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Two-dimensional incompressible viscous driven-cavity 
ows are computed for Reynolds numbers on the

range 100{20,000 using a loosely coupled, implicit, second-order centrally-di�erenced scheme. Mesh se-

quencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel

time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in

solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns

are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.

Nomenclature

A coe�cients of linear system
B, B0 intermediate source terms
b source term of linear system
C continuity equation error
e, e0 error vectors
f vector of dependent variables
g source-term vector
�g discretized form of g
h depth of cavity
l width of cavity
P relative pressure
Re Reynolds number, �Ul=�
r, r0 residual vectors
s arc-length fraction
s1 grid-clustering parameter
t time
U speed of upper (driving) surface
u, v cartesian velocities
x, y cartesian coordinates
� grid-clustering strength, � > 1
� convergence tolerance
� vorticity
�x �t = 2�x
�y �t = 2�y
� viscosity
� density (constant for incompressible 
ow)
�x �t = Re�x

2

�y �t = Re�y
2

 stream function

�Aerospace Technologist, Aerothermodynamics Branch, Gas

Dynamics Division.

Subscripts:

i discrete indicie in x-direction; i = 1; : : : ; I
j discrete indicie in y-direction; j = 1; : : : ; J
c, f , m coarse, �ne, and medium meshes
t, x, y di�erentiation w.r.t. independent variables

Superscripts:

k sub-iteration counter
n time level

All quantities are non-dimensional. The reference
values are l, U , �U2, and U=l for lengths, velocities,
pressure, and time, respectively. When subscripts are
omitted, they are assumed to be at (i; j).

Introduction

V
ISCOUS 
uid 
ow in the driven cavity has long
been a popular test case for evaluating numerical

techniques. The problem statement is straightforward,
the geometry simple, yet the governing equations are a
non-linear system of partial di�erential equations whose
sti�ness can be adjusted via the Reynolds number, with
higher Reynolds numbers applying increasing degrees of
numerical di�culty in achieving a converged steady-state
solution.

Recent investigations into this problem by Huser
and Biringen1 indicate that by a Reynolds number of
30,000 the 
ow has become fully unsteady, ie continu-
ously evolving in time. Shen2 reports a high-resolution
scheme that predicts bifurcation of the cavity 
ow solu-
tion at Reynolds numbers as low as 10,000. Goodrich et

al3 also �nd a periodic solution of this Hopf bifurcation.
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A partial multigrid scheme has been applied to the
problem by Nishida and Nobuyuki4 whereby the pressure
equation was solved with a multigrid procedure and the
momentumequations are advanced using a Runge-Kutta
explicit scheme. Another recent solution on the square
cavity have been put forth by Semeraro5 using the theta
scheme.

The driven-cavity problem statement whose solu-
tion is sought with the present method was put forward
by Rubin et al.6 A loosely-coupled implicit procedure is
formulated based on symmetric Gauss-Seidel relaxation,
incorporating three-level multigrid error smoothing on
each of the governing equations to accelerate conver-
gence.

Governing Equations

Incompressible 
ow is de�ned by the continuity
equation with constant density,

ux + vy = 0 (1)

in cartesian coordinates. The corresponding perfect-gas
Navier-Stokes equations7,8 can be written for the prim-
itive variables, in non-conservative form, as,

ut + uux + vuy = �Px +
1

Re

r2u (2)

and,

vt + uvx + vvy = �Py +
1

Re

r2v (3)

where the Laplacian operator is,

r2 =
@2

@x2
+

@2

@y2

Di�erentiating (Eqns. 2, 3) and incorporating (Eqn. 1)
yields the Poisson equation for the pressure, following
Ho�mann,9 as,

r2P = �Ct �
�
u2x + 2uyvx + v2y

�
+

1

Re

r2C (4)

where,
C = ux + vy

is the error of the continuity equation (Eqn. 1), which
goes to zero in the converged solution.

