
NASA Technical Memorandum 4674

User’s Manual for the Langley
Aerothermodynamic Upwind Relaxation
Algorithm (LAURA)
F. McNeil Cheatwood and Peter A. Gnoffo

April 1996

National Aeronautics and Space Administration
Langley Research Center • Hampton, Virginia 23681-0001

NASA Technical Memorandum 4674

User’s Manual for the Langley
Aerothermodynamic Upwind Relaxation
Algorithm (LAURA)
F. McNeil Cheatwood
ViGYAN, Inc. • Hampton, Virginia

Peter A. Gnoffo
Langley Research Center • Hampton, Virginia

April 1996

Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road
Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement,
either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Contents

Figures : vii

Tables : viii

Nomenclature : ix

Chapter 1|Introduction : 1

Chapter 2|Overview : 3

Chapter 3|LAURA Quick Reference Guide : 7

3.1. Installation : 7

3.2. Specialization : 7

3.3. Application : 8

Chapter 4|Summary of LAURA Utilities : 9

Chapter 5|Source Code Installation : 11

Chapter 6|Setup for LAURA Application : 13

6.1. Workspace Layout : 13

6.2. DEFAULTS File : 14

6.3. INPUTS File : 17

6.4. Tailoring the LAURA Algorithm : 18

Chapter 7|Menus of stArt : 21

7.1. Number of Processors : 21

7.2. Type of Initial Grid and Solution : 21

7.3. Flow Dimensionality : 22

7.4. Governing Equations : 22

7.5. Free-stream Conditions : 23

7.6. Surface Boundary Conditions : 24

7.6.1. Constant Wall Temperature : 24

7.6.2. Speci�ed Wall Temperature Variation : 25

7.6.3. Radiative Equilibrium Wall Temperature : : : : : : : : : : : : : : : : : : 25

7.7. Gas Model : 26

7.7.1. Equilibrium : 26

7.7.2. Nonequilibrium : 26

7.7.2.1. Thermal State : 27

7.7.2.2. Constituent Species : 27

7.7.2.3. Wall Catalysis : 28

iii

7.8. Turbulence : 28

7.9. Flow Field Grid and Initialization : 29

7.9.1. Externally Generated Grid and Initialized Flow : : : : : : : : : : : : : : : 29

7.9.1.1. Number of Computational Blocks : : : : : : : : : : : : : : : : : 30

7.9.1.2. Dimensions for Blocks : 30

7.9.1.3. Boundary Condition Types for Block Faces : : : : : : : : : : : : 31

7.9.2. Self-Starting Grid and Flow Initialization : : : : : : : : : : : : : : : : : : 33

7.9.2.1. Number of Computational Blocks : : : : : : : : : : : : : : : : : 33

7.9.2.2. Dimensions for Computational Block : : : : : : : : : : : : : : : 33

7.10. Geometry De�nition : 34

7.10.1. Externally Generated Grid : 35

7.10.2. Self-Starting Grid (Conic Geometry) : 36

7.10.2.1. Axisymmetric Geometry : 37

7.10.2.2. Two-Dimensional Geometry : 38

7.10.2.3. Three-Dimensional Geometry : : : : : : : : : : : : : : : : : : : 39

7.10.2.4. Axial Stretching Factor : 40

7.10.3. Self-Starting Grid (Generic Aerobrake) : 41

7.10.3.1. AFE Aerobrake : 41

7.10.3.2. Hemisphere : 41

7.10.3.3. Customized Aerobrake : 41

Chapter 8|Compiling LAURA : 43

8.1. Using make : 44

8.2. Using make debug : 45

8.3. Using make fortran : 45

Chapter 9|Controlling LAURA : 47

9.1. Control Via Execution : 48

9.1.1. File RESTART.in : 48

9.1.2. File assign tasks : 51

9.1.3. File data : 52

9.1.3.1. Initialization : 53

9.1.3.2. Guide to File data : 54

9.1.4. File transition : 56

9.1.5. File TWALL.in : 57

9.1.6. File variabletw : 57

9.2. Control Via Compilation : 58

9.2.1. File HEADER.strt : 58

9.2.2. File algnshk vars.strt : 59

9.2.3. File gas model vars.strt : 60

9.2.4. File issd assn.strt : 61

9.2.5. File iupwind assn.strt : 61

9.2.6. File mtaska assn.strt : 61

9.2.7. File nordbc assn.strt : 62

9.2.8. File parameter.strt : 62

9.2.9. File source vars.strt : 63

9.2.10. File sthrlnd vars.strt : 63

iv

Chapter 10|Output From LAURA : 65

10.1. Screen Output : 65

10.2. File algnshk.out : 71

10.3. File conv.out : 77

10.4. File grid.out : 80

10.5. Post-Processing Files : 82

Chapter 11|Advanced Applications : 83

11.1. Grid Orientation : 83

11.1.1. Boundary-Layer and Shock Grid Adaption : : : : : : : : : : : : : : : : : 85

11.2. Multiple Computational Blocks : 89

11.3. Sweeping Options : 91

11.4. Solid-State-Device (SSD) Memory : 92

11.4.1. Interactive Jobs : 92

11.4.2. Queued Jobs : 93

11.5. Multitasking : 93

11.5.1. Terminology : 94

11.5.2. Implementation : 95

11.5.3. Load Balancing : 95

11.6. Radiative Transport : 96

Appendix A|Sample Case : 97

A.1. Screen Output : 98

A.2. File algnshk.out : 102

A.3. File conv.out : 106

A.4. File grid.out : 108

Appendix B|Conic Geometry : 109

Appendix C|Installation Procedure : 113

C.1. Structure of INSTALL LAURA.4.1 : 113

C.2. Structure of mAch+prOc : 116

Appendix D|Structure of PRELUDE : 119

Appendix E|Makefile and Its Supporting Files : 129

E.1. Structure of Makefile : 129

E.1.1. Command: make : 131

E.1.2. Command: make debug : 134

E.1.3. Command: make fortran : 134

E.1.4. Command: make clean : 135

E.2. Structure of SYMLINKS : 136

E.3. Structure of CHECKERS : 147

E.4. Structure of Makedep : 148

Appendix F|Structure of ARCHIVE : 151

Appendix G|Structure of BLOX : 155

v

Appendix H|Structure of CUSTOMIZE : 159

Appendix I |Structure of INITIALIZE : 161

Appendix J|Structure of KEEPER : 167

Appendix K|Structure of LOCALIZE : 169

Appendix L|Structure of RESTORE : 173

Appendix M|Structure of SIZEIT : 177

Appendix N|Structure of XCUSTOM : 181

Appendix O|LAURA Algorithm : 183

O.1. Finite-Volume Fundamentals : 185

O.2. Conservation Equations : 186

O.3. Formulation of Inviscid Terms : 189

O.4. Formulation of Viscous Terms : 193

O.5. Formulation of Source Terms : 195

O.5.1. Species Conservation : 195

O.5.2. Total Energy Conservation : 196

O.5.3. Vibrational-Electronic Energy Conservation : : : : : : : : : : : : : : : : : 196

O.5.4. Point-Implicit Relaxation of Source Term : : : : : : : : : : : : : : : : : : 198

O.6. Averaging Procedure : 198

O.7. Geometrical Relations : 199

O.8. Relaxation Algorithm : 200

Appendix P|FORTRAN Variables Discussed in This Manual : : : : : : : : : : : : : : : : : 203

Appendix Q|FORTRAN Flags Changed Through data : 207

Appendix R|FORTRAN Flags Changed Through stArt : 209

Appendix S|FORTRAN Flags Changed Through File Edits : : : : : : : : : : : : : : : : : : 211

References : 213

vi

Figures

Figure 2.1. Typical orientation of Cartesian coordinate system with respect to blunt

body in LAURA : 4

Figure 2.2. Typical orientation of computational coordinates over a winged vehicle

showing two computational planes : 4

Figure 2.3. Subdirectory layout for LAURA : 5

Figure 7.1. Parameters for de�ning generic probe shape in LAURA : : : : : : : : : : : 42

Figure 11.1. Surface grid on 70-deg spherically capped cone with rounded shoulder : : : 84

Figure 11.2. Surface grid on nose of Space Shuttle : 84

Figure 11.3. Projection of singularity free surface grid over blunt body on xy-plane : : : 85

Figure 11.4. Projection of singularity free surface grid over blunt body on xz-plane : : : 85

Figure 11.5. Singularity free surface grid over blunt body : : : : : : : : : : : : : : : : : : 86

Figure 11.6. Detail of adapted grid and density contours in symmetry plane that shows

enhanced resolution of the captured bow shock : : : : : : : : : : : : : : : : 89

Figure B.1. De�ning parameters for general conic geometry : : : : : : : : : : : : : : : : 111

Figure O.1. Cell indexing system with cell corners de�ned by lowercase letters and cell

centers de�ned by uppercase letters : 187

Figure O.2. Convergence histories for single-task and six-task, adaptive partitioned

algorithms applied to problem of nonequilibrium, hypersonic
ow over

blunt, axisymmetric body : 202

vii

Tables

Table 9.1. Dependence of data on newjob : 53

Table 11.1. Block Indices : 89

Table B.1. Character of Axisymmetric Conic Geometry : : : : : : : : : : : : : : : : : : 110

Table O.1. Species Indices : 188

viii

Nomenclature

a frozen sound speed, nondimensionalized by V1
E total energy per unit mass of mixtures, nondimensionalized by V1
e internal energy, nondimensionalized by V21
I; J;K total number of cells in i; j; k direction, respectively

Keq equilibrium constant

L reference length de�ned via iunit

n number of unknowns at cell

~n number density

p pressure, nondimensionalized by �1V21
RN body nose radius, in units speci�ed via iunit

s arc length, in units speci�ed via iunit

T translational-rotational temperature, K

TV vibrational-electron-electronic excitation temperature, K

Tw surface (wall) temperature, K

V total velocity, m/s

x, y, z Cartesian coordinates, in units speci�ed via iunit

� In general, � = @p=@(�E); for perfect gas, this reduces to � =
 � 1

 ratio of speci�c heats

�0 parameters for de�ning minimum eigenvalue

� mixture viscosity, nondimensionalized by �1V1L
�, �, � computational coordinates

� mixture density, nondimensionalized by �1
�s density of species s, nondimensionalized by �1
� body half-angle for conic geometry, deg

Subscripts:

b body

e electron

max (MAX) maximum

s species

1 free stream

ix

x

Chapter 1

Introduction

The National Aeronautics and Space Administration's interest in viscous, hypersonic
ow

�eld simulation has grown in recent years in anticipation of the design needs for space transporta-

tion and exploration over the next three decades, e.g., Walberg (ref. 1). Proposed aeroassisted

space transfer vehicles will use the upper layers of planetary atmospheres in hypersonic aero-

braking maneuvers. Supersonic combustion ramjet engines are being designed to propel vehicles

at hypersonic speeds through the Earth's atmosphere to orbit. Various concepts for a single-

stage-to-orbit (SSTO) vehicle are now being considered. The external
ow �eld surrounding

such vehicles, as well as the internal
ow �eld through the scramjet engine and nozzle, can

be signi�cantly in
uenced by thermochemical nonequilibrium processes in the
ow. Accurate

simulations of these phenomena would provide designers valuable information concerning the

aerodynamic and aerothermodynamic character of these vehicles.

This user's manual provides detailed instructions for the installation and the application of

version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) (refs. 2

and 3), which is a program for obtaining the simulations discussed above. Earlier versions of

LAURA were predominantly research codes, and they had minimal (or no) documentation. This

manual describes UNIX-based utilities for customizing the code for special applications that also

minimize system resource requirements. The algorithm is reviewed, and the various program

options are related to speci�c equations and variables in the theoretical development.

Two major challenges exist to the simulation of
ow �elds in thermochemical nonequilib-

rium around vehicles traveling at hypersonic velocities through the atmosphere. First, these

simulations require modeling of the nonequilibrium processes in the
ow; these processes fre-

quently occur at energies in which the models currently lack su�cient experimental or analytic

validation. Second, because of the large number of unknowns associated with chemical species

and energy modes and because of disparate time scales within the
ow �eld, these simulations

require algorithmic innovations to maintain numerical stability and fully exploit supercomputer

resources.

Nonequilibrium processes occur in a
ow when the time required for a process to accom-

modate itself to local conditions within some region is of the same order as the transit time

across the region. The equations and the models used in this manual for nonequilibrium
ow

have been documented in reference 4, and they were substantially derived from the work of Park

(refs. 5 and 6) and Lee (ref. 7). Calibration and validation of the physical models intrinsic to

this code were �rst discussed in reference 8. Other code development and calibration programs

(e.g. GASP (refs. 9 to 11), Candler (ref. 12), Candler and MacCormack (ref. 13), Park and Yoon

(ref. 14), Netter�eld (ref. 15), and Coquel et. al (ref. 16)) are now in progress within the area of

viscous, hypersonic, reacting gas
ow �eld simulations.

1

Numerical stability is maintained through an implicit treatment of the governing equations.

A great variety of implicit treatments is possible. For problems in which only the steady-state

solution is required, one is free to evaluate any element of the di�erence stencil at any itera-

tion (pseudo-time) level which facilitates the relaxation process. In the most rigorous implicit

treatment, all variables in all cells are simultaneously solved at an advanced iteration level, thus

requiring the solution of a linearized equation set involving (n � I � J � K) equations where

n is the number of unknowns at a cell and I , J , and K are the number of computational cells

in the three respective coordinate directions. The various forms of factored implicit schemes

and line relaxation methods sequentially solve equation sets involving (n � I), (n� J), and/or

(n�K) variables. The point-implicit schemes, as utilized in the present work, sequentially solve

equation sets involving n simultaneous, linearized equations. Further simpli�cation is possible

in chemical kinetic problems by linearizing contributions to the residual from only the source

terms to alleviate problems of disparate chemical time scales, thus resulting in methods which

involve no matrix operations.

The essence of the point-implicit strategy is to treat the variables at the cell center of interest

implicitly at the advanced iteration level and to use the latest available data from neighbor cells

in de�ning the \left-hand-side" numerics. The success of this approach is made possible by the

robust stability characteristics of the underlying upwind di�erence scheme. Even simulations of

thermochemical nonequilibrium
ows in a near-equilibrium state can be handled by this approach

(ref. 17). The algorithm requires only a single pseudo-time level of storage and is e�ciently

implemented on vector or parallel processors (ref. 18). Details of the relaxation algorithm,

including e�ects of a gas in thermal and chemical nonequilibrium, are presented herein.

As noted above, there is no requirement to synchronize the evolution of the solution at

neighboring points in the single-level-storage point-implicit relaxation strategy. Consequently,

algorithm parallelization can be implemented on a subroutine level across several domains with-

out the need to synchronize tasks or restrict parallel code to a \do loop" level. Scalar code and

conditional logic do not inhibit parallel e�ciency. Dynamic allocation of resources to domains

that are slow to converge is enabled in this environment. These capabilities are exploited on

CRAY class computers and are discussed in greater detail within this manual.

The code and the user interface are structured to make liberal use of FORTRAN include state-

ments that tailor the resource requirements for each case to a minimum. System requirements

vary from standard workstations for many perfect-gas applications to 128 Mw (megaword) in-

core memory, 128 Mw of \fast disk" (SSD) memory, and more than 100 central processing unit

(CPU) hours to obtain a converged solution on a CRAY YMP for thermochemical nonequilib-

rium
ow (seven species) over the Space Shuttle with the thin-layer Navier-Stokes equations

using a grid of 150� 109� 60.

This manual is designed to guide the user through the application, beginning with the in-

stallation of the source code on a given machine. Chapter 2 contains an outline of this manual,

and provides an overview of the LAURA algorithm.

2

Chapter 2

Overview

This chapter provides an overview of the LAURA algorithm, and it can be skipped by the

experienced user. Chapter 3 is a checklist (a brief outline of the entire procedure) which is useful

for the experienced user who needs a quick review. Chapter 4 is a quick reference guide to the

utilities and commands of LAURA. Chapter 5 details the source-code installation procedure.

