1(x)
term2=BESSJ(2,x)

else
term1=BESSJ(n,x)
term2=BESSJ((n+1),x)

endif
c

out=(n/a)*term1-alph*term2
c

if (ABS(out).LT.tiny) then
if (out.LT.0.0) then

out=-1.0*tiny
else

out=tiny
endif

c
endif
return
end

c
c **********************************************************************

subroutine cofimag(tiny,a,alpha,n,out)
c
c Subroutine to return the denominator of the pressure coefficient term.
c Used when the argument of the n-th order Bessel function is complex.
c

implicit real (a-h,o-y)
implicit complex(z)

c
x=alpha*a

c
if (n.EQ.0) then

term1=BESSI0(x)
term2=BESSI1(x)

elseif (n.EQ.1) then
term1=BESSI1(x)
term2=BESSI(2,x)

else
term1=BESSI(n,x)
term2=BESSI((n+1),x)

endif
c

out=alpha*term2+(n/a)*term1
c

if (ABS(out).LT.tiny) then
if (out.LT.0.0) then

out=-1.0*tiny
else

out=tiny
endif

endif
c

return
end

c
c **********************************************************************

subroutine bessreal(tiny,r,alpha,n,out)
c
c Subroutine to return the n-th order bessel function of a real argument.
c

implicit real (a-h,o-y)
implicit complex (z)

c
x=r*alpha

c
if (n.EQ.0) then

out=BESSJ0(x)
elseif (n.EQ.1) then

out=BESSJ1(x)
else
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out=BESSJ(n,x)
endif

c
if (ABS(out).LT.tiny) then

if (out.LT.0.0) then
out=-1.0*tiny

else
out=tiny

endif
endif

c
return
end

c
c **********************************************************************

subroutine bessimag(tiny,r,alpha,n,out)
c
c Subroutine to return the n-th order modified bessel function of a real
c argument.
c

implicit real (a-h,o-y)
implicit complex (z)

c
x=r*alpha

c
if (n.EQ.0) then

out=BESSI0(x)
elseif (n.EQ.1) then

out=BESSI1(x)
else

out=BESSI(n,x)
endif

c
if (ABS(out).LT.tiny) then

if (out.LT.0.0) then
out=-1.0*tiny

else
out=tiny

endif
endif

c
return
end

D.2: MathematicaTM program sensitivity.m

Thiscomputercodewaswritten for useby theMathematicaTM computermathematics

program[36]. Like thecompfreq.f program (above), it calculates the displacements of the

thin, cylindrical shell and the acoustic pressure inside the shell. This code also calculates

the sensitivities of the shell structural displacement and the acoustic response to changes

in lamination angle in the structure.

The solution outlined in Appendix A is again used to describe the motion of the

cylinder. However, this solution is only valid for lamination angles near 0� or 90�;

76



i.e. angles where the material becomes specially orthotropic. Therefore, the sensitivities

calculatedby this code are approximations valid only near either of these two angles.

(*Mathematica program to determine radial displacement of a circular,
cylindrical shell using the Love-Timoshenko anisotropic operator.
Acoustic pressure at an interior point of the cylinder is also calculated
Sensitivity of these values WRT lamination angle psi near psi=0 is
determined. *)
(**)
LT={{lt11,lt12,lt13},{lt21,lt22,lt23},{lt31,lt32,lt33}}
pv={0,0,Fmn}
(**)
(* Define general solution *)
u=Cos[lam*s]*Cos[n*th]
v=Sin[lam*s]*Sin[n*th]
w=Sin[lam*s]*Cos[n*th]
(**)
(* Define circular cylinder geometry *)
h=0.174
a=35.0
l=164.0
pi=3.141592654
(**)
(* Define material properties *)
E11=30.0*10ˆ6
E22=0.75*10ˆ6
nu12=0.25
nu21=0.00625
G12=0.375*10ˆ6
rho=1.458*10ˆ-4
(* Define fluid properties *)
rhof=1.17*10ˆ-7
cnot=13620.0
pref=2.9*10ˆ-9
(**)
(* Define A, B, and D matricies *)
AA={{A11,A12,A16},{A12,A22,A26},{A16,A26,A66}}
A11=h*QB11
A12=h*QB12
A16=h*QB16
A22=h*QB22
A26=h*QB26
A66=h*QB66
(*BB={{B11,B12,B16},{B12,B22,B26},{B16,B26,B66}}
B11=0.5*h*h*QB11
B12=0.5*h*h*QB12
B16=0.5*h*h*QB16
B22=0.5*h*h*QB22
B26=0.5*h*h*QB26
B66=0.5*h*h*QB66*)
DD={{D11,D12,D16},{D12,D22,D26},{D16,D26,D66}}
D11=(1/12)*h*h*h*QB11
D12=(1/12)*h*h*h*QB12
D16=(1/12)*h*h*h*QB16
D22=(1/12)*h*h*h*QB22
D26=(1/12)*h*h*h*QB26
D66=(1/12)*h*h*h*QB66
(**)
(* Define the reduced stiffnesses Qij (Jones p 46) *)
Q11=E11/(1-nu12*nu21)
Q12=nu12*E22/(1-nu12*nu21)
Q22=E22/(1-nu12*nu21)
Q66=G12
(**)
(* Define global reduced stiffnesses Qij-bar (Jones p 51) *)
QB11=Q11*(Cos[psi])ˆ4+2*(Q12+2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]+