Alternatively, the governing equations can be for-
mulated for the vorticity and stream function.6 The
vorticity equation of motion is,

�t + u�x + v�y =
1

Re

r2� (5)

and the Poisson equation for the stream function is,

r2 = � (6)

The vorticity is related to the velocity components as,

� = uy � vx

and the stream function by,

 y = u;  x = �v

Discretization

The governing equations (Eqns. 2{6) are dis-
cretized using a �rst-order implicit formulation in time
and second-order expressions for all spatial derivatives.
Whether applying the governing equations in primitive-
variable or stream-function/vorticity formulations, the
equations take on two basic forms. Setting

f = [u; v; �; P;  ]T (7)

to represent the dependent variables in (Eqns. 2{6), we
can write for the �rst three components of (Eqn. 7),

ft + ufx + vfy �
1

Re

r2f = �g (8)

and for the last two components of (Eqn. 7),

�r2f = �g (9)

where,
g = [Px; Py; 0; g4; �]

T

and,

�g4 = Ct + u2x + 2uyvx + v2y �
1

Re

r2C

The discretization strategy will evaluate the com-
ponents of f implicitly at the advanced timestep, while
the nonlinear left-hand-side (LHS) terms u and v, as well
as the right-hand side (RHS), g, are lagged at the previ-
ous timestep, creating a loosely-coupled set of equations.
To reduce notation, f is used to represent fn+1 in the
di�erence equations that follow.

Discretizing (Eqns. 8, 9) yields,

f � fn

�t
+

un

2�x
(fi+1 � fi�1) +

vn

2�y
(fj+1 � fj�1)

�
1

Re�x2
(fi+1 � 2f + fi�1)

�
1

Re�y2
(fj+1 � 2f + fj�1) = ��g (10)

and,

�
1

�x2
(fi+1 � 2f + fi�1)�

1

�y2
(fj+1 � 2f + fj�1)

= ��g (11)
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The RHS �g is the discrete form of g,

�g =

2
666666664

Pn
i+1 � P

n
i�1

2�x
Pn
j+1 � P

n
j�1

2�y
0
�g4
�n

3
777777775

with,

��g4 = �
Cn

�t
+

�
uni+1 � u

n
i�1

�2
4�x2

+

�
unj+1 � u

n
j�1

� �
vni+1 � v

n
i�1

�
2�x�y

+

�
vnj+1 � v

n
j�1

�2
4�y2

�

1

Re

�
Cn
i+1 � 2Cn +Cn

i�1

�x2
+
Cn
j+1 � 2Cn + Cn

j�1

�y2

�

and,
Cn+1 = 0;

Cn =
uni+1 � u

n
i�1

2�x
+
vnj+1 � v

n
j�1

2�y

The system of (Eqns. 10, 11) can be rearranged as,

Aijf +Ai+1fi+1 + Ai�1fi�1+

Aj+1fj+1 +Aj�1fj�1 = Bij (12)

When solving for u, v, or �, the coe�cients and RHS of
(Eqn. 12) are de�ned as,

Aij = 1 + 2�x + 2�y

Ai�1 = ��x � �xu
n; Aj�1 = ��y � �yv

n

Bij = fn ��t �g

using the notation,

�x =
�t

2�x
; �y =

�t

2�y

�x =
�t

Re�x2
; �y =

�t

Re�y2

When solving the Poisson equations for P or  , the co-
e�cients and RHS of (Eqn. 12) are de�ned as,

Aij =
2

�x2
+

2

�y2
; Bij = ��g

Ai�1 = �
1

�x2
; Aj�1 = �

1

�y2

Finally, the linearized system of governing equations
(Eqn. 12) is written for interior points as,

Af = b; i = [2; I�1]; j = [2; J�1] (13)
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Fig. 1 Physical domain of driven cavity.

where the RHS is,

b = B + B0

and B0 is used to move the boundary points from the
LHS to the RHS,

B0
i;j =

8>>>><
>>>>:

�Ai�1fi�1; i = 2
�Ai+1fi+1; i = I�1
�Aj�1fj�1; j = 2
�Aj+1fj+1; i = J�1

0; i = [3; I� 2]; j = [3; J� 2]

Thus, (Eqn. 13) is the linear system to be solved at
each timestep to update the dependent variables from
time level t = n�t to t = (n + 1)�t. This process is
repeated until the steady-state solution is achieved.