The setup procedure for a particular application is given in chapter 6, and the menus of the

startup routine are given in chapter 7. Chapters 8 and 9 discuss the compilation and execution

of LAURA, respectively, and chapter 9 describes the resultant output �les. Approaches for a

number of advanced applications are presented in Chapter 11. The various appendixes provide

� a sample case (appendix A)

� the equations for conic geometries (appendix B)

� the details of the various script �les employed by LAURA (appendixes C to N)

� an in-depth discussion of the LAURA algorithm (appendix O)

� the FORTRAN variables discussed in this document (appendix P)

� the FORTRAN
ags changed through data (appendix Q)

� the FORTRAN
ags changed through stArt (appendix R)

� the FORTRAN
ags changed through �le edits (appendix S)

Although not a requirement, in hypersonic blunt-body applications, the origin of the coordi-

nate system generally sits at or near the stagnation point on the body, with the z-axis pointing

out from the body toward the oncoming
ow, as shown in �gure 2.1. The y = 0 plane de�nes

the symmetry plane. Lifting-body applications retain this orientation in which the origin of the

coordinate system is at or near the vehicle stagnation point, the z-axis points out from the nose,

against the
ow, and the negative z-axis typically runs through the interior of the vehicle.

Computational coordinates (�, �, �) run in the direction of increasing i-, j-, and k-indices,

respectively, as shown in �gure 2.2. The vehicle surface grid is usually de�ned by the k = 1

plane to enhance convergence through the use of over-relaxation of the viscous terms and special

limiters when sweeping across the boundary layer, although other orientations are permitted.

3

z

x

y

V∞

Figure 2.1. Typical orientation of Cartesian coordinate system with respect to blunt body in

LAURA.

ξ

ξ
η

ζ

plane of symmetry
j = 1 plane

k = 1 plane

surface

Figure 2.2. Typical orientation of computational coordinates over winged vehicle showing two

computational planes.

4

CUSTOM

*.F

*.inc

$HOME

LOCAL

*.F

*.f

*.inc

*.strt

OBJfilesSTRTfiles

*.strt *.o

LISTINGDEBUG

*.f

scripts

LAURA.4.1

start.*

inputs

start.*

laura

Children

Figure 2.3. Subdirectory layout for LAURA.

NOTE: Options for automatically aligning the grid with the captured bow shock

and resolving the boundary layer require this orientation with k = 1 on the surface.

The �rst step in applying LAURA to a given problem involves installation of the source

code on the computer where the computations will be performed (chapter 5). LAURA has been

successfully tested on SUN, CRAY, SGI, and CONVEX architectures. The LAURA package

is distributed as two �les, LAURA.4.1.tar.Z and INSTALL LAURA.4.1, which should be placed

in the user's $HOME directory. File LAURA.4.1.tar.Z is a tarfile (tape archival �le) which

contains the LAURA source code. The �le INSTALL LAURA.4.1 is a script that executes the

installation procedure.

NOTE: LAURA requires a UNIX operating system, and assumes the user has some

familiarity with UNIX protocol.

LAURA is based on the premise that the bulk of the LAURA source code does not change

from one application to the next. These �les, which should rarely require modi�cation, are kept

in $HOME/LAURA.4.1, which is a read-only directory.

By default, LAURA uses the $HOME/LAURA.4.1 source �les, in conjunction with application-

speci�c coding created through user-inputs to PRELUDE (the LAURA preprocessor). For further

tailoring, the user can create a LOCAL version of any LAURA source �le. This LOCAL �le will be

used for compilations from this working (LOCAL) directory only. This LOCAL �le can be converted

to a CUSTOM �le if the user wishes to make it the default (in lieu of the $HOME/LAURA.4.1 version)

from any working directory. If a CUSTOM version of a �le is encountered during compilation, it is

used in lieu of the $HOME/LAURA.4.1 version. If a LOCAL version of a �le is encountered during

compilation, it is used in lieu of the $HOME/LAURA.4.1 version and the CUSTOM version (if one

exists).

Figure 2.3 shows the relationship between (and roles of) the various directories employed by

LAURA. The headers on each box are directory names, and the contents of each box are �le

types located in that directory. Solid lines indicate required �les and directories, and the dashed

lines indicate �les and directories whose existence is dependent on which advanced features have

been utilized.

5

To run LAURA interactively, type the command

laura < data > lfn

This command sends the output to �le lfn. User control of a given run is provided through the

input �les and the include �les with the .strt su�x (chapter 9).

A typewriter style is used to denote �le names and directories, as well as FORTRAN coding.

Italics are used for variable names and for units of measure. Shaded boxes with thin borders

and sharp corners are used to denote contents of a �le. Shaded boxes with thick borders and

rounded corners are used to denote screen prompts. Commands that the user types are contained

in smaller shaded boxes with thin borders and rounded corners.

The term LOCAL refers to �les in the present working (or LOCAL) directory, which will be used

in lieu of the installed �les within this directory only. The term CUSTOM refers to tailored �les

that are used in lieu of the installed �les from any working directory.

6

Chapter 3

LAURA Quick Reference Guide

This chapter discusses the installation, the specialization, and the application of LAURA

and is intended as a quick reference guide.

3.1. Installation

To install LAURA, complete the following steps:

� Place �les LAURA.4.1.tar.Z and INSTALL LAURA.4.1 in the $HOME directory (chapter 5).

File LAURA.4.1.tar.Z should be read-only; if not, type

chmod 400 LAURA.4.1.tar.Z

The �le INSTALL LAURA.4.1 should be executable; if not, type

chmod 500 INSTALL LAURA.4.1

� Type the command

INSTALL LAURA.4.1

to install the LAURA source code on this machine (chapter 5).

3.2. Specialization

For specialization, do the following:

� Create (and change to) a working (LOCAL) directory.

� Type

PRELUDE

to create the subdirectories that LAURA requires (chapters 6 and 7). For some advanced

applications, the stArt executable may require tailoring. In such cases, the desired changes

should be made (via LOCAL or CUSTOM source �les for stArt) before running PRELUDE.

� Type

make

to compile laura, the LAURA executable (chapter 8). For advanced applications, fur-

ther tailoring of LAURA may be required (chapter 11) before executing make. If so, use

LOCALIZE to create LOCAL versions of �les for necessary modi�cations. If CUSTOM �les

containing the desired changes already exist, this step is not required.

7

NOTE: The laura executable must be recompiled after changes to any LAURA

FORTRAN �les (.F, .FOR, .f, .inc, or .strt su�xes).

3.3. Application

For LAURA application, complete the following steps:

� Review LAURA input �les (chapter 9) and modify, if necessary.

� To run interactively, type the command

laura < data > lfn

to run LAURA and send the output to �le lfn. Individual runs are controlled via the

LAURA input �les (chapter 9).

� The LAURA output �les are discussed in chapter 10.

8

Chapter 4

Summary of LAURA Utilities

A summary of LAURA utilities is given below. The utility is listed in the left column, and

its function is given in the right column.

ARCHIVE saves the LOCAL, CUSTOM, and input �les for the present working (LOCAL)

directory

BLOX exchanges data between the working �les (RESTART.in and TWALL.in)

and their master �les (RESTART.MASTER and TWALL.MASTER)

CUSTOMIZE moves the LOCAL �le to the CUSTOM directory; the CUSTOM �le will be used in lieu

of the $HOME/LAURA.4.1 version in future LAURA applications

INITIALIZE accepts a grid from a �le in the PLOT3D format, initializes the
ow �eld to the

free-stream values, and creates RESTART.in

KEEPER makes backup copies of �les RESTART.in, RESTART.MASTER,

TWALL.in, and TWALL.MASTER

LOCALIZE creates a LOCAL version of the $HOME/LAURA.4.1 �le; it is used in lieu of

the $HOME/LAURA.4.1 version in this LOCAL directory

RESTORE restores the archived �les to the present working (LOCAL) directory

SIZEIT estimates the memory requirements of a given application, based on the values

speci�ed in the �les parameter.strt and assign tasks

XCUSTOM eliminates a customized �le

9

10

Chapter 5

Source Code Installation

LAURA has been successfully tested on SUN, CRAY, SGI, and CONVEX architectures.

The �rst step in applying LAURA to a given problem involves the installation of the source

code on the computer where the computations will be performed. The LAURA package consists

of two �les, LAURA.4.1.tar.Z and INSTALL LAURA.4.1, which should be placed in the user's

$HOME directory. File LAURA.4.1.tar.Z should be read-only; if not, type

chmod 400 LAURA.4.1.tar.Z

The �le INSTALL LAURA.4.1 should be executable; if not, type

chmod 500 INSTALL LAURA.4.1

The source code for LAURA is contained in LAURA.4.1.tar.Z, which is a tarfile (tape archival

�le). Typing the command

INSTALL LAURA.4.1

executes the relatively straightforward procedure (appendix C), which is outlined below.

1. A subdirectory named LAURA.4.1 is created in the user's $HOME directory.

2. The LAURA source code, contained in the following �les, is extracted from LAURA.4.1.tar.Z

and placed in directory $HOME/LAURA.4.1. These �les include

(a) Files with the start. root, which contain the source code for stArt, the LAURA

start-up routine (discussed in chapters 6 and 7)

(b) The script PRELUDE that serves as the front-end to stArt

(c) Files with a .F su�x, which contain LAURA subroutines; these �les have a .FOR

su�x on CONVEX architectures

(d) Files with a .inc su�x, which contain additional FORTRAN coding (such as COMMON

blocks); the information in these �les is accessed by various LAURA subroutines

through include statements

(e) The �le vinokur.data, which supplies the coe�cients for Vinokur's curve-�ts

(f) The �le mAch+prOc.c, which is a C program used to determine the machine architec-

ture and number of available processors

(g) The data �le DEFAULTS, which supplies default values to stArt

11

(h) The script �les Makedep, Makedep.awk, and SYMLINKS, which are used by the Makefile

(appendix E); these �les must be executable

(i) The following utilities (which are detailed in the appendixes); these script �les must

be executable:

ARCHIVE INITIALIZE RESTORE

BLOX KEEPER SIZEIT

CUSTOMIZE LOCALIZE XCUSTOM

(j) The following FORTRAN source �les:

array.f flowinit.f makeblk.f

exchange.f flowinit.inc sizeit.f

3. The C program mAch+prOc is compiled and run to determine the machine architecture and

number of available processors.

4. The ARCHIVE, CUSTOMIZE, KEEPER, LOCALIZE, PRELUDE, SYMLINKS, and XCUSTOM scripts are

tailored to this architecture.

5. The program start.f is compiled to create the executable stArt. Also, the executables

ArrAy, flOwInIt, mAkEblk, and sIzEIt are created from the FORTRAN source �les listed

above.

6. The data �le DEFAULTS is tailored to this machine.

7. The user's .cshrc �le is checked to see if aliases for the supporting script �les of LAURA

have been established. If not, the user is given the option to add aliases for these scripts

(ARCHIVE, CUSTOMIZE, KEEPER, LOCALIZE, PRELUDE, and XCUSTOM). These aliases allow

execution of these commands from any working (LOCAL) directory in the user's account

without having to enter the full path name.

At this point the installation procedure is complete.

NOTE: Type

source .cshrc

to activate the new aliases for this shell.

12

Chapter 6

Setup for LAURA Application

After installation, the �rst step in applying LAURA to a speci�c problem involves creating

a working (LOCAL) directory, either in scratch space or in a permanent subdirectory. The �les

in the working directory, are referred to as LOCAL �les in this manual. Within this directory,

PRELUDE is executed to create the required infrastructure for LAURA. PRELUDE also executes

stArt, which allows the user to tailor LAURA to an application by selecting items from a

series of menus (chapter 7). Defaults for these menu prompts are supplied by the �le DEFAULTS

(section 6.2), while the user inputs are written to the �le INPUTS (section 6.3). The user-de�ned

choices tailor LAURA through FORTRAN parameter statements, compile directives, and include

�les. The �le Makefile is also constructed based on these selections. As a result, only the

code and memory required for this application are activated during compilation. A thorough

discussion of PRELUDE is presented in section 6.1. Its anatomy is given in appendix D.

For most applications, a successful run of PRELUDE is followed by the make command, which

compiles the LAURA source code to create laura (the LAURA executable). The features

of the LAURA Makefile are discussed in chapter 8. Its anatomy is given in appendix E,

section E.1. For certain advanced applications, additional tailoring (chapter 11) may be required

after running PRELUDE. This involves modifying LOCAL copies of LAURA �les before compilation,

as described in section 6.4.

Chapter 9 discusses actually running LAURA. Speci�cally, this chapter provides details on

the input �les that give the user control of a given run. The LAURA output �les are described

in chapter 10.

6.1. Workspace Layout

The command PRELUDE serves as the front-end for stArt, which performs the following

functions:

� Case-speci�c include �les (with .strt su�xes) containing FORTRAN coding are created.

� Up to three input data �les are created by stArt for LAURA, depending on the following

user inputs:

{ data: This �le, which provides control of LAURA, is always generated by stArt. The

roles of its various entries are discussed in section 9.1.3.

{ RESTART.in: This is the restart �le for LAURA, which allows the current run to pick

up the solution where the previous one left o�. For externally generated grids, this �le

13

must be supplied by the user. Otherwise, stArt provides a \cold-start" RESTART.in

�le (section 9.1.1).

{ TWALL.in: This is the restart �le for the wall temperature distribution (section 9.1.5).

It is only used by LAURA when the \radiative equilibrium wall temperature" option

is active, and only created by stArt when that particular option is selected by the

user.

� The user inputs from this run of stArt are saved in �les DEFAULTS and INPUTS.

In addition to activating stArt, several other tasks are performed by PRELUDE.

� Subdirectories OBJfiles and STRTfiles are created in the working (LOCAL) directory. The

OBJfiles will ultimately contain the object �les and executable �le, which are created by

make. STRTfiles will contain the FORTRAN �les (.strt su�xes) created by stArt. PRELUDE

executes stArt and then moves the resultant �les to the STRTfiles directory.

� By default, the $HOME/LAURA.4.1 stArt executable is used. However, if any LOCAL versions

of stArt source �les exist, compilation is performed to create a LOCAL version of stArt (if

it is outdated). If no LOCAL stArt source �les exist, the existence of CUSTOM stArt source

�les is considered. If they do exist, a CUSTOM stArt executable is compiled (if it requires

updating).

� Before stArt is executed, if any LOCAL case-speci�c include �les (.strt su�xes) already

exist, the user is given the option to retain them.

� If �le data, RESTART.in, or TWALL.in already exists in the working (LOCAL) directory, the

user is given the option to keep the old �le or update it.

With each PRELUDE run, DEFAULTS supplies the default values (which are echoed to the screen)

for the user inputs to stArt (section 6.2). The INPUTS �le re
ects only those values selected

in the last execution of PRELUDE (section 6.3). If for any reason (�le corruption or deletion, for

example) the user needs to repeat this initialization, the command

PRELUDE INPUTS

reproduces all of the �les produced by stArt without further user input.

6.2. DEFAULTS File

The default values for the variables of the stArt menus are supplied through the LOCAL �le

DEFAULTS. These values are echoed to the screen for their respective menus. Initially, this �le is

copied from $HOME/LAURA.4.1. With each execution of PRELUDE, DEFAULTS is updated to re
ect

user inputs. This feature provides the user with an on-line reminder of previous values.

NOTE: Acceptance of the default values de�ned in the $HOME/LAURA.4.1 version

of the DEFAULTS �le will generate the initial grid and
ow �eld for the case discussed

in appendix A.

The �rst section of DEFAULTS contains the LAURA version number as well as the machine

time and number of available processors (screen 1). This section is determined during the

installation of the code on a given machine. The next section of DEFAULTS contains general

information, including free-stream conditions.

14

1 nprocs number of processors to be used

2 newjob 0=externally generated, 1=conic, 2=aerobrake

1 ndim flow: 1=axisymmetric, 2=2-D, 3=3-D

1 igovern fluid eqns: 0=Euler, 1=TL N-S, 2=N-S

5000.00 vinfb ... velocity [m/s]

0.100000e-02 rinfb ... density [kg/m^3]

200.000 tinf freestream temperature [K]

0. attack angle of attack [deg]

0. yaw ... angle of yaw [deg]

0 tempbc . Tw BC: 0=constant, 1=variable, 2=radiative equilibrium

500.000 twall wall temperature [K]

0. ept wall temperature relaxation factor

Screen 1.

NOTE: In version 4.1 of LAURA, the yaw angle is set to yaw = 0.

The next section (screen 2) concerns the gas model.