Q22*(Sin[psi])ˆ4
QB12=(Q11+Q22-4*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]+Q12*((Sin[psi])ˆ4+

(Cos[psi])ˆ4)
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QB22=Q11*(Sin[psi])ˆ4+2*(Q12+2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]+
Q22*(Cos[psi])ˆ4

QB16=(Q11-Q12-2*Q66)*Sin[psi]*Cos[psi]*Cos[psi]*Cos[psi]+
(Q12-Q22+2*Q66)*Sin[psi]*Sin[psi]*Sin[psi]*Cos[psi]

QB26=(Q11-Q12-2*Q66)*Sin[psi]*Sin[psi]*Sin[psi]*Cos[psi]+
(Q12-Q22+2*Q66)*Sin[psi]*Cos[psi]*Cos[psi]*Cos[psi]

QB66=(Q11+Q22-2*Q12-2*Q66)*Sin[psi]*Sin[psi]*Cos[psi]*Cos[psi]
+Q66*((Sin[psi])ˆ4+(Cos[psi])ˆ4)

(* Define Donnell-Mushtari anisotropic operator *)
k=(h*h)/(12*a*a)
lt11=(A11/A22)*D[D[u,s],s]+2*(A16/A22)*D[D[u,s],th]+(A66/A22)*D[D[u,th],th]+

u*(a*a*h*rho/A22)*om
lt12=(A16/A22)D[D[v,s],s]+((A12+A66)/A22)*D[D[v,s],th]+(A26/A22)*D[D[v,th],th]
lt13=(A12/A22)*D[w,s]+(A26/A22)*D[w,th]
lt22=(A66/A22)*D[D[v,s],s]+2*(A26/A22)*D[D[v,s],th]+D[D[v,th],th]+

v*(a*a*h*rho/A22)*om
lt23=(A26/A22)*D[w,s]+D[w,th]
lt33=w+k*((D11/D22)*D[D[D[D[w,s],s],s],s]+

2*((D12+2*D66)/D22)*D[D[D[D[w,s],s],th],th]+D[D[D[D[w,th],th],th],th])-
w*(a*a*h*rho/A22)*om

lt21=(A16/A22)D[D[u,s],s]+((A12+A66)/A22)*D[D[u,s],th]+(A26/A22)*D[D[u,th],th]
lt31=(A12/A22)*D[u,s]+(A26/A22)*D[u,th]
lt32=(A26/A22)*D[v,s]+D[v,th]
(**)
(* Add Love-Timoshenko modifyer *)
lt22=lt22+k*(2*(D66/D22)*D[D[v,s],s]+3*(D26/D22)*D[D[v,s],th]+D[D[v,th],th])
lt23=lt23-k*((D16/D22)*D[D[D[w,s],s],s]+((D12+2*D66)/D22)*D[D[D[w,s],s],th]+

3*(D26/D22)*D[D[D[w,s],th],th]+D[D[D[w,th],th],th])
lt32=lt32-k*(2*(D16/D22)*D[D[D[v,s],s],s]+((D12+4*D66)/D22)*D[D[D[v,s],s],th]+

4*(D26/D22)*D[D[D[v,s],th],th]+D[D[D[v,th],th],th])
lt33=lt33+k*(4*(D16/D22)*D[D[D[D[w,s],s],s],th]+