Domain

The domain is a rectangular cavity of width l and
depth h, oriented with the lower corner at the origin.
An in�nite upper surface is translated to the right with
speed U . Figure 1 sketches the physical domain, indicat-
ing the anticipated 
ow circulation direction, clockwise,
for positive U .

The domain is discretized on a structured cartesian
grid. Two options for setting the grid-point spacing are
available; uniform spacing or clustered to walls.The wall-
clustering function used to generate the arclength frac-
tion along i=const or j=const lines is,

s =
s1(� + 1)� (� � 1)

2(s1 + 1)

where,

s1 =

�
� + 1

� � 1

�2i�(I+1)
I�1
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Fig. 2 Medium-level uniform mesh, 41 by 41 points.
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Fig. 3 Medium-level clustered mesh, 41 by 41 points.

The typical three-level multigrid procedure employed
here solves the governing equations on an 81 by 81 �ne-
mesh and smoothes the error on two additional meshes,
dimensioned 41 by 41 and 21 by 21, generated from
the �ne mesh by recursively removing every-other point.
Sample 41 by 41 medium-coarseness meshes, which re-
produce clearer than the �ne meshes, are presented in
Figure 2 for a uniform grid and Figure 3 for a grid clus-
tered with � = 1:6. The 81 by 81 �ne mesh can be
inferred from Figures 2 and 3 by simply doubling the
number of grid lines in both i and j directions.

Boundary and Initial Conditions

Viscous, solid walls are imposed on all four sides of
the cavity. This imposes a no-slip condition on the ve-
locity components at the wall. For pressure, the wall-
normal pressure gradient is set to zero. This is the
boundary-layer assumption, which becomes more accu-
rate as the Reynolds number increases. The stream func-
tion is set to zero on the boundary.

On the left (i = 1) wall the conditions are expressed
as,

un+1 = vn+1 = 0

and,

Px = 0 ) Pn+1 =
4

3
Pn
i+1 �

1

3
Pn
i+2

for a second-order extrapolation, or for a �rst-order ex-
pression,

Px = 0 ) Pn+1 = Pn
i+1

For the stream function and vorticity,

 n+1 = 0

 x = 0 )  ni�1 =  ni+1

� =  xx ) �n+1 =
2

�x2
 ni+1

Similarly, on the right (i = I) wall,

un+1 = vn+1 = 0

Px = 0 ) Pn+1 =
4

3
Pn
i�1 �

1

3
Pn
i�2

or; Pn+1 = Pn
i+1

 n+1 = 0

 x = 0 )  ni+1 =  ni�1

� =  xx ) �n+1 =
2

�x2
 ni�1

On the bottom (j = 1) wall,

un+1 = vn+1 = 0

Py = 0 ) Pn+1 =
4

3
Pn
j+1 �

1

3
Pn
j+2

or; Pn+1 = Pn
j+1

 n+1 = 0

 y = 0 )  nj�1 =  nj+1

� =  yy ) �n+1 =
2

�y2
 nj+1

The top (j = J) wall is translating horizontally, so,

un+1 = U; vn+1 = 0

Py = 0 ) Pn+1 =
4

3
Pn
j�1 �

1

3
Pn
j�2

or; Pn+1 = Pn
j�1

 n+1 = 0

 y = U )  nj+1 = 2U�y +  nj�1
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� =  yy ) �n+1 =
2

�y2
�
U�y +  nj�1

�

The boundary conditions are updated explicitly at
each timestep.