0 ngas gas model: 0=PG, 1=EQ, 2=NONEQ

0 icrv EQ model: 1=Vinokur, 2=Tannehill

0 itherm 1=equilibrium (1-T), 2=nonequilibrium (2-T)

n answern species: atomic nitrogen (y/n)?....

n answero species: atomic oxygen.............

n answern2 species: molecular nitrogen........

n answero2 species: molecular oxygen..........

n answerno species: nitric oxide..............

n answernp species: ionized atomic nitrogen...

n answerop species: ionized atomic oxygen.....

n answern2p species: ionized molecular nitrogen

n answero2p species: ionized molecular oxygen..

n answernop species: ionized nitric oxide......

0 jtype catalytic nature of wall

0 nturb turbulence: 0=no, 1=Cebeci-Smith, 2=Baldwin-Lomax

Screen 2.

The third section (screen 3) contains default values to the controls for the computational

domain.

15

1 nblocks number of computational blocks

30 iblk(1) block 1: cells in i-direction

1 jblk(1) 1: cells in j-direction

64 kblk(1) 1: cells in k-direction

4 itype(1, 1) block 1: nature of i = 1 boundary

1 itype(2, 1) 1: nature of i = 30 boundary

5 itype(3, 1) 1: nature of j = 1 boundary

5 itype(4, 1) 1: nature of j = 1 boundary

0 itype(5, 1) 1: nature of k = 1 boundary

3 itype(6, 1) 1: nature of k = 64 boundary

Screen 3.

NOTE: Initially, defaults are assigned for a single computational block. If more

than one block is speci�ed in stArt, the updated DEFAULTS �le will contain the

dimensions and boundary conditions for these additional blocks.

The �nal section (screen 4) contains the geometry information.

0 iunit units: 0=m, 1=cm, 2=ft, 3=in, 4=

m unit 1- or 2-character abbreviation for custom units

1.00000 rflngth conversion factor for custom units

0. xcg .. x-cg [m]

0. zcg .. z-cg [m]

3.14159 refarea reference area [m ^2]

2.00000 reflen reference length [m]

1 ndimb body dimension: 1=axisymmetric, 2=2-D, 3=3-D

20 ic number of cells on cap

1 konic f1=hyper, 2=paragboloid, f3=elliptic-, 4=sphere-gcone
0. thc half-angle [deg] of asymptote

1.00000 b axial shape parameter for nose

1.00000 rnose ... nose radius [m]

1.00000 rxz nose radius [m] in symmetry plane

1.00000 zmax .. body length [m]

1.00000 axfac axial stretching factor for grid

1 iafe aerobrake option: 0=AFE, 1=hemisphere, 2=custom

1.00000 scale aerobrake scale factor

0 thetaxy body half-angle [deg]

90.0000 delta ... rake angle [deg]

0. tau shoulder turning angle [deg]

0. radius shoulder radius [m]

1.00000 epsib eccentricity of nose

1.00000 rbase base plane radius [m]

Screen 4.

16

6.3. INPUTS File

Each time PRELUDE is successfully run, an INPUTS �le is created which contains the user

inputs of that session. As such, it is a subset of the DEFAULTS �le, since no single run will reset

all of the default values. (For example, if perfect gas
ow is chosen, the user does not choose an

equilibrium curve-�t.) To illustrate, the INPUTS �le (screen 5) for appendix A is shown below.

2 newjob 0=externally generated, 1=conic, 2=aerobrake

1 ndim flow: 1=axisymmetric, 2=2-D, 3=3-D

1 igovern fluid eqns: 0=Euler, 1=TL N-S, 2=N-S

5000.00 vinfb ... velocity [m/s]

0.100000e-02 rinfb ... density [kg/m^3]

200.000 tinf freestream temperature [K]

0 tempbc . Tw BC: 0=constant, 1=variable, 2=radiative equilibrium

500.000 twall wall temperature [K]

0 ngas gas model: 0=PG, 1=EQ, 2=NONEQ

0 nturb turbulence: 0=no, 1=Cebeci-Smith, 2=Baldwin-Lomax

30 iblk(1) cells in streamwise/axial direction

64 kblk(1) cells in normal direction (maximum)

1 iafe aerobrake option: 0=AFE, 1=hemisphere, 2=custom

1.00000 scale aerobrake scale factor

Screen 5.

This example employs the self-starting capability for axisymmetric
ow about a sphere-cone

(speci�ed in ft). The thin-layer Navier-Stokes equations will be solved. The perfect gas, the

laminar
ow, and a constant wall temperature are speci�ed. The command

PRELUDE INPUTS

instructs PRELUDE to accept user inputs from �le INPUTS, rather than from the screen.

NOTE: Some changes to �le INPUTS can result in a di�erent question and answer

sequence in stArt. For example, to change from icrv = 1 to icrv = 2, a user can

elect to simply change its value in �le INPUTS and type the command

PRELUDE INPUTS

However, this approach will not work for switching from ndim = 1 to ndim = 2,

because PRELUDE prompts for angle of attack with two-dimensional
ows, but it does

not prompt for axisymmetric
ows. Therefore, it is recommended that only the

experienced user (i.e., one familiar with the prompting sequence of stArt) attempt

to modify �le INPUTS, followed by the command

PRELUDE INPUTS

All others should type the command

PRELUDE

and provide inputs to PRELUDE directly from the screen.

17

6.4. Tailoring the LAURA Algorithm

For most applications, the necessary tailoring of the LAURA algorithm for a given case can

be accomplished through PRELUDE. As mentioned earlier, however, PRELUDE may not provide

su�cient tailoring of LAURA for some advanced applications. For such instances, there are

several ways to further specialize the LAURA algorithm (without altering the $HOME/LAURA.4.1

�les); these methods are to

� Create LOCAL versions of the include �les created by stArt (.strt su�xes) using the

LOCALIZE command (appendix K)

� Create LOCAL versions of the LAURA source �les located in $HOME/LAURA.4.1 by using

the LOCALIZE command (appendix K)

� Create LOCAL pure-FORTRAN versions of source �les (section 8.3) by using the LOCALIZE

command (appendix K)

� Create CUSTOM �les from LOCAL versions of source �les by using the CUSTOMIZE command

(appendix H)

These approaches are discussed below.

A number of LAURA's FORTRAN parameters are automatically assigned values by stArt,

without user input, and are written to �les with a .strt su�x. Any of these parameters can

be changed by modifying a LOCAL copy of the appropriate lfn �le, which is created using the

command

LOCALIZE lfn

For example, stArt defaults to �rst-order extrapolations at the body surface and out
ow bound-

aries. To switch from �rst to second order (via parameter nordbc in �le nordbc assn.strt),

type the command

LOCALIZE nordbc assn.strt

and a copy of �le nordbc assn.strt will be created in the working directory (appendix K). Now

edit the LOCAL �le, and change \nordbc= 1" to \nordbc= 2". When make is executed, this LOCAL

�le will be used in lieu of the STRTfiles version. Moreover, in future runs of PRELUDE within

this working directory, the user will be given the option to save this LOCAL �le or to overwrite it

with the �le created by stArt.

In other cases, FORTRAN coding can be added to, deleted from, or modi�ed in the LAURA

source �les. Tailoring these LAURA source �les (.F, .FOR, and .inc su�xes) is done in the same

manner as above: simply use the LOCALIZE command on a given �le from the $HOME/LAURA.4.1

directory and gain the desired modi�cations to this LOCAL �le before compilation.

Pure-FORTRAN versions (.f su�xes) of the baseline subroutine �les (.F su�xes) can be created

by the command

make fortran

This command �rst creates the directory FORTRAN (if it does not already exist), and then prepro-

cesses each of the subroutine �les (from the $HOME/LAURA.4.1, CUSTOM, or LOCAL directories).

Each of the preprocessed �les is placed in the FORTRAN directory (with a .f su�x instead of a

.F or .FOR su�x). As before, tailoring of these �les is accommodated through the LOCALIZE

command; this is followed by modi�cation of the resultant LOCAL �le.

The CUSTOMIZE command allows a LOCAL �le in one working directory to be used for any

LAURA application (without having to be present in that LOCAL directory) in lieu of the

18

$HOME/LAURA.4.1 �le. A CUSTOM version of the �le lfn is created in the following manner.

After making the modi�cations to LOCAL version of lfn, type the command

CUSTOMIZE lfn

The �le will be moved to subdirectory CUSTOM in directory $HOME/LAURA.4.1 (appendix H).

Future executions of make from any directory will use this customized version of lfn in lieu of

the original LAURA coding.

NOTE: To defeat this customization in a given working directory, simply copy the

baseline version of lfn from $HOME/LAURA.4.1 before executing make. This LOCAL

copy of the baseline lfn will be used instead of the customized version.

The command

XCUSTOM lfn

deletes the CUSTOM version of lfn (appendix N).

NOTE: Do not use CUSTOMIZE on LOCAL versions of �les created by stArt (.strt

su�x).

19

20

Chapter 7

Menus of stArt

In this section, the various menus of stArt are presented and annotated. The menus are

presented in their order of appearance during stArt. Each menu is enclosed within a shaded

box to mimic what the user will see on the computer screen. The default value for each variable,

which re
ects the choice from the last PRELUDE session, is also shown.

NOTE: The user can enter a comma (\,") at any prompt to accept the default

value.

7.1. Number of Processors

For CRAY architectures, the upper limit of processors that will be used during this LAURA

run is speci�ed through the variable nprocs:

Enter the upper limit of processors to be used during this LAURA run.

Enter choice (1 <= nprocs <= nprocmx) fdefaultg:

where nprocmx is the number of available processors on this machine, as determined by mAch+prOc

(appendix C, section C.2).

NOTE: On CRAY machines, a single processor (nprocs = 1) should be used for

LAURA runs where grid adjustments will be made. (See NOTE in section 11.5.3.)

This is required because the multiprocessing is asynchronous.

7.2. Type of Initial Grid and Solution

The user has a number of options for automatic generation of a surface and volume grid,

including an initialized solution (section 9.1.1), for speci�c parameterized body shapes. Alter-

nately, the user can supply an externally generated restart �le to LAURA (section 9.1.1). The

type of initial grid and solution is speci�ed through newjob (screen 6):

21

Select initialization:

0) use existing "RESTART.in" file,

1) create conic (cone/wedge, paraboloid, etc.),

2) create generic aerobrake

(includes AFE without axis singularity).

Enter choice fdefaultg:

Screen 6.

NOTE: When newjob = 0 is selected, stArt will issue a warning if �le RESTART.in

does not exist in the LOCAL directory. Since stArt itself does not use this �le, the

user can continue with this PRELUDE session and create RESTART.in afterwards. The

message simply serves as a reminder that RESTART.in must exist before executing

laura.

7.3. Flow Dimensionality

The
ow dimensionality is speci�ed through ndim (screen 7):

Select flow dimensionality:

1) axisymmetric flow,

2) two-dimensional flow,

3) three-dimensional flow.

Enter choice fdefaultg:

Screen 7.

7.4. Governing Equations

LAURA provides inviscid and viscous
ow options. The viscous
ow options include thin-

layer and full Navier-Stokes equations (which require more memory for treatment of the cross

derivatives and associated metrics). Select the governing equations through igovern (screen 8):

22

Select governing equations:

0) inviscid flow,

1) thin-layer Navier-Stokes,

2) full Navier-Stokes.

Enter choice fdefaultg:

Screen 8.

The thin-layer option includes only the viscous terms de�ned by gradients in the coordinate

directions emanating from wall boundaries. The viscous directions are set automatically as

boundary conditions and are input with the variables ivisnblk, jvisnblk , and kvisnblk equal to 0 for

o� and 1 for on in computational block nblk (section 9.1.3.1). The user can change the default

values in the �le data (which is created by stArt).

NOTE: If igovern = 1, de�ning ivis = jvis = kvis = 1 for a given block still omits the

cross derivative terms from the full Navier-Stokes equations. The user must specify

igovern = 2 in stArt to include the full Navier-Stokes terms in the compilation of

laura.

7.5. Free-stream Conditions

Enter the free-stream conditions (screen 9) (in mkgs units):

Enter velocity [m/s] fdefaultg:

Enter density [kg/m^3] fdefaultg:

Enter freestream temperature [K] fdefaultg:

Screen 9.

23

For two- or three-dimensional
ow, the angle of attack (attack) must be speci�ed (screen 10):

Enter angle of attack [deg] fdefaultg:

Screen 10.

7.6. Surface Boundary Conditions

The surface boundary conditions are set internally for the momentum and global continuity

equations.

NOTE: For nonequilibrium
ows (where the global continuity equation is not solved

explicitly), the wall catalysis must be chosen to de�ne the surface boundary condi-

tions for the species continuity equations (section 7.7.2.3).

NOTE: The inviscid boundary conditions are crude; they extrapolate pressure,

temperature, and tangential velocity components to the wall and re
ect a normal

velocity component.

For viscous
ow (igovern 6= 0), a wall boundary condition on the energy equation must be

speci�ed. Prescribe this wall temperature boundary condition through tempbc (screen 11):

Select wall temperature BC:

0) constant

1) specified variation (ndim 6= 3)
2) radiative equilibrium

Enter choice fdefaultg:

Screen 11.

The follow-up prompts for tempbc = 0, 1, and 2 are discussed in sections 7.6.1, 7.6.2, and 7.6.3,

respectively.

7.6.1. Constant Wall Temperature

When tempbc = 0, input the wall temperature (screen 12), as follows:

24

Enter wall temperature [K] fdefaultg:

Screen 12.

7.6.2. Speci�ed Wall Temperature Variation

When tempbc = 1, the wall temperature distribution is provided in �le variabletw. This

allows the surface temperature to be speci�ed by a �xed distribution (from experimental data,

for example). The entries in �le variabletw are the streamwise surface distance (in units) and

temperature (K) for each location. They are read in free format (one entry per line) by stArt

(and later by LAURA). In reload.F, these discrete values are linearly interpolated to provide

values at cell face centers along the surface.

NOTE: If �le variabletw is not found by stArt, the free-stream temperature is

used to initialize the
ow �eld temperature distribution. This \�x" allows this stArt

session to continue, but the initial temperature distribution is less than ideal. As

a result, the user is strongly urged to create the �le variabletw and repeat the

start-up procedure using the command

PRELUDE INPUTS

NOTE: The speci�ed wall temperature variation (tempbc = 1) option is currently

not available for three-dimensional
ows.

7.6.3. Radiative Equilibrium Wall Temperature

When tempbc = 2, an initial guess for the wall temperature must be supplied, along with

the relaxation factor, ept (screen 13):

Enter initial wall temperature [K] fdefaultg:

Enter wall-temperature relaxation factor fdefaultg:

Screen 13.

A value of ept < 1 is an under-relaxation (with ept = 0 �xing Tw at the input value) and

ept = 1 is a straight substitution. In the early stages of convergence, it is advisable to keep

ept = O(0:01). This value can be increased (in �le data) as the equilibrium value of Tw is

approached.

25

7.7. Gas Model

LAURA has perfect gas, equilibrium, and nonequilibrium
ow capabilities for air. De�ne

the nature of the gas through ngas (screen 14):

Select the gas model:

0) perfect gas,

1) equilibrium,

2) chemical nonequilibrium.

Enter choice fdefaultg:

Screen 14.

If ngas = 0 is speci�ed, no other user input is required for the gas model.

NOTE: The perfect gas is assumed to be air, but constants appropriate for other

gases can be speci�ed in the include �les gas model vars.strt and sthrlnd vars.strt.

Subsequent screen prompts for equilibrium and nonequilibrium gas model are discussed in sec-

tions 7.7.1 and 7.7.2, respectively.

7.7.1. Equilibrium

For equilibrium
ow (ngas = 1), choose which thermodynamic curve �t to use through icrv

(screen 15):

Select a thermodynamic curve fit:

1) Vinokur,

2) Tannehill.

Enter choice fdefaultg:

Screen 15.

Details of these curve-�ts can be found in references 19 and 20, respectively.

7.7.2. Nonequilibrium

For nonequilibrium
ows, the thermal state, constituent species, and wall catalysis must be

speci�ed. These constraints are discussed in the subsections that follow.

26

7.7.2.1. Thermal State

For nonequilibrium
ow (ngas = 2), choose the thermal state of the gas through itherm

(screen 16):

Select the thermal state of the gas:

1) equilibrium (one-temperature),

2) nonequilibrium (two-temperature).

Enter choice fdefaultg:

Screen 16.