4*(D26/D22)*D[D[D[D[w,s],s],s],th])
(**)
(* Compute acoustic pressure *)
p=Sin[lam*s]*Cos[n*th]*BesselJ[n,alpha*rad]
lower=D[BesselJ[n,(alpha*rbound)],rbound]
alpha=Sqrt[om/(cnot*cnot)-(m*pi)*(m*pi)/(l*l)]
rbound=a
(**)
(* Define applied forced vector *)
cf=1/A22
Fmn=Fo*cf*Sin[m*pi/2]*(1+Cos[n*pi])*(2*a/(pi*l))
Fo=0.3
(**)
(*Define derivatives of the LT matrix WRT psi (lamination angle)*)
dlt11=D[lt11,psi]
dlt12=D[lt12,psi]
dlt13=D[lt13,psi]
(**)
dlt21=D[lt21,psi]
dlt22=D[lt22,psi]
dlt23=D[lt23,psi]
(**)
dlt31=D[lt31,psi]
dlt32=D[lt32,psi]
dlt33=D[lt33,psi]
(**)
(* Remove trig terms from operator *)
t11=Simplify[Expand[lt11/u]]
t12=Simplify[Expand[lt12/u]]
t13=Simplify[Expand[lt13/u]]
t21=Simplify[Expand[lt21/v]]
t22=Simplify[Expand[lt22/v]]
t23=Simplify[Expand[lt23/v]]
t31=Simplify[Expand[lt31/w]]
t32=Simplify[Expand[lt32/w]]
t33=Simplify[Expand[lt33/w]]
(**)
(*Define lamination angle psi*)
psi=0.0
(**)
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lt11=Simplify[t11]
lt12=Simplify[t12]
lt13=Simplify[t13]
lt21=Simplify[t21]
lt22=Simplify[t22]
lt23=Simplify[t23]
lt31=Simplify[t31]
lt32=Simplify[t32]
lt33=Simplify[t33]
(**)
dlt11=Expand[dlt11]
dlt12=Expand[dlt12]
dlt13=Expand[dlt13]
dlt21=Expand[dlt21]
dlt22=Expand[dlt22]
dlt23=Expand[dlt23]
dlt31=Expand[dlt31]
dlt32=Expand[dlt32]
dlt33=Expand[dlt33]
t11=Simplify[dlt11]
t12=Simplify[dlt12]
t13=Simplify[dlt13]
t21=Simplify[dlt21]
t22=Simplify[dlt22]
t23=Simplify[dlt23]
t31=Simplify[dlt31]
t32=Simplify[dlt32]
t33=Simplify[dlt33]
DLT={{dlt11,dlt12,dlt13},{dlt21,dlt22,dlt23},{dlt31,dlt32,dlt33}}
(**)
(* Specify structural location of interest *)
th=75.61*(pi/180)
s=(35.1428)*(1/a)
lam=(m*pi*a/l)
(* Specify fluid location of interest *)
rad=30.67
(**)
dlt11=Simplify[t11]
dlt12=Simplify[t12]
dlt13=Simplify[t13]
dlt21=Simplify[t21]
dlt22=Simplify[t22]
dlt23=Simplify[t23]
dlt31=Simplify[t31]
dlt32=Simplify[t32]
dlt33=Simplify[t33]
(**)
LT={{lt11,lt12,lt13},{lt21,lt22,lt23},{lt31,lt32,lt33}}
DLT={{dlt11,dlt12,dlt13},{dlt21,dlt22,dlt23},{dlt31,dlt32,dlt33}}
pv={0,0,Fmn}
(**)
(*Define minor determinant for the 3-3 term in the LT matrix*)
coflt33=lt11*lt22-lt21*lt12
(*Define derivative of dlt33 minor determinant*)
dc=Expand[dlt11*lt22+dlt22*lt11-dlt21*lt12-dlt12*lt21]
dcoflt33=Simplify[dc]
(**)
(*Define derivative of the determinant LT*)
ddlt=dlt11*(lt22*lt33-lt23*lt32)+dlt12*(lt23*lt31-lt33*lt21)+

dlt13*(lt21*lt32-lt22*lt31)+dlt21*(lt13*lt32-lt12*lt33)+
dlt22*(lt11*lt33-lt13*lt31)+dlt23*(lt12*lt31-lt11*lt32)+
dlt31*(lt12*lt23-lt13*lt22)+dlt32*(lt13*lt21-lt11*lt23)+
dlt33*(lt11*lt22-lt12*lt21)