The 
ow�eld is initially at rest at t = 0�, with all
dependent variables set to zero, except for the pressure
which is set to one everywhere. The upper boundary is
then impulsively started at t = 0+ to its full speed, U .
Thus, the solution is started with the upper surface set
to u = U or � = 2U=�y.

Solution Procedure

Evolution in Time

Beginning with the initial conditions at time t = 0+,
the penta-diagonal linear system (Eqn. 13) is approxi-
mately inverted at each time step to advance the depen-
dent variables to their steady-state values. This inver-
sion is performed in a loosely-coupled fashion by iterat-
ing for the �rst, second, and then fourth components of
(Eqn. 7) at each timestep when solving the primitive-
variables formulation, or iterating for the third and then
�fth components of (Eqn. 7) when solving the stream-
function/vorticity formulation. Coupling between the
equations is achieved when the A matrix and b vector of
(Eqn. 13) are reformulated at each new time level.

Local time stepping is employed by setting �t at
each point to its maximum allowable value based on the
input constraints on the two stability parameters �max

and �max, such that,

�tij = min

�
2�max �min(�xij; �yij)

Re�max �min( (�xij)2; (�yij)2)

�

Local time stepping reduces the time accuracy of the
solution on non-uniform meshes but is commonly em-
ployed to speed convergence to a steady-state result.
The present algorithm already su�ers poor time accu-
racy due to the �rst-order temporal derivative, lagged
coe�cients, loose coupling between governing equations,
and approximate inversion of the linear system at each
timestep. However, it is the steady-state solution that
the present method seeks, whose accuracy is determined
by the second-order formulation of the spatial deriva-
tives, and not the time-history of the 
ow.

Relaxation Algorithm

A symmetric Gauss-Seidel (SGS) iteration sweep is
performed to approximately invert Af = b. Forward and
backward sub-iteration sweeps are performed for each
component of f before moving on to the next component.
This involves f1, f2, and f4 for the primitive-variable for-
mulation, or f3 and f5 for the stream-function/vorticity
formulation. The forward sweep loops on i for each j,

while the backward sweep loops on j for each i, attempt-
ing to minimize any bias in the solution from the SGS
sweep directions.

A forward half-sweep of the SGS procedure on
(Eqn. 12) at the kth sub-iteration is,

f (k) =
1

Aij

�
Bij � Ai+1f

(k�1)
i+1 � Ai�1f

(k)
i�1

�Aj+1f
(k�1)
j+1 � Aj�1f

(k)
j�1

�

The backward portion of the symmetric sweep follows
the same pattern as the forward sweep, but using the kth

values of the i + 1 and j + 1 variables. Typically, good
performance is achieved with only 1{4 sub-iterations.

Grid Sequencing

Grid sequencing, or nested iterations, is employed
at the beginning of the solution to speed convergence
on the �nest grid. The initial, coarsest grid is obtained
from the �ne mesh by retaining only every fourth point
in both the i and j directions, for a factor of 16 reduction
in the total number of grid points. The initial conditions
are advanced on this grid for a number of timesteps equal
to Ic �Jc=2.

The coarse-mesh solution is then prolongated to the
mediummesh, which retains every-other grid point from
the �ne mesh. The prolongation employed here is a di-
rect injection for overlapping points and two-point or
four-point averaging for the interstitial points. Four
times as many timesteps are then taken on the medium
mesh as on the coarse mesh, and the resulting solution is
then prolongated to the �ne mesh, completing the grid
sequencing.

Multigrid Cycle

A full three-level multigrid V-cycle is employed to
damp low frequency errors in the solution. SGS relax-
ation on the �ne mesh e�ectively damps the high fre-
quency error content, but poorly damps low frequency
errors.10 The multigrid cycle damps these low frequency
errors by restricting the residual to progressively coarser
meshes, aliasing the low frequencies to higher frequen-
cies which are then damped e�ectively by the SGS re-
laxation algorithm. The error is then prolongated back
to the �ne-mesh solution as a correction to the depen-
dent variables.