7.7.2.2. Constituent Species

Next, select which species will be included in the air model (screen 17):

Will atomic nitrogen be considered? (y/n) fdefaultg:

Will atomic oxygen be considered? (y/n) fdefaultg:

Will molecular nitrogen be considered? (y/n) fdefaultg:

Will molecular oxygen be considered? (y/n) fdefaultg:

Will nitric oxide be considered? (y/n) fdefaultg:

Will ionized atomic nitrogen be considered? (y/n) fdefaultg:

Will ionized atomic oxygen be considered? (y/n) fdefaultg:

Will ionized molecular nitrogen be considered? (y/n) fdefaultg:

Will ionized molecular oxygen be considered? (y/n) fdefaultg:

Will ionized nitric oxide be considered? (y/n) fdefaultg:

Screen 17.

An answer of \y" activates the species, while an answer of \n" deactivates it. Thus, any subset

of the total 11 species for air (N, O, N2, O2, NO, N
+, O+, N+

2 , O
+
2 , NO

+, e�) can be speci�ed.

27

7.7.2.3. Wall Catalysis

Physical models within LAURA are appropriate for weak ionization. Free-stream mass

fractions appropriate for undissociated, low-temperature air are set in block data �le air.F and

can be adjusted as required. The catalysis of the wall is de�ned through the variable jtype

(screen 18):

Select the catalytic nature of the wall boundary:

0) non-catalytic;

1) "super-catalytic";

2) catalytic to ions, non-catalytic to neutrals;

3) catalytic to ions, Stewart`s finite-catalysis;

4) catalytic to ions, Zoby`s finite-catalysis;

5) catalytic to ions, Scott`s finite-catalysis;

6) catalytic to ions, homogeneous recombination of all atoms.

Enter choice fdefaultg:

Screen 18.

As shown, options for noncatalytic, �nite-catalytic, and \super-catalytic" wall conditions are

available.

NOTE: The super-catalytic condition (jtype = 1) sets the mass fractions at the

wall to their free-stream values. This should not be confused with a fully catalytic

condition where the surface mass fractions are de�ned by the equilibrium composition

at the given wall temperature.

Details of the jtype = 3, 4, and 5 options can be found in references 21, 22, and 23, respectively.

NOTE: In theory, for inviscid
ow, an extrapolation of the near-wall mass fractions

to the wall provides the proper catalytic nature of this boundary. In the absence

of this option, selecting the noncatalytic boundary condition (jtype = 0) is the best

choice.

7.8. Turbulence

Algebraic models are employed within LAURA to provide a turbulence capability for perfect

gas, equilibrium, and nonequilibrium
ows. Control this option through nturb (screen 19):

28

Select laminar flow or turbulence model:

0) laminar flow,

1) Cebeci-Smith,

2) Baldwin-Lomax

Enter choice fdefaultg:

Screen 19.

Details of the Cebeci-Smith and Baldwin-Lomax algebraic models can be found in references 24

and 25, respectively.

NOTE: Awell-de�ned boundary-layer edge is required before these algebraic models

can be implemented. Thus, for a given case, a laminar-
ow solution is necessary as a

starter for turbulent
ow. The laminar solution does not need to be fully converged,

but the shock layer should be well-developed.

NOTE: A value of 0.9 is assumed for the turbulent Prandtl number. For nonequi-

librium
ows, a turbulent Schmidt number is required as well, and a value of unity

is used.

Speci�cation of transition is discussed in section 9.1.4.

7.9. Flow Field Grid and Initialization

LAURA has an internal grid generation and initialization algorithm that provides the user

with a self-starting capability. This feature is limited to select bodies that can be described

analytically. However, LAURA will accept externally generated grids and
ow �eld initializa-

tions. This option allows computations over arbitrary bodies and the use of more sophisticated

gridding techniques. Use of such external grids is discussed in section 7.9.1. Self-starting grids

are the topic of section 7.9.2.

7.9.1. Externally Generated Grid and Initialized Flow

When newjob = 0 is speci�ed, the user must supply the �le RESTART.in for laura. The

format of this restart �le is given in section 9.1.1. This �le does not need to exist before running

PRELUDE, but it must be present before executing laura. Required inputs for an externally

generated RESTART.in are discussed in the subsections below.

In laura, the grid must be oriented such that y = 0 de�nes the plane of symmetry. In

the assumed orientation, the z-axis originates at the vehicle nose and is directed toward the

oncoming
ow (as shown in �g. 2.1). Such an orientation is common for blunt-body applications.

The angles of attack and yaw are referenced to the negative z-axis, which yields the following

de�nitions for the free-stream velocity components:

29

uinf = sin(attack) � cos(yaw)
vinf = sin(yaw)

winf = �cos(attack) � cos(yaw)

NOTE: In laura, the yaw angle is set to yaw = 0.

The user will probably encounter externally generated grids with other orientations. In such

cases, it is recommended that the user re-orient the grid to conform to the examples shown in

�gures 2.1 and 2.2. Afterwards, the utility INITIALIZE can be used to initialize the
ow �eld

and create the LAURA RESTART.in �le (appendix I).

If the user prefers not to re-orient the grid, then the de�nitions of the free-stream velocity

components can be modi�ed. This approach involves creating LOCAL versions of �les setup.F

and flowinit.f with the LOCALIZE utility (appendix K). The appropriate modi�cations to the

de�nitions of uinf, vinf, and winf can be made in these LOCAL �les. When the utility INITIALIZE

is executed, it will detect the LOCAL version of flowinit.f, compile it, and use the resultant

LOCAL flOwInIt executable to initialize the given PLOT3D grid �le.

NOTE: The laura executable must be recompiled to get the new de�nitions from

the LOCAL setup.F.

Alternately, the user can employ the default de�nitions for the free-stream velocity compo-

nents in conjunction with other grid orientations as long as the angle of attack is referenced to

the negative z-axis. Consequently, a value of attack = 0 in the default orientation can correspond

to a value of -90, 90, or 180 deg (speci�ed in �le \data") for this alternative orientation.

7.9.1.1. Number of Computational Blocks

The
ow �eld domain can be divided into multiple computational blocks. The number of

blocks is de�ned through the variable nblocks:

Input the number of computational blocks (1 <= nblocks <= 6) fdefaultg:

7.9.1.2. Dimensions for Blocks

For each block nblk (1 � nblk � nblocks), input the variables iblknblk, jblknblk (3-D only), and

kblknblk, which de�ne the number of computational cells in this block (screen 20):

30

For block nblk, input the number of cells ...

... in the i-direction fdefaultg:

... in the j-direction fdefaultg: (3-D
ow only)

... in the k-direction fdefaultg:

Screen 20.

NOTE: In each direction, the number of cells is one less than the number of grid

points (cell walls).

7.9.1.3. Boundary Condition Types for Block Faces

If newjob = 0, the boundary type (such as a solid surface or a free stream) of the faces of

each block must be speci�ed by the user. The boundary type for each of the six sides of a given

block is de�ned through the variable itype (screen 21):

31

Select the nature of the i = 1 boundary in block nblk:

Select the nature of the i = iblknblk boundary in block nblk:

Select the nature of the j = 1 boundary in block nblk:

Select the nature of the j = jblknblk boundary in block nblk:

Select the nature of the k = 1 boundary in block nblk:

Select the nature of the k = kblknblk boundary in block nblk:

0) solid surface,

1) outflow,

2) symmetry across y = 0 plane (3-D flow),

3) freestream,

4) symmetry across x = 0 plane (axisymmetric or 2-D flow),

5) symmetry across y = 0 plane (axisymmetric or 2-D flow),

7) axis (for 3-D flow),

9) boundary shared with another block.

Enter choice fdefaultg:

Screen 21.

NOTE: For brevity, the option list is shown on the k = kblknblk screen only.

If a shared boundary is speci�ed, the block with which the boundary is common must be speci-

�ed:

Enter the number of that block fdefaultg:

NOTE: If newjob 6= 0, a single block is created, and default values for the boundary

types of the faces of this block are de�ned automatically. No user speci�cation is

required.

32

7.9.2. Self-Starting Grid and Flow Initialization

When newjob 6= 0, stArt generates the RESTART.in �le. Required user inputs for this option

are discussed in the subsections that follow.

7.9.2.1. Number of Computational Blocks

The geometry and
ow �eld grids are generated by using a single computational block, which

is based on user inputs that are discussed later.

7.9.2.2. Dimensions for Computational Block

First, the size of the grid is de�ned through iaq, jaq (3-D only), and kaq (screen 22):

Input iaq, the number of cells in the streamwise direction

along the body.

Enter choice (1 <= iaq <= iaqm) fdefaultg:

Input jaq, the number of cells in the circumferential direction

around the body.

Enter choice (1 <= jaq <= jaqm) fdefaultg: (3-D
ow only)

Input kaq, the maximum number of cells normal to the body.

Enter choice (1 <= kaq <= kaqm) fdefaultg:

Screen 22.

where iaqm = 200, jaqm = 100, and kaqm = 128.

NOTE: If these values are too restrictive, the user can create a LOCAL copy of the �le

start.inc (using the LOCALIZE command) and modify these limits. When PRELUDE

is executed, this LOCAL �le will be used to create a LOCAL stArt executable, which is

then used by PRELUDE in lieu of the default executable. PRELUDE accommodates LOCAL

copies of any of the stArt source �les (located in the $HOME/LAURA.4.1 directory),

if the user desires to modify stArt to produce tailored case-speci�c include �les

(.strt su�xes).

A single computational block (Block A) is utilized, where iblk1 = iaq, jblk1 = jaq, and kblk1 = kaq.

For two-dimensional and axisymmetric
ows, jblk1 = 1.

If options for grid adaption and alignment with the captured bow shock are to be exercised,

then kblk1 must be the number of cells between the body and the free-stream in
ow boundary.

Furthermore, kblk1 should be divisible by 4 if options for coarse-grid initialization of the solution

33

are implemented, as is the case when any of the self-start geometry initialization packages are

employed.

NOTE: For newjob = 2 and ndim = 3, the number of circumferential cells (jaq) is

de�ned as one-half of the number of streamwise cells (iaq). If the input value for iaq

is not a multiple of 2, it is overwritten to iaq = 2� jaq. The resultant values of iaq

and jaq are then echoed to the screen.

7.10. Geometry De�nition

LAURA is written using mkgs units. However, other units of length can be accommodated

through the conversion factor r
ngth. The value of r
ngth (and hence, units) for several common

choices is controlled through iunit (screen 23):

Select units for the geometry:

0) meters,

1) centimeters,

2) feet,

3) inches,

4) other units.

Enter choice fdefaultg:

Screen 23.

If iunit 6= 4, the conversion factor from grid units to meters (r
ngth) is automatically loaded.

For instance, if the surface geometry and volume grid are de�ned in inches, then units = in. and

r
ngth = 0:0254 (since 1 in. = 0.0254 m).

For iunit = 4, the user must explicitly de�ne units and r
ngth (screen 24):

34

Enter 1- or 2-character abbreviation for this custom unit

of length fdefaultg:

The conversion factor "rflngth" is defined such that:

1 units = "rflngth" meters

Enter "rflngth" fdefaultg:

Screen 24.

This feature allows the user to de�ne a volume grid based on a nonstandard metric. For example,

a generic blunted-cone might be de�ned in units of nose radius (RN). If RN = 2 ft and the

volume grid was created in units of nose radius, then units = RN and r
ngth = 0:6096 (since

1 RN = 2 ft = 0.6096 m). Proper speci�cation of this factor is important because it is used to

de�ne the Reynolds number per unit grid length in the solution.

Required geometry inputs for externally supplied grids are described in section 7.10.1. Self-

starting conic geometries (such as cones, paraboloids, and hyperboloids) are discussed in sec-

tion 7.10.2. Self-starting aerobrakes (such as the Aeroassist Flight Experiment (AFE) and

spheres) are the focus of section 7.10.3.

7.10.1. Externally Generated Grid

When newjob = 0, the volume grid (and initial
ow �eld) must be provided by the user.

Section 11.1 gives restrictions on the grid orientation for two-dimensional and axisymmetric

ows.

NOTE: The self-starting feature of LAURA can be employed to produce grids for

ows over simple analytic shapes (section 7.10.2).

Several metrics of the geometry must be supplied by the user when the newjob = 0 option is

chosen. The variables xcg and zcg de�ne the location of the reference center for aerodynamic

moments in grid coordinates (screen 25):

Enter x-coordinate of moment center [units] fdefaultg:

Enter z-coordinate of moment center [units] fdefaultg:

Screen 25.

35

NOTE: It is implicitly assumed that the
ow has y = 0 as its plane of symmetry

with ycg = 0.

The variables refarea and re
en de�ne the reference area and length, respectively, for the eval-

uation of aerodynamic coe�cients (screen 26):

Enter reference area for aerodynamics [units^2] fdefaultg:

Enter reference length for aerodynamics [units] fdefaultg:

Screen 26.

NOTE: For self-starting grids (newjob 6= 0), the values of xcg, zcg, refarea, and

re
en are de�ned by stArt (along with ycg = 0). The user can change these values

in �le data.

7.10.2. Self-Starting Grid (Conic Geometry)

When newjob = 1, the conic geometry must be de�ned through a series of user inputs.

Based on these values, xcg, zcg, refarea, and re
en are loaded by stArt (along with ycg = 0).

For ndim < 3 (axisymmetric or two-dimensional
ow), the body dimensionality is equal to the

ow dimensionality (ndimb = ndim). If ndim = 3, then the dimensionality of the body must be

speci�ed through the variable ndimb (screen 27):

Select body dimensionality:

1) axisymmetric,

3) 3-D.

Enter choice fdefaultg:

Screen 27.

NOTE: The option of ndimb = 2 is eliminated in this case because the con�guration

cannot be two-dimensional when ndim = 3.

The type of conic section is prescribed through the variable konic. The options for konic are a

function of ndimb. The next three sections show the options for konic based on the value of the

body dimensionality (ndimb).

36

7.10.2.1. Axisymmetric Geometry

For ndimb = 1, the options for konic (screen 28) are:

Select axisymmetric body:

1) hyperboloid,

2) paraboloid,

3) ellipsoidally-blunted cone,

4) spherically-blunted cone.

Enter choice fdefaultg:

Screen 28.

For konic > 2, the value of ic must be speci�ed (screen 29):

Input the number of cells (axial direction) to be used on the cap.

Enter choice (2 <= ic <= iaq) fdefaultg:

Screen 29.

Unless konic = 2, the variable � must be speci�ed. For konic = 1, this is the half-angle of

the asymptote of the hyperboloid:

Enter half-angle [deg] of asymptote fdefaultg:

For konic = 3 and konic = 4, � is the body half-angle:

Enter body half-angle [deg] fdefaultg:

For konic = 3, the axial shape parameter of the nose (b), which is a function of the eccen-

tricity, must be de�ned (appendix B):

37

Enter axial shape parameter for nose, b

(b > 0, where b = 1 is circle) fdefaultg:

NOTE: For konic = 4, b = 1 automatically.

The next step is to specify the nose radius and total body length of the geometry:

Enter nose radius [units] fdefaultg:

Enter body length [units] fdefaultg:

7.10.2.2. Two-Dimensional Geometry

For ndimb = 2 (only possible for ndim = 2), the options for konic are:

Select 2-D body:

1) hyperbola,

2) parabola,

3) blunted wedge.

Enter choice fdefaultg:

For konic = 3, the value of ic must be speci�ed:

Input the number of cells (axial direction) to be used on the cap.

Enter choice (2 <= ic <= iaq) fdefaultg:

For konic = 1 or konic = 3, the variable � must be speci�ed. For konic = 1, this is the

half-angle of the asymptote of the hyperbola:

Enter half-angle [deg] of asymptote fdefaultg:

38

For konic = 3, � is the body half-angle, and must be speci�ed. Also for konic = 3, the axial

shape parameter for the nose (b) must be de�ned (appendix B):

Enter body half-angle [deg] fdefaultg:

Enter axial shape parameter for nose, b

(b > 0, where b = 1 is circle) fdefaultg:

The next step is to specify the nose radius and total body length of the geometry:

Enter nose radius [units] fdefaultg:

Enter body length [units] fdefaultg:

7.10.2.3. Three-Dimensional Geometry

For ndimb = 3, the options for konic are as follows:

Select 3-D body:

1) hyperboloid,

2) paraboloid,

3) blunted cone.

Enter choice fdefaultg:

For konic = 3, the value of ic must be speci�ed:

Input the number of cells (axial direction) to be used on the cap.