ds=Expand[ddlt]
ddlt=Simplify[ds]
(**)
(* Initialize output variables *)
out=0.0
dout=0.0
pout=0.0
sout=0.0
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(**)
(* Open output file *)
OpenWrite["sens.out",PageWidth -> 164]
WriteString["sens.out","TITLE=\"Displacement Sensitivity to Ply Angle\"\n"]
WriteString["sens.out","VARIABLES=\"Freq\",\"˜6w/˜6‘y\",\"˜6p/˜6‘y\",\"w\",\"p\"\n"]
WriteString["sens.out","ZONE T=\"Analytic Sensitivity\"\n"]
(**)
(* Determine D[Cmn,psi] - add mode shapes *)
Do[
Do[
lam=(m*pi*a/l);
dlt=Det[LT];
(* Compute displacement *)
Cmn=Fmn*coflt33/dlt;
out=out+Cmn*w;
(**)
(* Compute acoustic pressure *)
upper=Cmn*rhof*om;
Dmn=upper/lower;
pout=pout+Dmn*p;
(* Compute displacement sensitivity to lamination angle *)
first=Simplify[dcoflt33*dlt];
second=Simplify[coflt33*ddlt];
bottom=Simplify[dlt*dlt];
dout=dout+(pi/180)*Fmn*(first-second)/bottom;
sout=sout+(pi/180.0)*((rhof*om)/lower)*p*Fmn*(first-second)/bottom
,{m,1,15,2}],{n,0,20,2}]
(**)
om=f*f*4*pi*pi
Plot[Log[10,Abs[out]],{f,110,140},AxesLabel -> {"Freq","Log Displacement"}]
Plot[Log[10,Abs[dout]],{f,110,140},AxesLabel -> {"Freq","Log Disp Sens"}]
Plot[20*Log[10,Abs[pout/pref]],{f,110,140},AxesLabel -> {"Freq","Press (dB)"}]
Plot[Log[10,Abs[sout]],{f,110,140},AxesLabel -> {"Freq","Log Press Sens"}]*)
Do[
dummy=20.0*Log[10,Abs[pout/pref]];
qq=ToExpression["f"];
rr=ToExpression["Abs[out]"];
qr=ToExpression["dout"];
pp=ToExpression["dummy"];
pq=ToExpression["sout"];
Write["sens.out",qq,
OutputForm[" "],qr,
OutputForm[" "],pq,
OutputForm[" "],rr,
OutputForm[" "],pp],
{f,20,50,1}]
Close["sens.out"]

D.3: MSC/NASTRAN Bulk Data File

What follows is a portion of the MSC/NASTRAN bulk data file which was used for

the optimization of the Starship fuselage in the present work. Shown is the formulation

of the design variables, property relations, objective function and constraints for the

problem. Not included in this listing is the finite element data for the model.

The design variables of the problem were normalized such that they varied between

1.0 and 2.0 with a starting point of 1.6. The design variables were related to the lamination

angles of the composite through the DVPREL1 entries in the bulk data deck. The
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objective function was defined using a DRESP2 card (number 100). The sound pressure

levelsat ten nodes in the fluid portion of the model were used as design constraints for

the problem. For additional information regarding the bulk data cards referenced in this

listing, the reader is referred to the literature [22, 37]

$ NASTRANinput file created by the PDA MSC/NASTRAN input file
$ translator ( PAT3/MSC-NASTRAN Release 1.4-2 ) on June 14, 1996 at
$ 15:11:49.
$ASSIGN OUTPUT2 = ’starship3.opt.op2’, UNIT = 12, FORM = FORMATTED
$ Frequency Response Analysis, Direct Formulation, Database
$NASTRAN SYSTEM(146)=1,SYSTEM(196)=1
INIT SCRATCH LOGI=(SCRATCH(400000))
SOL 200
TIME 6000
CEND
SEALL = ALL
SUPER = ALL
$ Optimization case control
ANALYSIS = MFREQ
DESOBJ = 100
DESSUB = 500000
TITLE = MSC/NASTRANjob created on 04-Apr-96 at 11:18:01
ECHO = NONE
MAXLINES = 999999999
SET 777=12656,12645,13611,13728,14483,14455,15352,15454,16404,16410
SUBCASE1
$ Subcase name : complete_loading