The three-level V-cycle begins by evolving the solu-
tion in time on the �nest grid for a number of timesteps,
typically 5{10. Then the residual is formed as,

rf = b� Af

The residual is restricted, via simple point-to-point ex-
traction, to the medium mesh, where the error equation
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is relaxed,
Aem = rm (14)

A new residual is formed for this error equation as,

r0m = rm � Aem

and is restricted to the coarse mesh, where another error
equation is relaxed,

Aec = r0c

Once the error on the coarse mesh has been
smoothed through several SGS sweeps the error ec is
prolongated to e0m on the medium mesh, and is applied
as a correction to em,

em  em + e0m

Again the error is smoothed on the medium mesh
(Eqn. 14) for several SGS sweeps and then the error em
is prolongated back to e0f on the �ne mesh. The solution
is now corrected by this error,

f  f + e0f

and is evolved in time again on the �ne mesh for several
timesteps. The multigrid cycle is then repeated until
convergence is achieved for the �ne-mesh solution.

Convergence Criteria

The L2-norm of the change in the dependent vector,
f , between time-levels n and n+1 is monitored to judge
convergence,

kfn+1 � fnk2 < �

L2-norms are normalized by their value at the �rst
timestep, with a typical value for � of 10�4.

Results

Test Case

A standard test case is chosen to compare the com-
putational performance of the various techniques em-
ployed in the present method. Table 1 lists the param-
eters which are desired to be optimized using the test
case.

The test case is chosen on the unit cavity, h = l = 1,
with a uniform 81 by 81 �ne mesh. The upper surface is
translated to the right at speed U = 1, and the Reynolds
number is 1000. The stream-function/vorticity form of
the governing equations are solved.

Straight SGS relaxation without mesh sequencing
or multigrid was used to generate the baseline solutions
and optimize the maximum allowable timestep. For this
case the timestep limit on �t from �max is about six

Table 1 Algorithmic parameters to optimize.

Parameter Test Values
�max; �max 1, 2, 3, 4

SGS sub-iterations 1, 2
Mesh sequencing none, max(I; J), I+J,

I �J=2; I �J=4; I �J=8
V-cycle iteration pattern none, 3f -2m-1c-2m-3f ,

6f -4m-3c-4m-6f ,
2f -3m-4c-3m-2f

Grid re�nement 41� 41; 81� 81

0 100 200 300 400 500
10-3

10-2

10-1

100

CPU sec.

L2

L2(ref)

1

2
3
4

λmax, σmax

Fig. 4 Convergence rates for �max; �max variations.

times more restrictive than from �max. Figure 4 com-
pares convergence rates for various values of �max and
�max. With �max = 4 the scheme is unstable, diverging
after 50 timesteps. With a �max = 3, the solution does
not diverge, but is clearly on the ragged edge of stabil-
ity. Converging three orders of magnitude in 357 CPU
seconds, �max = 2 gives the best convergence rate while
maintaining stability, and is used for the remainder of
the study. For smaller values of �max the convergence
rate slows. Convergence rates, measured in CPU sec-
onds, were obtained on a 40 MHz SUN Sparcstation 2
for the present study. Single-precision numerics, approx-
imately seven signi�cant digits, was used.

Figure 5 compares the e�ect of performing multiple
SGS sweeps during each timestep. Performing two sets
of forward and backward sweeps during each SGS cycle
is seen to take longer to reach the converged steady-
state solution, 400 versus 357 CPU seconds, than tak-
ing single forward-backward sweeps in each SGS cycle.
With two SGS sweeps, �max = 2 proved to be unstable,
so �max = 1:5 was used. This correspondingly smaller
timestep is contributing to the two-pass SGS relaxation
taking longer to converge.
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Fig. 5 Convergence using one and two SGS
sub-iterations.
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Fig. 6 Convergence rates with mesh sequencing.