Enter choice (2 <= ic <= iaq) fdefaultg:

Unless konic = 2, the variable � must be speci�ed. For konic = 1, this is the half-angle of

the asymptote of the hyperboloid:

39

Enter half-angle [deg] of side-plane asymptote fdefaultg:

For konic = 3, � is the body half-angle, and must be speci�ed. Also for konic = 3, the axial

shape parameter for the nose (b) must be de�ned (appendix B):

Enter body half-angle [deg] in side plane fdefaultg:

Enter axial shape parameter for nose, b, in side plane.

(b > 0, where b = 1 is sphere) fdefaultg:

The next step is to specify the nose radii, in both the symmetry and side planes, along with

the total body length of the geometry:

Enter nose radius [units] in side plane fdefaultg:

Enter nose radius [units] in symmetry plane fdefaultg:

Enter body length [units] fdefaultg:

7.10.2.4. Axial Stretching Factor

As a �nal step for konic � 3 (for all values of ndimb), the axial stretching factor (axfac) for

the grid must be de�ned. A message to the screen provides the user with the minimum value of

axfac required to reach the end of the geometry, based on the previously speci�ed values for ic,

iaq, and zmax. This value is the default answer to the following prompt:

Enter axial stretching factor fdefaultg:

A value of axfac = 1 yields no axial stretching. To prevent overstretching, values larger than

approximately axfac = 1:2 should not be used.

40

7.10.3. Self-Starting Grid (Generic Aerobrake)

When newjob = 2, the aerobrake geometry must be de�ned through a series of user inputs.

Based on these values, xcg, zcg, refarea, and re
en are loaded by stArt (along with ycg = 0).

First, the type of aerobrake geometry is selected through variable iafe:

Select aerobrake geometry option:

0) AFE aerobrake,

1) hemisphere,

2) customized aerobrake.

Enter choice fdefaultg:

7.10.3.1. AFE Aerobrake

When iafe = 0, the aerobrake parameters are automatically set to the AFE con�guration

(ref. 26) values.

NOTE: Because the AFE geometry is three-dimensional, a speci�cation of iafe = 0

can only be made if ndim = 3.

7.10.3.2. Hemisphere

When iafe = 1, the nose radius must be speci�ed (in meters):

Enter radius [m] fdefaultg:

7.10.3.3. Customized Aerobrake

When iafe = 2, the parameters that are de�ned implicitly for iafe = 0 must be explicitly

supplied by the user (screen 30).

NOTE: Accepting the echoed default values will yield the AFE geometry.

A graphical representation of a typical body in the plane of symmetry, including explanations

of the various parameters, is provided in �gure 7.1.

41

Enter body half-angle [deg] in symmetry plane fdefaultg:

Enter rake angle [deg] of base plane relative to body axis

(enter "90" for axisymmetric body) fdefaultg: (3-D
ow only)

Enter turning angle [deg] of shoulder

(usually same as body half-angle) fdefaultg:

Enter shoulder radius [units] fdefaultg:

Enter eccentricity of nose fdefaultg: (3-D
ow only)

Enter nose radius [units] of blunted cone in symmetry plane fdefaultg:

Enter base plane radius [units] fdefaultg:

Screen 30.

δ

θ

RSh

RN

RB

δ

θ

τ
RSh

b
a

RB

RN

Elliptic nose
τ

ε

Circular base plane of radius RB

body half-angle

rake angle

shoulder radius

nose radius

base plane radius

turning angle

nose eccentricity, b/a

Figure 7.1. Parameters for de�ning generic probe shape in LAURA.

42

Chapter 8

Compiling LAURA

In an e�ort to minimize computer memory requirements, LAURA makes extensive use of

include statements that allow the code to be tailored to a given application. This tailoring is

facilitated through the execution of stArt, a preprocessor for LAURA, which is used to de�ne

array dimensions, governing equations, and gas models according to user inputs. Additional

customization is possible through direct �le editing. In the past, this meant that a local copy of

the complete LAURA code needed to be present before compilation. This arrangement left the

working directories cluttered with source �les (many of which had undergone no modi�cation)

and object �les. As a result, keeping track of the changes in the source �les from case to case

was a cumbersome task.

LAURA is based on the premise that the bulk of the LAURA source code does not change

from one application to the next. These �les, which should rarely require modi�cation, are kept in

a read-only directory. The relationship between (and roles of) the various directories employed by

LAURA is shown in �gure 2.3. Through stArt, the user de�nes parameters, compile directives,

and other quantities that communicate the user's instructions to the $HOME/LAURA.4.1 �les

during compilation. The capabilities of stArt have been expanded, and as a result, the need

for direct editing of LAURA source �les has been minimized (eliminated, in fact, for many

applications).

For the most part, the tailoring is controlled through the �les produced by executing stArt

(denoted by .strt su�xes). To reduce clutter in the working (LOCAL) directory, subdirectories

are created by PRELUDE (�g. 2.3). The �les produced by stArt are stored in subdirectory

STRTfiles, while OBJfiles holds the object �les produced during compilation.

Should a LAURA �le (.F, .FOR, .inc, or .strt su�x) require further tailoring, a LOCAL

copy (lfn) is created with the command

LOCALIZE lfn

and then edited.

NOTE: All tailoring of LAURA should be performed in the working (LOCAL) di-

rectory, thus allowing the installed version to remain intact.

A pure-FORTRAN version (.f su�x) of a subroutine �le (.F or .FOR su�x) is also acceptable. A

subsequent compilation uses this LOCAL �le in lieu of the $HOME/LAURA.4.1 version.

NOTE: The LOCAL directory should contain no �les with a .f, .F, .FOR, .inc,

or .strt su�x which are not LAURA source �les. Otherwise, extraneous warning

messages may be displayed on the screen when make is executed.

43

The command

CUSTOMIZE lfn

moves a LOCAL �le (.F, .FOR, .f, or .inc su�x only) to directory CUSTOM in $HOME/LAURA.4.1,

and makes it the default instead of the $HOME/LAURA.4.1 version.

8.1. Using make

When the command

make

is executed, the actual compilation takes place in subdirectory OBJfiles.

NOTE: On some machines, the environment variable $HOME is not exported to

make. In such cases, the command

make HOME=$HOME

is required to provide make with the value of $HOME.

This fairly sophisticated Makefile is created by stArt, which tailors it not only to the machine

architecture, but also to the speci�c case being run. For instance, if perfect gas
ow is speci�ed,

the nonequilibrium and equilibrium gas routines are not included in the compilation. In fact,

the stArt inputs of igovern, machine, ndim, ngas, and nturb determine which source �les make

is dependent upon. This treatment yields further reductions in computer memory requirements.

Since this Makefile does more than simply compile the code, the various steps (appendix E,

section E.1) are discussed below.

First, the script SYMLINKS (appendix E, section E.2) is executed to tell make where to �nd

the source �les it needs. Initially, symbolic links are established for the �les in $HOME/LAURA.4.1

and STRTfiles. These symbolic links are rede�ned to the LOCAL and CUSTOM directories for any

�les that exist there. In other words, LOCAL and CUSTOM �les are used if they exist; otherwise,

the �les in $HOME/LAURA.4.1 and STRTfiles are used.

NOTE: If make has been executed previously, a check of these subdirectories is

conducted to see that all LOCAL and CUSTOM �les used in that compilation still exist.

If not, the appropriate object �les are removed before compilation so that the new

executable re
ects this change.

Next, the script Makedep (appendix E, section E.4) is executed to establish the dependencies

of each subroutine �le (.F, .FOR, or .f su�x) on the include �les. For each source �le, Makedep

determines which include �les (.inc and .strt su�xes) it depends upon. These dependencies

are saved in �le CHILDREN, which is in the OBJfiles directory. The existence of this �le allows

make to recognize when an include �le is newer than an object �le whose source �le depends

upon it. When this is the case, the source �le is recompiled.

Now that make knows which source �les it needs, and in turn, which include �les they each

depend upon, the actual compilation begins. More exactly, each subroutine �le (.F, .FOR, or

.f su�x) is �rst preprocessed according to the compile directives supplied by stArt. After

preprocessing, the �le is compiled, and the object (.o su�x) �le is saved in OBJfiles. When all

of the object �les have been created, they are linked to create laura, the LAURA executable.

Although this executable resides in OBJfiles, it is symbolically linked to the LOCAL directory

to facilitate its execution.

The �nal step performed by make is the removal of the symbolic links located in OBJfiles.

This step serves to reduce clutter in the OBJfiles subdirectory.

44

8.2. Using make debug

For running LAURA in conjunction with the dbx debugger (cdbx on CRAY architectures),

the code must �rst be compiled with the debugger option. Also, the symbolic links should be

retained so that dbx can locate the source �les. To address these needs, the command

make debug

is employed. This command creates a subdirectory DEBUG, establishes the proper symbolic links,

and compiles LAURA using the debugger
ag (-g). Further, links are created for �les data,

RESTART.in, and TWALL.in (if it exists), which are in the LOCAL directory. For turbulent
ows,

links are also created to the LOCAL �les transition and variabletw. To run the debugger,

move down to the DEBUG directory.

8.3. Using make fortran

The command

make fortran

preprocesses each of the �les with a .F or .FOR su�x without actually compiling and linking

them to produce the LAURA executable. As with the standard make, symbolic links to the

proper �les are established. In addition to processing the compile directives, this command also

pipes in the include �les. Each resultant pure-FORTRAN �le (which has the root name of the .F

�le and a .f su�x) is placed in subdirectory FORTRAN. As in section 8.1, after preprocessing, the

symbolic links are removed.

The make fortran feature is useful for testing new code, since such new coding can be added

to a �le that is already tailored to the desired application. For example, in an equilibrium
ow

application, make fortran produces subroutine �les (.f su�xes) in which the perfect gas and

nonequilibrium
ow coding has been omitted. Without these extraneous lines of FORTRAN, the

user can more easily focus attention on the active (in this case equilibrium
ow) sections of the

various routines. Files of interest can be copied to the LOCAL directory, modi�ed, and used in

subsequent compilations since, as mentioned earlier, a LOCAL �le with a .f su�x is recognized

by make as a replacement for the default subroutine �le (.F or .FOR su�x).

45

46

Chapter 9

Controlling LAURA

The LAURA input and case-speci�c include �les (.strt su�xes) are the �les through which

the user can most readily control the options of LAURA. Typically, in fact, except for some

advanced applications, these are the only �les that the user should have to alter for a given case.

These �les can be grouped in the following two classes:

� Control via execution. The LOCAL mandatory �les (data, RESTART.in) and application-

dependent �les (assign tasks, transition, TWALL.in, variabletw) are read by laura

(the LAURA executable) at run time. Therefore, laura does not need to be recompiled

when these �les are altered. These �les are discussed in section 9.1. To run LAURA

interactively, type the command

laura < data > lfn

This command sends the output to �le lfn. User control of a given run is provided through

the input �les and the include �les with the .strt su�x (chapter 9).

� Control via compilation. Changes to the �les created by stArt are communicated during

compilation of laura. The �les consist of compile directives (in HEADER.strt) and FORTRAN

parameter statements (in a number of �les with .strt su�xes). The �les are discussed

in section 9.2. As with the LAURA source �les (.F, .FOR, and .inc su�xes), it is rec-

ommended that any changes to these �les be made on a LOCAL copy (using the LOCALIZE

command), rather than the STRTfiles version. Subsequent PRELUDE runs will preserve

these tailored �les, rather than simply overwriting them in STRTfiles. Remember, to

re
ect a change in any of these �les, laura must be recompiled.

First consider those �les that provide user control during execution. The �les data and

RESTART.in are required inputs for any LAURA run. The �le data contains a set of parameters

(free-stream conditions included) which give the user a certain degree of control over LAURA

without the need for recompilation. As its name implies, RESTART.in is the �le that gives

LAURA a restart capability. A third �le, TWALL.in, supplies the surface temperature distribu-

tion when the radiative equilibrium wall temperature (tempbc = 2) option is exercised. If the

speci�ed wall temperature variation (tempbc = 1) option is exercised, the surface distribution is

provided through �le variabletw. When turbulent
ows are calculated, the onset of transition

is supplied through �le transition. The �le assign tasks can be used to control processor

allocations to computational blocks, as well as sweeping directions. Details of these �les are

given in sections 9.1.1 through 9.1.6. Both RESTART.in and TWALL.in are binary �les. The

other input �les are ASCII format and can be modi�ed through direct editing. The contents

47

of assign tasks, data, transition, and variabletw are echoed to standard output with each

execution of laura. This documents which LAURA options are active for a given run.

Now consider those �les that provide user control during compilation. In general, the safest

way to modify a �le with a .strt su�x is through PRELUDE. However, for some advanced

applications (chapter 11), direct editing of LOCAL versions of these �les (created via the LOCALIZE

command) is necessary. Some speci�c recommendations for modifying these �les are given in

sections 9.2.1 through 9.2.10.

NOTE: There is actually another option for tailoring these �les with .strt su�xes.

As mentioned in section 7.9.2, PRELUDE can accommodate LOCAL or CUSTOM copies

of stArt source �les, which in turn gives the user the ability to produce tailored

case-dependent include �les (.strt su�xes). If any LOCAL stArt source �les exist,

PRELUDE will use them in conjunction with any CUSTOM �les to create a LOCAL stArt

executable. If CUSTOM stArt source �les exist, but no LOCAL stArt source �les are

present, PRELUDE creates a CUSTOM stArt executable. This approach is especially

useful for any modi�cations that will be repeated on a regular basis. This option

is useful when changing the
ow �eld initialization for a \cold-start" solution, for

example.

The contents of HEADER.strt, as well as �les

algnshk vars.strt iupwind assn.strt parameter.strt

gas model vars.strt mtaska assn.strt source vars.strt

issd assn.strt nordbc assn.strt sthrlnd vars.strt

are repeated in LOCAL �le ECHOSTRT (appendix E, section E.2). This �le is created by make,

and serves to document the LAURA options that are active for a given compilation. During

subsequent executions of laura, the contents of ECHOSTRT are echoed to standard output.

NOTE: The �le ECHOSTRT should not be mistakenly edited in an attempt to e�ect

changes to the laura executable. Modi�cations should be made via PRELUDE or

through a LOCAL version of the above �les, followed by a recompilation of laura.

9.1. Control Via Execution

9.1.1. File RESTART.in

The LAURA restart capability requires that the binary �le RESTART.in be preserved be-

tween runs. This �le is unformatted to minimize memory requirements. The �le RESTART.in

contains the grid, along with the primitive variables, for the entire
ow �eld. As a result, in

subsequent runs, LAURA can pick up the previous solution where it left o�. The RESTART.in

�le is overwritten at the conclusion of each successful LAURA run.

NOTE: Files RESTART.in and TWALL.in are overwritten at the end of each execu-

tion of laura. A backup capability exists through the command

KEEPER

(appendix J), which simply copies RESTART.in to RESTART.backup and TWALL.in to

TWALL.backup.

48

LAURA always expects to �nd RESTART.in, even for cold starts. If newjob 6= 0 (conic

or aerobrake geometry) is speci�ed when running PRELUDE, then RESTART.in is automatically

generated by stArt. Otherwise, the user must supply an externally generated restart �le for

laura. This �le does not need to exist before running PRELUDE, but it must be present before

executing the command

laura < data

The
ow �eld domain can be divided into multiple computational blocks, and this is re-

ected in the restart �le. LAURA obtains information from RESTART.in for each block. For

nonequilibrium
ow, the sequence for a given block (screen 31) is:

read (24) ix, jx, kx, ls

read (24) (((u(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((v(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((w(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((temp(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((tempv(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& ((((ri(i,j,k,s), i=1,ix), j=1,jx), k=1,kx),

& s=1,ls),

& (((x(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1),

& (((y(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1),

& (((z(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1)

Screen 31.

where ix, jx, kx are iblk, jblk, and kblk, respectively, for block x, and ls is the number of species.

Further, temp is T , tempv is TV , and ri(s) is �s; u, v, and w are velocity components; and x, y,

and z are Cartesian coordinates. This read sequence is repeated for each block.

NOTE: For each block, laura checks the values of ix, jx, kx, and ls against

the maximum dimensions allowed (as speci�ed in parameter.strt). If these upper

limits are exceeded, an error message is issued, and the job is terminated.