SUBTITLE=complete_loading
METHOD(structure) = 123
METHOD(fluid) = 213
FREQUENCY = 1
LOADSET = 1
DLOAD = 2
DISPLACEMENT(SORT1,PUNCH,REAL)=777

$ VELOCITY(SORT1,PUNCH,REAL)=777
BEGIN BULK
PARAM POST -1
PARAM PATVER 3.
PARAM AUTOSPCYES
PARAM PRGPST NO
PARAM COUPMASS 1
PARAM K6ROT 0.
PARAM WTMASS 1.
PARAM,NOCOMPS,-1
PARAM G 0.06
PARAM OPTEXIT 7
INCLUDE ’tet4.INC’
EIGRL 123 500 0
EIGRL 213 200 0
FREQ1 1 185. 1. 25
$ Elements and Element Properties for region : main-cabin
$ Composite Property Record created from P3/PATRAN composite material
$ record : MATRL.16
$ Composite Material Description : Created by neutral file import
PCOMP 7 -.4135 .06 + MU
+ MU 6 .0085 45. YES 10 .01 90. YES + MV
+ MV 10 .01 0. YES 10 .01 90. YES + MW
+ MW 5 .75 0. YES 10 .01 90. YES + MX
+ MX 10 .01 0. YES 10 .01 90. YES + MY
+ MY 6 .0085 45. YES
$ Optimization parameters
$ Define design variables (lamination angles, p-naught)
DESVAR 1 angle1 1.6 1.0 2.0 0.30
DESVAR 2 angle2 1.6 1.0 2.0 0.30
DESVAR 3 angle3 1.6 1.0 2.0 0.30