Adding mesh sequencing to the solution procedure
reduced the convergence time in half, to 147 CPU sec-
onds. Several methods for specifying the number of
coarse-grid iterations to perform were tested, and are
listed in Table 1. The corresponding convergence rates
are presented in Figure 6, where the general trend is that
the more iterations taken on the coarser grids, the faster
the overall convergence. Setting the convergence limit as
� = 10�3, the fastest convergence is obtained using,

Ic �Jc
4

=
I �J

64

steps on the coarse grid. The L2-norm jumps when the
solution is prolongated to the medium mesh, where,

Im �Jm
4

=
I �J

16

steps were taken before prolongating to the �ne mesh.
Similar trends are seen for the other functions used to

0 100 200 300 400 500 600 700
10-4

10-3

10-2

10-1

100

CPU sec.

L2

L2(ref)

steps function
Mesh sequencing

I*J/2

I*J/4

Fig. 7 Mesh sequencing convergence rates.

determine the number of steps to take on the nested
grids.

While Figure 6 indicates the I �J=4 function gives
the fastest convergence in CPU time, the function I �J=2
has a steeper convergence slope at � = 10�3. Carrying
these two functional variations to further convergence,
Figure 7, shows that the functional form I �J=2 converges
the fastest toward � = 10�4, and is the chosen function
for the present method.

While mesh sequencing was found to speed con-
vergence on the �ne mesh, Figure 7 shows that the
asymptotic convergence rate to small � is still fairly slow.
Adding multigrid to the solution procedure increases the
rate of convergence to small � by more e�ectively damp-
ing all frequency contents in the error. This change in the
slope of convergence toward small � using the multigrid
approach is demonstrated in Figure 8, where all three
variations in V-cycles for the multigrid implementation
converge to � = 10�4 in 450{500 CPU seconds, while
the non-multigrid solution has reached an asymptotic
convergence rate that will take at least twice as long to
converge to � = 10�4. The convergence histories of the
multigrid solutions display spikes each time the error is
prolongated back to the �ne grid as a correction. While
these correction steps temporarily increase the L2-norm,
they clearly increase the global rate of convergence. All
three V-cycles tested performed nearly the same, with
the 3f -2m-1c-2m-3f pattern performing the best, con-
verging four orders of magnitude in 466 CPU seconds,
and is the pattern chosen for the present method.

The velocity vectors for this cavity 
ow problem,
as computed with the fastest-converging multigrid so-
lution, are drawn in Figure 9. For clarity, only every
fourth vector in both i and j directions has been plot-
ted. The highest velocities are seen on the upper, driving
surface, as expected. A strong circulation region forms
on the interior of the cavity at this Reynolds number,
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Fig. 8 Multigrid convergence rates with variations in
V-cycle.
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Fig. 9 Velocity vectors in viscous driven cavity.

Re = 103. The circulation resembles are solid-core ro-
tation, with the highest velocities on the perimeter and
decreasing velocities toward the center, as opposed to
a vortex, which would have increasing velocities toward
the eye. The bottom corners are regions of relatively
stagnant 
ow, and the upper left corner shows the suc-
tion characteristic of the entrainment into the upper,
driven boundary layer.

Figure 10 traces the corresponding streamlines. The
primary circulation is seen to encompass nearly the en-
tire cavity. Two recirculation regions are formed in each
of the lower corners, but, recalling Figure 9, the velocity
magnitudes are small in these recirculation regions.

Velocity components through the boundary layers
are extracted in �gure 11. The u component has been
extracted along a vertical slice through the center of the
domain while the v component is taken along a hor-
izontal slice, again through the center of the domain.
The central circulation region is con�rmed to resemble a
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Fig. 10 Streamlines in viscous driven cavity.
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Fig. 11 Velocity component pro�les through the core.

solid-core rotation, with linear velocity pro�les through
the core. Considering the grid-point distribution, the in-
terior of the domain is well resolved. The bottom and
left-wall boundary layers each have 15 points through the
layer, providing moderate resolution. The upper surface
and right wall have only 8{9 points through the laminar
boundary layer.