For perfect gas and equilibrium
ows, the sequence for a given block (screen 32) is as follows:

49

read (24) ix, jx, kx, ls

read (24) (((u(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((v(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((w(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((temp(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((e(i,j,k) , i=1,ix), j=1,jx), k=1,kx),

& (((ri(i,j,k,1), i=1,ix), j=1,jx), k=1,kx),

& (((x(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1),

& (((y(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1),

& (((z(i,j,k) , i=1,ix+1), j=1,jx+1), k=1,kx+1)

Screen 32.

For perfect gas and equilibrium
ows, air is treated as a single species (ls = 1), which is re
ected

above in the read sequence. As a result, �s = �1 = �. This read sequence is repeated for each

block.

As mentioned above, RESTART.in is automatically generated for newjob 6= 0 (conic or aer-

obrake geometry). This cold-start �le is a function of a number of user speci�cations (such as

geometry or free-stream conditions). In stArt, the
ow �eld variables are initialized as follows

(screen 33):

efactor = 8314.3 / (bgas * wgas * vinfb**2)

do 50 k=1,ka

etal = (k - 1.) / ka

do 50 j=1,ja

do 50 i=1,ia

u (i,j,k) = etal * uinf

v (i,j,k) = etal * vinf

w (i,j,k) = etal * winf

temp(1,j,k) = etal * tinf + (1. - etal) * twall

e (i,j,k) = temp(i,j,k) * efactor

50 continue

Screen 33.

where uinf, vinf, and winf are the u-, v-, and w-components of the free-stream velocity, respec-

tively, tinf is the free-stream temperature, and twall is the wall temperature. In addition to the

above assignments, TV = T and �s = �s;1 initially.

NOTE: The above quantities are normalized in the following manner. The velocities

(u, v, w, uinf, vinf, and winf) are nondimensionalized by the free-stream total velocity,

50

while the internal energy (e) is divided by this quantity squared. The species densities

(ri) are normalized by the free-stream density. All temperatures are in degrees K,

while x, y, and z are in grid units.

NOTE: As seen above and mentioned earlier, the self-starting feature of stArt

employs a single computational block with the k-direction normal to the body.

9.1.2. File assign tasks

The ASCII �le assign tasks gives the user control over several facets (which follow) of the

LAURA algorithm via �ve parameters (nbk, mbk, lstrt, lstop, and mapcpu):

� Partitioning of computational blocks

� Number of processors assigned to individual blocks

� Sweep direction for each block

These �ve parameters, discussed in section 11.5.2, are entered on a single line in free format. A

sample �le is shown below (screen 34) for a �ve-block, eight-processor case:

1 3 1 20 1

2 3 1 20 2

3 3 1 20 3

4 3 1 20 4

5 3 1 20 5

1 3 21 40 6

2 3 21 40 7

3 3 21 40 8

4 3 21 40 1

5 3 21 40 2

1 3 41 60 3

2 3 41 60 4

3 3 41 60 5

4 3 41 60 6

5 3 41 60 7

Screen 34.

Here kblkn = 60 for each block n, with lstrt and lstop de�ned as shown in the third and fourth

columns, respectively. A k-directional sweep (mbk = 3) is speci�ed for all tasks in the second

column.

NOTE: The solution for a given block may be \frozen," while others are advanced by

simply omitting that block from assign tasks. For instance, in the above example,

if the assignments for Block C (nbk = 3) were not included, then computations would

be performed on the other four blocks while the Block C
ow �eld remained �xed.

51

9.1.3. File data

The most direct user control for a given LAURA run is through the ASCII �le data, which

contains a number of parameters. Each entry is followed by a brief comment (i.e., variable name,

short description, or acceptable values). LAURA receives these instructions through a series of

free-formatted read �les from data. The values for parameters that appear in data can be

modi�ed by the user through direct editing of the �le. However, as a rule, lines should not be

added to, or deleted from, �le data to run di�erent cases. Rather, the PRELUDE session should

be repeated to create a new �le data.

A sample data �le is shown below (screen 35).

VERSION=LAURA.4.1

1 nord 1(st-) or 2(nd-) order spatial accuracy

1 ntrnsprt iterations between transport property updates

1 njcobian iterations between jacobian updates

0 0 1 fi,j,kgvis . 0=off/1=on for fi,j,kg TL N-S viscous terms in block 1

.50000E+04 vinfb freestream velocity [m/s]

.10000E-02 rinfb freestream density [kg/m^3]

.20000E+03 tinf freestream temperature [K]

0 tempbc f0=constant, 1=variable, 2=radiative equilibriumg Tw

.50000E+03 twall if tempbc=0: wall temperature [K]

0.000 ept if tempbc=2: temperature relaxation factor (0 < ept < 1)

1.0000 rflngth conversion: grid units ==> meters (1 m = 1.0000 m)

0.000000E+00 zcg .. axial cg location [m]

0.000000E+00 xcg vertical cg location [m]

0.314159E+01 refarea reference area of body [m ^2]

0.200000E+01 reflen reference length of body [m]

100 iterg maximum iterations for this run

20 movegrd frequency of grid adjustments

0 maxmoves maximum number of grid adjustments (0=no limit)

1 iabseig f0=normal, 1=scaledg limiter

0.300 epsa ... eigenvalue limiter

0.010 errd error criteria for grid doubling

10.00 hrs time limit for this run [hr]

2.00 rfinv inviscid relaxation factor, (rfinv > 1.5)

1.00 rfvis viscous relaxation factor, (rfvis > 0.5)

Screen 35.

The above �le is actually the initial data �le for the sample case presented in appendix A.

The �rst line of data is a header that can be tailored by the user. Since this �le is echoed

in the LAURA output, the header serves as an identi�er. The contents and length of (number

of entries in) data are application-speci�c and thus will di�er from case to case. The variable

ifrozen is only included for nonequilibrium
ow. Values for ivis, jvis, and kvis are de�ned for

52

Table 9.1. Dependence of data on newjob

newjob nord ntrnsprt njcobian iterg movegrd

0 2 20 20 9000 0

1, 2 1 1 1 100 20

each computational block. The variable attack is only included for three-dimensional
ow. The

variables tempbc, twall, and ept are excluded for inviscid
ow (since a boundary condition for

the energy equation is not required). In other words, the choices for ngas, ndim, and igovern

within stArt will determine which entries are present in data.

NOTE: The exclusion of inactive variables serves as a safeguard to prevent the user

from wasting CPU time with changes that have no e�ect on the solution.

NOTE: Any entry in �le data can be modi�ed by editing the �le directly. For

example, changes in free-stream conditions are easily made in this manner. However,

if a particular entry is not present in the current �le data, then the user is advised

to rerun PRELUDE to make the changes. For example, suppose after converging a

solution for inviscid
ow, the user wishes to use that solution to initialize a viscous

ow. As mentioned above, the variables tempbc, twall, and ept are not present in the

�le data for inviscid
ow, so the user should rerun PRELUDE to specify these values.

9.1.3.1. Initialization

An initial version of data is produced by stArt. The following variables are de�ned directly

through user inputs:

attack rinfb tempbc ept

vinfb tinf twall

The variable r
ngth is supplied by stArt, based on the units speci�ed by the user. The following

initializations are supplied by stArt:

ifrozen = 1 epsa = 0:3 r�nv = 2

maxmoves = 0 errd = 0:01 rfvis = 1

iabseig = 1 hrs = 10

Changes to these variables must be made by editing �le data.

Based on the newjob speci�cation, stArt makes the initializations shown in table 9.1. If

newjob = 0, the user must supply the cg-location (xcg,zcg), reference area (refarea), and reference

length (re
en) for the geometry. These values are provided by stArt for newjob 6= 0. Changes

to variables listed in table 9.1 must be made by editing �le data.

The parameters ivis, jvis, and kvis toggle (0 = o�/1 = on) the viscous terms in the i-, j-, and

k-direction, respectively. For increased
exibility, �le data contains a set of these toggles for each

computational block. If Euler equations are speci�ed, ivis = jvis = kvis = 0. For full Navier-

Stokes equations, ivis = jvis = kvis = 1. For thin-layer Navier-Stokes equations, viscous terms

are included only in the body-normal direction. The self-starting feature of LAURA assumes

the k-direction is normal to the body and therefore sets ivis = 0, jvis = 0, and kvis = 1. The

values of ivis, jvis, and kvis can be modi�ed by editing �le data.

53

NOTE: If thin-layer Navier-Stokes equations (igovern = 1) have been speci�ed,

simply de�ning ivis = jvis = kvis = 1 DOES NOT yield the full Navier-Stokes

equations because the cross derivative terms are omitted. The user must specify

igovern = 2 in stArt to activate (during compilation of laura) the full Navier-Stokes

terms.

NOTE: If thin-layer Navier-Stokes equations (igovern = 1) have been speci�ed,

setting ivis = jvis = kvis = 0 yields the Euler equations. However, the boundary

conditions are still those of viscous
ow. Further, past investigations have shown

that if a viscous solution is used as the initialization for inviscid calculations, the

boundary layer does not completely disappear unless the grid stretching in the body-

normal direction is rede�ned according to inviscid parameters (which is accomplished

through a call to algnshk.F).

9.1.3.2. Guide to File data

Typically, after LAURA is tailored to a given application, the path from initialization to

convergence requires no additional compilations. Modi�cations to �le data are the user's pri-

mary control over LAURA runs. Some \rules of thumb" for these parameters are given below.

nord:

For a cold-start initialization, the �rst-order accurate (nord = 1) scheme is more

robust than the second-order �nite-di�erence representation. However, after just a

few hundred iterations, the switch to second order (nord = 2) should be made.

NOTE: Although a �rst-order solution is an improvement over the cold-

start initialization, it is computationally wasteful (and, in fact, counter-

productive) to fully converge the �rst-order solution before switching to

nord = 2.

ifrozen:

This toggle controls the chemical and thermal source terms for nonequilibrium
ow.

By default ifrozen = 1 so that the source terms are turned on. With ifrozen = 0,

the chemically and thermally frozen
ow is calculated. In such a case, there is no

dissociation, but the
uid is not treated as a perfect gas (constant
).

ntrnsprt, and njcobian:

As the solution is driven toward convergence, key
ow �eld quantities vary less

from iteration to iteration. Thus, a reduction in the frequency of updates to these

variables can yield a savings in computational costs. For a cold-start, the Jacobian

and transport properties are updated for each iteration (njcobian = ntrnsprt = 1).

As the residual drops, these numbers, which specify the number of iterations between

updates, can be increased.

ivis, jvis, and kvis:

These are the toggles for the thin-layer viscous terms in the i-, j-, and k-directions,

respectively. Each computational block has its own toggles. Setting ivis = jvis =

kvis = 1 for a given block DOES NOT yield the full Navier-Stokes equations

(section 9.1.3).

54

attack, vinfb, rinfb, and tinf:

The free-stream conditions can be altered at any time along the path to convergence.

tempbc, twall, and ept:

The wall temperature boundary condition can be altered at any time along the path

to convergence. For a constant wall temperature, set tempbc = 0 and de�ne twall. For

a speci�ed wall temperature variation, set tempbc = 1 and supply the �le variabletw

(section 9.1.6). For the radiative equilibrium wall temperature distribution (tempbc =

2), the user must supply �le TWALL.in (section 9.1.5).

r
ngth, zcg, xcg, refarea, and re
en:

The reference quantities for the geometry can be altered at any time along the path

to convergence.

iterg:

This parameter provides a maximum iteration limit for the current run.

NOTE: The current job is terminated when either iterg iterations have

been completed or the hrs time limit is reached, whichever comes �rst.

movegrd, and maxmoves:

For a given run, the
ow �eld grid is realigned after everymovegrd iteration (movegrd =

0 yields no adjustments) up to maxmoves times. If maxmoves = 0, the grid will be

adjusted every movegrd iteration for the duration of the run.

iabseig:

This parameter controls the eigenvalue limiter scaling option. Although the default

is iabseig = 1 (scaled), a switch to iabseig = 0 (normal) can be required for some

problems early in the relaxation process to survive di�cult transients as the solution

evolves.

epsa:

This parameter controls the fraction of the local maximum eigenvalue which is used

as a lower limit for de�ning the upwind dissipation. For iabseig = 1, the fraction is

further reduced in directions where ivis = 1, jvis = 1, or kvis = 1 to substantially

eliminate adverse e�ects on the computed heating and skin friction levels.

errd:

If the self-starting feature of LAURA is employed, the initial grid contains only one-

quarter of the cells speci�ed for the k-direction. As the shock layer develops, and

the residual drops, the number of cells in this direction is doubled twice. These

enrichments are performed automatically when the residual drops below the value

of errd. In general, the timing of this doubling is not critical, so the default value is

satisfactory. If the solution stagnates at a residual level above this value, however,

the user can increase errd to hasten the adjustment.

55

hrs:

This parameter provides the time limit for the current run. Its value should be

matched to any time limit dictated by the machine or queue since it determines

when the restart �les are created. If the writing of these �les is not completed when

the limit is reached, the run will have to be repeated.

NOTE: The current job is terminated when either iterg iterations have

been completed or the hrs time limit is reached, whichever comes �rst.

r�nv and rfvis:

These factors multiply the inviscid matrix ML;INV and the viscous matrix ML;VIS,

which are the Jacobians of the inviscid and viscous
ux vectors, respectively.

(Eq. (O.76) in appendix O.) These factors have no in
uence on the converged so-

lution (in the sense that they do not alter the expression for the residual vector),

but they do a�ect the path to a converged solution. The change in the solution

vector caused by changes in the inviscid contributions to the residual is inversely

proportional to r�nv. In a similar manner, changes to the solution vector because

of changes in the viscous contributions to the residual are inversely proportional to

rfvis. Their lower bounds are r�nv = 1:5 and rfvis = 0:5. Although the defaults are

r�nv = 2 and rfvis = 1, increasing these to r�nv = 3 and rfvis = 2 (or possibly more)

can be required early in the relaxation process for some problems to survive di�cult

transients as the solution evolves. The relaxation factors can also be increased in

cases in which the convergence stalls because of a limit cycle induced by the use of the

minmod function in the TVD scheme. Values signi�cantly higher than these should

not be required. As a general guide, low values tend to accelerate convergence after

very large initial transients have passed. Larger values are appropriate if large initial

transients are destabilizing or if the convergence has stalled because of limit cycles

(probably in the vicinity of a captured shock) which are induced by the minmod

function.

9.1.4. File transition

For turbulent
ows (nturb = 1; 2), the location of the onset of transition (str) is speci�ed

through the ASCII �le transition.

NOTE: This location (surface distance from the nose of the geometry) should be

de�ned as str = 0 for the calculation of fully turbulent
ows.

NOTE: The present coding assumes that the i- and j-coordinates are measured in

the streamwise and circumferential directions, respectively, along the body. Further,

it assumes that

� the nose point (s = 0) lies in Block A

� Block A is active

A sample �le is shown below for transition at str = 1:0 grid unit:

1.0

56

9.1.5. File TWALL.in

For tempbc = 0 (constant wall temperature), the wall temperature value is provided through

�le data (section 9.1.3). For tempbc = 1 (speci�ed wall temperature variation), the wall temper-

ature distribution is de�ned through �le variabletw (section 9.1.6). For tempbc = 2 (radiative

equilibrium wall temperature), the wall temperature distribution is initialized through binary

�le TWALL.in. The size of this �le is a function of the number of blocks (nblocks), the number

of surfaces (nsrf), and the array dimensions. The read sequence for this unformatted �le is:

read (45) lsrf

do 35 nn=1,lsrf

read (45) imax, jmax

read (45) ((twallv(i,j,nn), i=1,imax), j=1,jmax)

35 continue

where lsrf is the number of surfaces and imax and jmax are the grid dimensions along a given

surface. This distribution is adjusted with each global iteration in LAURA. The adjustment is

not a straight substitution, but rather it is a relaxation controlled by parameter ept, which is

read from �le data. With the completion of a LAURA run, TWALL.in is overwritten to re
ect

the current distribution.

NOTE: The �le TWALL.in must exist when tempbc = 2. However, its overwrite

only occurs if ept 6= 0. This allows the wall boundary condition to be frozen at

any time during the solution procedure. This speci�cation can also allow a
ow �eld

distribution with a �xed wall boundary condition to be used to initialize a tempbc = 2

case. For example, suppose that a �xed wall distribution (tempbc = 0; 1; ept = 0) is

speci�ed for the early stages of
ow �eld development. In a later run, set ept 6= 0 to

create a TWALL.in �le. In the subsequent run, set tempbc = 2 (since TWALL.in now

exists), and the solution picks up where it left o�, except that the wall temperature

is iteratively determined as part of the solution.