81



DESVAR 4 angle4 1.6 1.0 2.0 0.30
DESVAR 5 angle5 1.6 1.0 2.0 0.30
DESVAR 6 angle6 1.6 1.0 2.0 0.30
DESVAR 7 angle7 1.6 1.0 2.0 0.30
DESVAR 8 angle8 1.6 1.0 2.0 0.30
DESVAR 9 Po 100.0 40.0 150.0 0.15
$ Relate design varibles to property values for main cabin region
DVPREL1 1 PCOMP 7 14 -225.0 + ZZZZZA
+ ZZZZZA 1 180.0
DVPREL1 2 PCOMP 7 18 -180.0 + ZZZZZB
+ ZZZZZB 2 180.0
DVPREL1 3 PCOMP 7 24 -90.0 -270.0 + ZZZZZC
+ ZZZZZC 3 180.0
DVPREL1 4 PCOMP 7 28 -180.0 + ZZZZZD
+ ZZZZZD 4 180.0
DVPREL1 5 PCOMP 7 38 -180.0 + ZZZZZE
+ ZZZZZE 5 180.0
DVPREL1 6 PCOMP 7 44 -90.0 -270.0 + ZZZZZF
+ ZZZZZF 6 180.0
DVPREL1 7 PCOMP 7 48 -180.0 + ZZZZZG
+ ZZZZZG 7 180.0
DVPREL1 8 PCOMP 7 54 -225.0 + ZZZZZH
+ ZZZZZH 8 180.0
$ Relate design varibles to property values for main cabin doubler region
DVPREL1 11 PCOMP 4 14 -225.0 + ZAZZZA
+ ZAZZZA 1 180.0
DVPREL1 12 PCOMP 4 18 -180.0 + ZAZZZB
+ ZAZZZB 2 180.0
DVPREL1 13 PCOMP 4 24 -90.0 -270.0 + ZAZZZC
+ ZAZZZC 3 180.0
DVPREL1 14 PCOMP 4 28 -180.0 + ZAZZZD
+ ZAZZZD 4 180.0
DVPREL1 15 PCOMP 4 48 -180.0 + ZAZZZE
+ ZAZZZE 5 180.0
DVPREL1 16 PCOMP 4 54 -90.0 -270.0 + ZAZZZF
+ ZAZZZF 6 180.0
DVPREL1 17 PCOMP 4 58 -180.0 + ZAZZZG
+ ZAZZZG 7 180.0
DVPREL1 18 PCOMP 4 64 -225.0 + ZAZZZH
+ ZAZZZH 8 180.0
$ Define objective function (minimize Po)
DRESP2 100 Po 999 + ZZZZZI
+ ZZZZZI DESVAR 9
DEQATN 999 obj(Po)=Po
DEQATN 400000 f(Po,x,y)=10.0*LOG10((x*x+y*y)/(8.41e-18))/Po
$ Define system response locations
$ First window, port and starboard side
DRESP1 100000 AAAAAA FRDISP 1 12656
DRESP1 150000 IAAAAA FRDISP 7 12656
DRESP2 200000 BAAAAA 400000 + AAAAAA
+ AAAAAA DESVAR 9 + BAAAAA
+ BAAAAA DRESP1 100000 150000
DRESP1 100001 AAAAAB FRDISP 1 12645
DRESP1 150001 IAAAAB FRDISP 7 12645
DRESP2 200001 BAAAAB 400000 + AAAAAB
+ AAAAAB DESVAR 9 + BAAAAB
+ BAAAAB DRESP1 100001 150001
$ Second window, port and starboard side
DRESP1 100002 AAAAAC FRDISP 1 13611
DRESP1 150002 IAAAAC FRDISP 7 13611
DRESP2 200002 BAAAAC 400000 + AAAAAC
+ AAAAAC DESVAR 9 + BAAAAC
+ BAAAAC DRESP1 100002 150002
DRESP1 100003 AAAAAD FRDISP 1 13738
DRESP1 150003 IAAAAD FRDISP 7 13728
DRESP2 200003 BAAAAD 400000 + AAAAAD
+ AAAAAD DESVAR 9 + BAAAAD
+ BAAAAD DRESP1 100003 150003
$ Third window, port and starboard side
DRESP1 100004 AAAAAE FRDISP 1 14483
DRESP1 150004 IAAAAE FRDISP 7 14483
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DRESP2 200004 BAAAAE 400000 + AAAAAE
+ AAAAAE DESVAR 9 + BAAAAE
+ BAAAAE DRESP1 100004 150004
DRESP1 100005 AAAAAF FRDISP 1 14455
DRESP1 150005 IAAAAF FRDISP 7 14455
DRESP2 200005 BAAAAF 400000 + AAAAAF
+ AAAAAF DESVAR 9 + BAAAAF
+ BAAAAF DRESP1 100005 150005
$ Fourth window, port and starboard side
DRESP1 100006 AAAAAG FRDISP 1 15352
DRESP1 150006 IAAAAG FRDISP 7 15352
DRESP2 200006 BAAAAG 400000 + AAAAAG
+ AAAAAG DESVAR 9 + BAAAAG
+ BAAAAG DRESP1 100006 150006
DRESP1 100007 AAAAAH FRDISP 1 15454
DRESP1 150007 IAAAAH FRDISP 7 15454
DRESP2 200007 BAAAAH 400000 + AAAAAH
+ AAAAAH DESVAR 9 + BAAAAH
+ BAAAAH DRESP1 100007 150007
$ Fifth window, port and starboard side
DRESP1 100008 AAAAAI FRDISP 1 16404
DRESP1 150008 IAAAAI FRDISP 7 16404
DRESP2 200008 BAAAAI 400000 + AAAAAI
+ AAAAAI DESVAR 9 + BAAAAI
+ BAAAAI DRESP1 100008 150008
DRESP1 100009 AAAAAJ FRDISP 1 16410
DRESP1 150009 IAAAAJ FRDISP 7 16410
DRESP2 200009 BAAAAJ 400000 + AAAAAJ
+ AAAAAJ DESVAR 9 + BAAAAJ
+ BAAAAJ DRESP1 100009 150009
$ Define constraint cards on DRESP2 entries
DCONSTR 1 200000 1.0
DCONSTR 2 200001 1.0
DCONSTR 3 200002 1.0
DCONSTR 4 200003 1.0
DCONSTR 5 200004 1.0
DCONSTR 6 200005 1.0
DCONSTR 7 200006 1.0
DCONSTR 8 200007 1.0
DCONSTR 9 200008 1.0
DCONSTR 10 200009 1.0
DCONADD 500000 1 2 3 4 5 6 7 + ZZZZZZ
+ ZZZZZZ 8 9 10
DSCREEN EQUA -0.2
DOPTPRM DESMAX 11 P1 1 P2 15 + ZZZZZY
+ ZZZZZY DXMIN 0.075 DPMIN 0.10
INCLUDE ’structure.dat’
INCLUDE ’fluid.dat’
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