Grid Convergence

The test case is repeated, on a uniform 41 by 41
mesh. Velocity components through the cavity are plot-
ted in Figure 12, along with the 81 by 81-mesh solution
from Figure 11. The 41 by 41 mesh is clearly not re-
solving the boundary-layer gradients nor the maximum
velocities on the periphery of the circulation region. The
linear trend in velocity variation through the circulation
is picked up on the coarser grid. Since the 41 by 41-mesh
solution does not generate the correct maximum veloci-
ties in the circulation, nor have the correct slope of the
velocity pro�les near the walls, and hence an inaccurate
skin friction, the solution is not grid converged for this
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Fig. 12 Coarse-grid solution to viscous-cavity test
case.
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Fig. 13 Grid convergence for driven-cavity 
ow.

mesh.
The test case is repeated again, now on a 121 by 121

mesh. Figure 13 over-plots this very-�ne mesh on the
81 by 81 solution. Excellent agreement is seen in the
velocity pro�les across the cavity. The boundary-layer
pro�les show good agreement as well on all walls, sug-
gesting the 81 by 81-point mesh su�ciently resolves the

ow at this Reynolds number.

Grid Clustering

The presence of the high velocity gradients in the
boundary layers, as compared to the gradients on the
interior of the cavity, suggests the use of a stretched grid
to resolve the 
ow with fewer points, and hence in less
time and computer resources.

Figure 14 over-plots the u and v velocity pro�les
across the cavity for the 81 by 81 uniform grid and
a 61 by 61 clustered mesh. Both solutions are at a
Reynolds number of 1000, and the clustered grid was
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Fig. 14 Clustered-grid velocity pro�les.

generated with � = 1:6. The basic 
ow pattern remains
the same with the clustered grid, with good agreement
through the upper boundary layer and across the pri-
mary circulation zone. However, the agreement is not as
good in the bottom boundary layer and at the periphery
of the circulation region, where the velocity peaks are
under-predicted.

Better agreement is sought in the grid-clustered so-
lutions, but the general trend of a degradation in the so-
lution in the presence of stretching between mesh lines
was seen in other cases as well. Sources of this error
could arise from the single-precision numerics, the for-
mulation of the algorithm for solving the governing equa-
tions, or in an unlocated programming bug. The inabil-
ity to achieve reliable solutions with grid-point cluster-
ing to the walls limits the practical Reynolds number to
which the present method can be applied.

High-Reynolds-Number Flows

Driven 
ow in the unit cavity at a Reynolds num-
ber of 2000 was computed on a 101 by 101 mesh. Cavity
streamlines are drawn for this case in Figure 15. The
streamline pattern for this case remains materially the
same as for the Re = 1000 solution in Figure 10. Velocity
pro�les for Re = 1000 and Re = 2000 are plotted in Fig-
ure 16 at every fourth (i; j) point. The linearity in the
velocity pro�les through the circulation region is begin-
ning to be lost at the higher Reynolds number and the
boundary layers have thinned, but overall the 
ow has
remained much the same with a doubling in Reynolds
number.

Further increasing the Reynolds number to 5000
produces a dramatic shift in the 
ow�eld. Figure 17
plots Velocity vectors for this case. Clearly, the pri-
mary central circulation has broken down, and is re-
placed by a clockwise circulation in the upper right cor-
ner and a counterclockwise recirculation of comparable

9



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

X

Y

101x101 mesh

Re=2000

Fig. 15 Higher Reynolds number streamlines.
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Fig. 16 Velocity pro�les at higher Reynolds number.
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Fig. 17 Velocity vectors at Re = 5000.

size, though of lower velocity magnitudes, near the upper
left corner. The corresponding streamlines are traced in
Figure 18, where the dual-circulation pattern is again
observed.
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Fig. 18 Streamlines at Re = 5000.
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Fig. 19 Velocity vectors at Re = 10; 000.