9.1.6. File variabletw

When a speci�ed wall temperature variation is desired (for comparison with experimen-

tal data, for instance), the wall temperature distribution must be supplied in the ASCII �le

variabletw. The surface distance and the temperature are speci�ed at discrete locations down

the body (which is assumed to be in the i-direction). A free format is used to read in this

distribution (one ordered pair [s, T] per line) from �le variabletw. LAURA interpolates these

values to provide the proper distribution for the grid speci�ed in RESTART.in.

NOTE: Currently, this option (tempbc = 1) is not available for three-dimensional

ows.

NOTE: The present coding assumes the i-coordinate is measured in the streamwise

direction along the body.

A sample �le is shown below for a streamwise temperature distribution that varies from Tw =

313:9 K to Tw = 288:3 K as a function of the surface distance from sb = 0:0 to sb = 12:5 grid

units (screen 36):

57

0.0 313.9

0.5225 310.0

1.0475 313.9

1.5700 329.4

2.0950 331.7

2.6175 316.1

3.1425 298.9

3.5775 290.6

3.9775 288.9

4.9775 287.8

5.9750 288.3

6.9725 287.8

7.9700 287.8

9.4675 287.2

10.4650 287.2

11.4625 288.3

12.5 288.3

Screen 36.

9.2. Control Via Compilation

9.2.1. File HEADER.strt

During make, each �le in the LAURA source code is preprocessed before it is passed to the

FORTRAN compiler. This preprocessing eliminates those sections of code which will be inactive

for this case (as determined by user inputs). File HEADER.strt consists of a series of \#define"

statements for variables that control the compile directives. The number of de�nitions and their

values are controlled by the user through stArt. The options for these de�nitions are given

below, along with the FORTRAN variable that gives the user control over them.

During the INSTALL LAURA.4.1 procedure, mAch+prOc identi�es the machine architecture,

and this is in turn re
ected in the �rst de�nition in HEADER.strt, as follows:

#define CRAY ARCHITECTURE

#define SUN ARCHITECTURE

#define SGI ARCHITECTURE

#define CONVEX ARCHITECTURE

9>>>=
>>>;
for machine =

8>>><
>>>:

0

1

2

3

The next de�nition is dependent on ndim:

#define AXISYMMETRIC FLOW

#define TWO DIMENSIONAL FLOW

#define THREE DIMENSIONAL FLOW

9>=
>; for ndim =

8><
>:

1

2

3

This de�nition re
ects the value of ngas:

#define PERFECT GAS

#define EQUILIBRIUM

#define NONEQUILIBRIUM

9>=
>; for ngas =

8><
>:

0

1

2

58

For equilibrium
ow, the value of icrv provides a de�nition:

#define VINOKUR

#define TANNEHILL

)
for icrv =

(
1

2

For nonequilibrium
ow, itherm is re
ected in a de�nition:

#define ONE TEMPERATURE

#define TWO TEMPERATURE

)
for itherm =

(
1

2

The user also has an option for laminar or turbulent
ow (through nturb):

#define LAMINAR FLOW

#define TURBULENT FLOW

)
for nturb =

(
0

1; 2

If turbulent
ow is chosen, there is presently a choice of two models (also available through

nturb):

#define CEBECI SMITH

#define BALDWIN LOMAX

)
for nturb =

(
1

2

If ngas = 2 and ns = 1, then an additional de�nition is created:

#define ONE SPECIES

The last de�nition is a function of igovern and speci�es the governing equations:

#define INVISCID

#define THIN LAYER

#define NAVIER STOKES

9>=
>; for igovern =

8><
>:

0

1

2

NOTE: Although this �le can be modi�ed directly, the user is strongly urged to

make all changes by rerunning PRELUDE and modifying the variable that controls these

de�nitions. This prevents misspellings, but more importantly, the de�nitions of cer-

tain variables are interrelated. For example, if \EQUILIBRIUM" is de�ned, then either

\VINOKUR" or \TANNEHILL" must also be de�ned. Remember, if �le HEADER.strt is

modi�ed, make must be run again to re
ect the new speci�cations.

9.2.2. File algnshk vars.strt

The �le algnshk vars.strt contains a number of parameters that control the implemen-

tation of algnshk.F (section 11.1.1). The default algnshk vars.strt �le is shown below

(screen 37):

59

parameter (recell = 1.) ! cell Re at wall

parameter (jumpflag = 1) ! flag for jump property

parameter (fctrjmp = 1.5) ! factor for jump property

parameter (fsh = .8) ! fraction of grid within shock layer

parameter (fstr = .5) ! fraction of cells in stretch region

parameter (betagrd = 0.) ! stretching function control

C NOTE: ep0 not used if betagrd < 1

parameter (ep0 = 0.) ! no shock clustering

C parameter (ep0 = 25. / 4.) ! recommended max. value

Screen 37.

These parameters should be changed by editing a LOCAL copy of algnshk vars.strt and running

make again.

9.2.3. File gas model vars.strt

The �le gas model vars.strt contains a number of parameters that re
ect LAURA defaults.

The default gas model vars.strt �le for the sample case presented in appendix A is shown

below (screen 38):

parameter (bgas = .4) ! gamma - 1 (used for PG, EQ)

parameter (wgas = 28.86) ! air mol weight (used for PG, EQ)

C:: PERFECT GAS VARIABLE:

parameter (prandtl = .71) ! Prandtl Number

Screen 38.

For nonequilibrium
ows, the perfect gas Prandtl number assignment is replaced with the fol-

lowing
ags in gas model vars.strt (screen 39):

60

C:: NONEQUILIBRIUM FLAGS:

parameter (kmodel = 3) ! kinetic model option (1-5)

parameter (jtype = 0) ! ! wall catalysis option (0-6)

parameter (nsz = 11) ! number of species defined in air.f

parameter (nsp = 16) ! number of collision partners (kinetic)

parameter (nrz = 27) ! number of allowed reactions (kinetic)

Screen 39.

The value of jtype is de�ned by the user in stArt. This value can be modi�ed by rerun-

ning PRELUDE or by editing a LOCAL copy of gas model vars.strt. The other parameters

should be changed by editing a LOCAL copy of gas model vars.strt. Remember, if �le

gas model vars.strt is modi�ed, make must be run again to re
ect the new speci�cations.

9.2.4. File issd assn.strt

The �le issd assn.strt contains the
ag that toggles the solid-state device (SSD) on CRAY

architectures. The default issd assn.strt �le is shown below:

parameter (issd = 0) ! 0=off/1=on for SSD

The value of issd should be changed by editing a LOCAL copy of issd assn.strt and running

make again.

9.2.5. File iupwind assn.strt

The �le iupwind assn.strt contains the
ag that controls which TVD limiter is used. The

default iupwind assn.strt �le is shown below:

parameter (iupwind = 0) ! option (0,1,2) for TVD limiter

The value of iupwind should be changed by editing a LOCAL copy of iupwind assn.strt and

running make again.

9.2.6. File mtaska assn.strt

The �le mtaska assn.strt contains the
ag that toggles the adaptive partitioning of tasks.

The default mtaska assn.strt �le is shown below:

parameter (mtaska = 0) ! adaptive partitioning of tasks

61

The value of mtaska should be changed by editing a LOCAL copy of mtaska assn.strt and

running make again.

9.2.7. File nordbc assn.strt

The �le nordbc assn.strt contains the
ag that controls the spatial accuracy of surface

and out
ow boundary conditions. The default nordbc assn.strt �le is shown below:

parameter (nordbc = 1) ! 1st- or 2nd-order BC

The value of nordbc should be changed by editing a LOCAL copy of nordbc assn.strt and

running make again.

9.2.8. File parameter.strt

This �le parameter.strt contains a number of parameters that re
ect user inputs during

the compilation of laura. The structure of parameter.strt is shown below (screen 40).

parameter (ns = 1) ! air is treated as 1 species for PG, EQ

parameter (neq = 5) ! ...thus, there are 5 governing eqns

parameter (nblocks = 1) ! number of computational blocks

parameter (iaq = 30, ias = iaq + 1) ! block 1: "i"-cells

parameter (jaq = 1, jas = jaq + 1) ! 1: "j"-cells

parameter (kaq = 64, kas = kaq + 1) ! 1: "k"-cells

parameter (isjs = iaq * jas) ! max dimension of sweep plane

parameter (nsrf = 1) ! number of surfaces

parameter (isrf = 30, jsrf = 1) ! max surface dimensions

Screen 40.

The contents and length of (number of entries in) parameter.strt is application-speci�c

and thus will di�er from case to case. In addition to the above entries, the dimensions iaqf and

jaqf are included for full Navier-Stokes calculations. Also, the dimensions maxi, maxj, and maxk

are de�ned for turbulent
ow.

NOTE: The dimensions of each computational block must be speci�ed (e.g., iaq,

jaq, and kaq for Block A and ibq, jbq, and kbq for Block B).

The parameter nsrf de�nes the total number of solid surfaces in all computational blocks. The

parameters isrf and jsrf give the maximum values for the �rst and second indices, respectively,

of any active wall boundary. These parameters, along with iaqf, jaqf, neq, and ns, are de�ned

by stArt based on user inputs. Direct modi�cation by the user via editing a LOCAL version

of parameter.strt is unnecessary and discouraged. Changes to these parameters are best

accomplished through running PRELUDE.

62

The parameter isjs is also de�ned by stArt, based on user inputs. A k-directional sweep is

assumed. If an i- or j-directional sweep will be employed, the value of isjs can be changed by

editing a LOCAL copy of parameter.strt (section 11.3).

PRELUDE should be rerun when the number of computational blocks (nblocks) is to be changed.

This allows stArt to create the appropriate parameters for the block dimensions. The block

dimensions themselves (such as iaq and jaq) also can be changed by editing a LOCAL copy of

parameter.strt.

Remember, if �le parameter.strt is modi�ed, make must be run again to re
ect the new

speci�cations.

9.2.9. File source vars.strt

The �le source vars.strt contains
ags used in �le source.F (nonequilibrium
ows only).

The default source vars.strt �le is shown below:

parameter (imptemp = 1) ! 0=ex/1=implicit T dependence

parameter (icharge = 1) ! toggle for el continuity eqn

These parameters should be changed by editing a LOCAL copy of source vars.strt and running

make again.

9.2.10. File sthrlnd vars.strt

The �le sthrlnd vars.strt contains the coe�cients for sthrlnd.F, which is Sutherland's

law (used for perfect gas
ows only). The default sthrlnd vars.strt �le is shown below:

parameter (v1gas = 1.4643e-6, v2gas = 112.222)

These parameters should be changed by editing a LOCAL copy of sthrlnd vars.strt and running

make again.

NOTE: Remember to use constants that are appropriate for temperature in K.

63

64

Chapter 10

Output From LAURA

In addition to the standard (screen) output, a number of �les are generated during and at the

end of a successful laura run. Information is written to the �les algnshk.out and conv.out

during the laura run. At the conclusion of the run, the �les RESTART.in and TWALL.in are

updated. Next, the �le grid.out is created. The information contained in these �les is discussed

in this chapter. Output from the sample case (appendix A) is shown.

10.1. Screen Output

The LAURA algorithm is executed interactively with the command

laura < data

The progress of an interactive job can be monitored through the output that is written to the

screen (standard output). This output can be redirected to �le lfn with the command:

laura < data > lfn

The standard output for the initial run of the sample case is displayed and discussed in the

pages that follow.

NOTE: In actuality, the contents of a number of �les are echoed to the screen at

the start of a run. The following information is contained in this preamble:

� The contents of �le data

� The contents of �le variabletw (tempbc = 1 only)

� The contents of �le transition (nturb > 0 only)

� The contents of �le ECHOSTRT (section 9)

� A list of any LOCAL or CUSTOM �les used in the compilation

In the interest of brevity, this preamble is not shown here.

The free-stream pressure and similarity parameters (which are calculated based on user inputs)

and the value of the Courant number for this run are output (screen 41):

65

pressure 0.57618E+02 N/m^2

Mach number 17.605

Reynolds number 0.37693E+06

Knudsen number 0.78917E-04

Courant number 0.1E+07

Screen 41.

A header identi�es elements of the main screen output as follows:

tsk task number

blk block number for this task

ms sweep direction (mbk) for this task

iter iteration number

L2 norm running total of L2 norms for all tasks

tsk norm L2 norm for this task

inf norm maximum residual for this task

i, j, k, m index of cell (i,j,k), and equation number (m),

where the maximum residual for this task occurs

time value from system timer

strt lstrt for this task

stop lstop for this task

In addition, as each processor comes on line, the message \CPU number starting" is issued

to the screen (screen 42):

66

tsk blk ms iter L2 norm tsk norm inf norm i j k m time strt stp

CPU number 01 starting

1 1 3 1 1.113E+01 1.113E+01 4.060E-01 7 1 2 1 0.85 1 16

1 1 3 2 3.800E+01 3.800E+01 1.050E+00 6 1 1 1 1.32 1 16

1 1 3 3 1.200E+01 1.200E+01 7.042E-01 5 1 1 1 1.80 1 16

1 1 3 4 2.107E+01 2.107E+01 6.712E-01 7 1 1 1 2.27 1 16

1 1 3 5 9.462E+00 9.462E+00 5.502E-01 5 1 1 1 2.76 1 16

1 1 3 6 1.459E+01 1.459E+01 4.923E-01 9 1 1 1 3.24 1 16

1 1 3 7 7.563E+00 7.563E+00 4.525E-01 7 1 1 1 3.71 1 16

1 1 3 8 1.095E+01 1.095E+01 3.884E-01 10 1 1 1 4.19 1 16

1 1 3 9 6.207E+00 6.207E+00 3.740E-01 7 1 1 1 4.66 1 16

1 1 3 10 8.557E+00 8.557E+00 3.164E-01 11 1 1 1 5.13 1 16

1 1 3 11 5.223E+00 5.223E+00 3.130E-01 8 1 1 1 5.61 1 16

1 1 3 12 6.853E+00 6.853E+00 2.647E-01 12 1 1 1 6.08 1 16

1 1 3 13 4.490E+00 4.490E+00 2.659E-01 9 1 1 1 6.56 1 16

1 1 3 14 5.584E+00 5.584E+00 2.265E-01 13 1 1 1 7.03 1 16

1 1 3 15 3.924E+00 3.924E+00 2.290E-01 10 1 1 1 7.51 1 16

1 1 3 16 4.612E+00 4.612E+00 1.976E-01 15 1 1 1 7.98 1 16

1 1 3 17 3.478E+00 3.478E+00 1.994E-01 11 1 1 1 8.46 1 16

1 1 3 18 3.860E+00 3.860E+00 1.750E-01 16 1 1 1 8.93 1 16

1 1 3 19 3.125E+00 3.125E+00 1.753E-01 13 1 1 1 9.41 1 16

1 1 3 20 3.277E+00 3.277E+00 1.568E-01 17 1 1 1 9.88 1 16

...Grid adjusted after iter = 20

Screen 42.