Solutions were obtained as well for Re = 10; 000 and
Re = 20; 000, the highest Reynolds number for which a
reliable solution was obtainable in a reasonable amount
of time, about one hour, with the present method. Veloc-
ity vectors for these two cases are plotted in Figures 19
and 20 at every-other (i; j) point. The circulation pat-
tern seen at lower Reynolds numbers is breaking down,
and the magnitude of velocities on the interior of the
cavity are decreasing. The boundary layers are thinning
as well, and are poorly resolved on the 101 by 101 mesh
at Re = 20; 000.

The corresponding streamlines are traced in Fig-
ures 21 and 22. The primary circulation zone has contin-
ued to shrink in size in going from Reynolds numbers of
1000, to 5000, 10,000, and 20,000. Also, the counter-
rotating recirculation has moved, from the upper-left
corner at Re = 5000, to a more central location at
Re = 10; 000, and �nally all the way to the upper-right
corner by Re = 20; 000.
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Fig. 20 Velocity vectors at Re = 20; 000.
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Fig. 21 Streamlines at Re = 10; 000.
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Fig. 22 Streamlines at Re = 20; 000.
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Fig. 23 Tall-cavity 
ows.
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Fig. 24 Shallow-cavity velocity vectors.

E�ect of Cavity Aspect Ratio

The cavity dimensions were changed so that the
depth is twice the width. Solutions were generated at
Reynolds numbers of 100 and 1000 on uniform 41 by 61
grids. Velocity vectors for these two cases are plotted
in Figure 23. The circulation core is closer to the driv-
ing surface in the more viscous, R=100, solution, while
the higher Reynolds-number solution exhibits generally
higher velocities around the circulation region.

The 
ow�eld changes character when the cavity is
made twice as wide as deep. Figure 24 plots velocity vec-
tors, at every fourth (i; j) point, in a cavity with h = 1
and l = 2 at a Reynolds number of 1000. An 81 by 61
uniform mesh was used for this calculation. The strong
primary circulation forms with a nearly circular shape at
the right side of the cavity. The recirculation region on
the left side of the cavity is approximately half the size
of the primary circulation, though with much reduced
velocities. Streamlines for this case are traced in Fig-
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Fig. 25 Shallow-cavity streamlines.

ure 25, where a second, weak recirculation can be seen
in the lower right corner.

Summary of Results

Incompressible viscous-
ow solutions have been
computed for the two-dimensional driven-cavity prob-
lem. The governing equations for perfect-
uid viscous

ows have been discretized in a �nite-di�erence for-
mulation in a loosely coupled implicit scheme, formu-
lated either in terms of the primitive variables or the
stream-function and vorticity.. Mesh sequencing and
full, three-level, multigrid error smoothing are incor-
porated to speed convergence of the symmetric Gauss-
Seidel time-integration algorithm.

Convergence was found to be faster when using
a single, rather than multiple, symmetric Gauss-Seidel
sweep at each time level to approximately invert the lin-
ear system. Several mesh sequencing iteration functions
were tried, and the best was able to reduce solution time
by 58 percent over an un-sequenced solution. The addi-
tion of the multigrid procedure further accelerated con-
vergence on �ne meshes.

At a Reynolds number of 1000 the cavity 
ow is
characterized by a large solid-core circulation, encom-
passing nearly the entire domain. Counter-rotating cir-
culations are found in the lower corners of the cavity,
but with small velocities. As the Reynolds number is
increased, the primary circulation is driven toward the
upper-right corner, with the recirculations moving up
and across the cavity. The highest Reynolds-number

ow computed was at 20,000.

Vertical stretching of the cavity was not found to
alter the 
ow patterns signi�cantly, while horizontal
stretching of the cavity created a large recirculation re-
gion, at a Reynolds number of 1000, and a laterally
stretched entrainment pattern.
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