67

1 1 3 21 3.872E+00 3.872E+00 3.412E-01 18 1 8 1 10.50 1 16

1 1 3 22 2.514E+00 2.514E+00 2.371E-01 18 1 8 1 10.98 1 16

1 1 3 23 1.876E+00 1.876E+00 1.974E-01 10 1 9 1 11.46 1 16

1 1 3 24 2.058E+00 2.058E+00 1.461E-01 11 1 9 1 11.94 1 16

1 1 3 25 1.489E+00 1.489E+00 1.361E-01 10 1 9 1 12.42 1 16

1 1 3 26 1.880E+00 1.880E+00 1.148E-01 14 1 1 1 12.90 1 16

1 1 3 27 1.415E+00 1.415E+00 1.065E-01 14 1 1 1 13.38 1 16

1 1 3 28 1.820E+00 1.820E+00 1.297E-01 20 1 1 1 13.85 1 16

1 1 3 29 1.421E+00 1.421E+00 1.195E-01 20 1 1 1 14.33 1 16

1 1 3 30 1.681E+00 1.681E+00 1.432E-01 22 1 1 1 14.82 1 16

1 1 3 31 1.357E+00 1.357E+00 1.272E-01 22 1 1 1 15.29 1 16

1 1 3 32 1.444E+00 1.444E+00 1.474E-01 24 1 1 1 15.77 1 16

1 1 3 33 1.208E+00 1.208E+00 1.265E-01 24 1 1 1 16.25 1 16

1 1 3 34 1.169E+00 1.169E+00 1.428E-01 26 1 1 1 16.72 1 16

1 1 3 35 1.020E+00 1.020E+00 1.192E-01 25 1 1 1 17.20 1 16

1 1 3 36 9.127E-01 9.127E-01 1.314E-01 27 1 1 1 17.67 1 16

1 1 3 37 8.452E-01 8.452E-01 1.080E-01 27 1 1 1 18.14 1 16

1 1 3 38 7.073E-01 7.073E-01 1.174E-01 27 1 1 1 18.62 1 16

1 1 3 39 7.070E-01 7.070E-01 9.617E-02 27 1 1 1 19.09 1 16

1 1 3 40 5.588E-01 5.588E-01 1.011E-01 28 1 1 1 19.57 1 16

...Grid adjusted after iter = 40

1 1 3 41 2.646E+00 2.646E+00 2.781E-01 16 1 12 1 20.20 1 16

1 1 3 42 1.387E+00 1.387E+00 1.421E-01 17 1 10 1 20.67 1 16

1 1 3 43 1.082E+00 1.082E+00 1.146E-01 11 1 12 1 21.15 1 16

1 1 3 44 7.598E-01 7.598E-01 1.014E-01 28 1 1 1 21.62 1 16

1 1 3 45 6.750E-01 6.750E-01 8.246E-02 28 1 1 1 22.09 1 16

1 1 3 46 5.215E-01 5.215E-01 8.600E-02 29 1 1 1 22.56 1 16

1 1 3 47 5.348E-01 5.348E-01 7.471E-02 9 1 11 1 23.04 1 16

1 1 3 48 4.059E-01 4.059E-01 7.023E-02 29 1 1 1 23.51 1 16

1 1 3 49 4.587E-01 4.587E-01 7.235E-02 9 1 12 1 23.98 1 16

1 1 3 50 3.383E-01 3.383E-01 5.551E-02 9 1 12 1 24.46 1 16

1 1 3 51 4.222E-01 4.222E-01 7.845E-02 9 1 12 1 24.93 1 16

1 1 3 52 3.072E-01 3.072E-01 6.533E-02 9 1 12 1 25.41 1 16

1 1 3 53 4.148E-01 4.148E-01 8.061E-02 9 1 12 1 25.88 1 16

1 1 3 54 3.013E-01 3.013E-01 7.083E-02 9 1 12 1 26.35 1 16

1 1 3 55 4.249E-01 4.249E-01 9.626E-02 8 1 13 1 26.80 1 16

1 1 3 56 3.104E-01 3.104E-01 7.890E-02 8 1 13 1 27.27 1 16

1 1 3 57 4.442E-01 4.442E-01 1.093E-01 9 1 13 1 27.74 1 16

1 1 3 58 3.285E-01 3.285E-01 9.024E-02 9 1 13 1 28.21 1 16

1 1 3 59 4.687E-01 4.687E-01 1.139E-01 9 1 13 1 28.67 1 16

1 1 3 60 3.518E-01 3.518E-01 9.626E-02 9 1 13 1 29.14 1 16

...Grid adjusted after iter = 60

Screen 42. Concluded.

68

As shown, messages are also issued when algnshk.F is called. Here, shock adjustment has

been requested after each 20 iterations. The con�rmation message is \...Grid adjusted after iter

= " (screen 43).

1 1 3 61 8.506E-01 8.506E-01 2.808E-01 15 1 13 1 29.77 1 16

1 1 3 62 5.473E-01 5.473E-01 1.369E-01 15 1 13 1 30.24 1 16

1 1 3 63 6.346E-01 6.346E-01 1.604E-01 15 1 13 1 30.72 1 16

1 1 3 64 4.670E-01 4.670E-01 1.063E-01 15 1 13 1 31.20 1 16

1 1 3 65 6.021E-01 6.021E-01 1.322E-01 15 1 13 1 31.66 1 16

1 1 3 66 4.598E-01 4.598E-01 1.017E-01 15 1 13 1 32.13 1 16

1 1 3 67 6.027E-01 6.027E-01 1.198E-01 15 1 13 1 32.61 1 16

1 1 3 68 4.678E-01 4.678E-01 9.944E-02 15 1 13 1 33.09 1 16

1 1 3 69 6.136E-01 6.136E-01 1.114E-01 10 1 14 1 33.56 1 16

1 1 3 70 4.816E-01 4.816E-01 9.485E-02 15 1 13 1 34.05 1 16

1 1 3 71 6.289E-01 6.289E-01 1.164E-01 15 1 14 1 34.52 1 16

1 1 3 72 4.976E-01 4.976E-01 9.597E-02 15 1 14 1 35.00 1 16

1 1 3 73 6.457E-01 6.457E-01 1.228E-01 15 1 14 1 35.47 1 16

1 1 3 74 5.137E-01 5.137E-01 1.032E-01 15 1 14 1 35.94 1 16

1 1 3 75 6.616E-01 6.616E-01 1.228E-01 15 1 14 1 36.41 1 16

1 1 3 76 5.283E-01 5.283E-01 1.052E-01 15 1 14 1 36.89 1 16

1 1 3 77 6.745E-01 6.745E-01 1.180E-01 15 1 14 1 37.36 1 16

1 1 3 78 5.400E-01 5.400E-01 1.032E-01 15 1 14 1 37.83 1 16

1 1 3 79 6.831E-01 6.831E-01 1.098E-01 15 1 14 1 38.31 1 16

1 1 3 80 5.477E-01 5.477E-01 9.786E-02 15 1 14 1 38.78 1 16

...Grid adjusted after iter = 80

1 1 3 81 9.475E-01 9.475E-01 2.255E-01 24 1 14 1 39.41 1 16

1 1 3 82 6.263E-01 6.263E-01 1.435E-01 24 1 14 1 39.88 1 16

1 1 3 83 7.138E-01 7.138E-01 1.328E-01 23 1 13 1 40.35 1 16

1 1 3 84 5.545E-01 5.545E-01 1.133E-01 23 1 13 1 40.83 1 16

1 1 3 85 6.716E-01 6.716E-01 1.173E-01 23 1 13 1 41.30 1 16

1 1 3 86 5.327E-01 5.327E-01 1.024E-01 23 1 13 1 41.78 1 16

1 1 3 87 6.443E-01 6.443E-01 1.108E-01 16 1 14 1 42.25 1 16

1 1 3 88 5.147E-01 5.147E-01 9.525E-02 17 1 14 1 42.73 1 16

1 1 3 89 6.182E-01 6.182E-01 1.058E-01 17 1 14 1 43.20 1 16

1 1 3 90 4.956E-01 4.956E-01 9.285E-02 17 1 14 1 43.68 1 16

1 1 3 91 5.917E-01 5.917E-01 1.012E-01 23 1 14 1 44.16 1 16

1 1 3 92 4.751E-01 4.751E-01 8.863E-02 18 1 14 1 44.63 1 16

1 1 3 93 5.648E-01 5.648E-01 9.614E-02 23 1 14 1 45.11 1 16

1 1 3 94 4.536E-01 4.536E-01 8.516E-02 18 1 14 1 45.60 1 16

1 1 3 95 5.375E-01 5.375E-01 9.005E-02 23 1 14 1 46.08 1 16

1 1 3 96 4.313E-01 4.313E-01 8.051E-02 19 1 14 1 46.55 1 16

1 1 3 97 5.100E-01 5.100E-01 8.575E-02 16 1 15 1 47.02 1 16

1 1 3 98 4.083E-01 4.083E-01 7.585E-02 19 1 14 1 47.53 1 16

1 1 3 99 4.823E-01 4.823E-01 8.431E-02 16 1 15 1 48.00 1 16

1 1 3 100 3.849E-01 3.849E-01 7.109E-02 16 1 15 1 48.48 1 16

...Grid adjusted after iter = 100

Screen 43.

69

The self-starting feature of LAURA is employed for this sample case. As mentioned in

section 9.1.3, the initial grid contains only one-quarter of the cells speci�ed for the k-direction.

As the shock layer develops, and the residual drops, the number of cells in this direction is

doubled twice. With each doubling, the message \...Grid doubled after iter = " is issued.

After the speci�ed k-direction is achieved, further calls to algnshk.F will be accompanied by a

warning message if the criteria for the cell Reynolds number at the wall is not met. As stated in

section 9.1.3.2, the variable maxmoves controls the number of times algnshk.F is called. When

this value is exceeded, no further calls to algnshk.F are made, and the message \...Turning o�

algnshk after adjustments" is issued. Each of these messages can be viewed in context in

appendix A, where this sample case is discussed further.

As each task �nishes, a con�rmation message is issued:

CPU 1 terminated at 48.64 seconds (after 100 iterations).

Routine taskit.F outputs the integrated surface quantities (screen 44):

Aerodynamic coefficients cx, cy, cz, gy and

mass and energy flux through surfaces

for each of 1 tasks are presented below

No assumption of a half-body computation is

is made here; consequently, cx, cz, and gy

will need to be multiplied by 2 to obtain

the correct aerodynamics when only half of

the body is computed.

integrated surface quantities:

cx = 0.10319546E-01

cy = 0.00000000E+00

cz = 0.13448360E-01

gy = -0.55733500E-02

summdot = 0.32861283E-03

sumheat = -0.10528496E-02

Screen 44.

70

Routine wrapup.F outputs several reference quantities (xcg, zcg, refarea, and reflen) as shown

in screen 45:

x/rflngth = 0.00000000E+00

z/rflngth = 0.00000000E+00

area/rflngth^2 = 0.31415901E+01

length/rflngth = 0.20000000E+01

END ! END ! END ! END ! END ! END ! END ! END ! END ! END

Screen 45.

NOTE: The call to routine outputa.f is currently \commented out." If this ex-

tended output is desired, simply reinstate this call in a LOCAL version of wrapup.

10.2. File algnshk.out

The �le algnshk.out contains information from each call to algnshk.F. This �le is over-

written with each laura run (provided algnshk.F is called). The output for the initial run of

the sample case is displayed (screen 46) and discussed in the pages that follow.

71

...Grid adjusted after iter = 20

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .5489674E-05 .174746 2.212342 4.168002 .004896 (5)

2 1 .5470985E-05 .174609 2.213022 4.169779 .004890 (5)

3 1 .5527656E-05 .175025 2.210968 4.164412 .004908 (5)

4 1 .5630268E-05 .175771 2.207308 4.154848 .004941 (5)

5 1 .5780112E-05 .176844 2.202096 4.141229 .004988 (5)

6 1 .5982895E-05 .178264 2.195280 4.123418 .005050 (5)

7 1 .6246614E-05 .180060 2.186795 4.101244 .005129 (5)

8 1 .6577184E-05 .182235 2.176711 4.074893 .005225 (5)

9 1 .6984580E-05 .184810 2.165040 4.044396 .005339 (5)

10 1 .7481306E-05 .187808 2.151805 4.009813 .005473 (5)

11 1 .8081044E-05 .191242 2.137085 3.971347 .005626 (5)

12 1 .8803757E-05 .195146 2.120900 3.929052 .005803 (5)

13 1 .9672593E-05 .199547 2.103314 3.883098 .006003 (5)

14 1 .1071551E-04 .204471 2.084415 3.833714 .006228 (5)

15 1 .1196553E-04 .209941 2.064320 3.781201 .006481 (5)

16 1 .1346256E-04 .215980 2.043154 3.725892 .006762 (5)

17 1 .1525572E-04 .222617 2.021041 3.668108 .007074 (5)

18 1 .1740257E-04 .229871 1.998128 3.608233 .007418 (5)

19 1 .1997267E-04 .237766 1.974556 3.546637 .007796 (5)

20 1 .2304558E-04 .246317 1.950493 3.483757 .008210 (5)

21 1 .2671226E-04 .255529 1.926113 3.420050 .008660 (5)

22 1 .3106547E-04 .265379 1.901645 3.356112 .009146 (5)

23 1 .3620289E-04 .275833 1.877309 3.292519 .009667 (5)

24 1 .4221089E-04 .286822 1.853358 3.229931 .010220 (5)

25 1 .4915655E-04 .298248 1.830044 3.169010 .010801 (5)

26 1 .5708405E-04 .309998 1.807590 3.110333 .011404 (5)

27 1 .6600447E-04 .321944 1.786181 3.054391 .012023 (5)

28 1 .7591113E-04 .333975 1.765927 3.001463 .012650 (5)

29 1 .8692797E-04 .346152 1.746634 2.951048 .013291 (5)

30 1 .9837127E-04 .357733 1.729310 2.905780 .013904 (5)

Screen 46.

Each call to algnshk.F is annotated with the iteration count at the time of the call through

the message \...Grid adjusted after iter = ." A header identi�es the quantities contained in

this output (screen 46):

i, j station index

hmin1 height (dimension in k-direction) of cell adjacent to wall

norm. dist. normalized distance from surface to outer grid boundary

wall stretch grid stretching factor at the wall

max stretch maximum value of grid stretching factor used in the

stretching region

location normal distance from body to point of maximum grid

stretching (k-index in parentheses)

72

NOTE: The target value for normalized distance is ss1 = 1. A value of less

than unity indicated that the criterion for recell could not be met. In such cases,

algnshk.F stretches the grid by a factor of 1=ss1 to encompass the bow shock. As

a result, the actual value of recell is greater than unity. If recell is of order 10 or

greater, then heating results may be suspect.

...Grid adjusted after iter = 40

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .3131174E-05 .153732 2.328307 4.471033 .004002 (5)

2 1 .3073462E-05 .153089 2.332290 4.481442 .003975 (5)

3 1 .3053028E-05 .152860 2.333721 4.485180 .003966 (5)

4 1 .3046536E-05 .152787 2.334177 4.486374 .003963 (5)

5 1 .3000777E-05 .152267 2.337429 4.494869 .003941 (5)

6 1 .2988069E-05 .152122 2.338341 4.497254 .003935 (5)

7 1 .3026658E-05 .152562 2.335583 4.490047 .003953 (5)

8 1 .3095165E-05 .153332 2.330782 4.477502 .003985 (5)

9 1 .3187141E-05 .154347 2.324522 4.461143 .004027 (5)

10 1 .3320904E-05 .155786 2.315771 4.438275 .004087 (5)

11 1 .3528920E-05 .157941 2.302921 4.404697 .004177 (5)

12 1 .3828609E-05 .160890 2.285834 4.360046 .004302 (5)

13 1 .4074159E-05 .163183 2.272920 4.326299 .004399 (5)

14 1 .4354005E-05 .165677 2.259228 4.290522 .004505 (5)

15 1 .4711490E-05 .168700 2.243113 4.248410 .004634 (5)

16 1 .5175733E-05 .172387 2.224126 4.198796 .004794 (5)

17 1 .5786571E-05 .176890 2.201875 4.140651 .004990 (5)

18 1 .6567679E-05 .182173 2.176993 4.075630 .005222 (5)

19 1 .7450395E-05 .187625 2.152600 4.011889 .005464 (5)

20 1 .8442363E-05 .193224 2.128798 3.949692 .005716 (5)

21 1 .9649611E-05 .199434 2.103756 3.884253 .005997 (5)

22 1 .1117308E-04 .206523 2.076767 3.813727 .006323 (5)

23 1 .1305955E-04 .214403 2.048581 3.740074 .006688 (5)

24 1 .1532536E-04 .222863 2.020242 3.666021 .007085 (5)

25 1 .1806137E-04 .231969 1.991729 3.591513 .007518 (5)

26 1 .2145109E-04 .241988 1.962495 3.515120 .008000 (5)

27 1 .2605639E-04 .253949 1.930186 3.430694 .008582 (5)

28 1 .3138540E-04 .266064 1.900001 3.351817 .009180 (5)

29 1 .3727448E-04 .277881 1.872723 3.280536 .009770 (5)

30 1 .4341805E-04 .288897 1.849009 3.218566 .010326 (5)

Screen 46. Continued.

73

...Grid adjusted after iter = 60

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .3508999E-05 .157739 2.304114 4.407815 .004169 (5)

2 1 .3354738E-05 .156143 2.313620 4.432655 .004102 (5)

3 1 .3344006E-05 .156030 2.314300 4.434431 .004098 (5)

4 1 .3339437E-05 .155982 2.314590 4.435188 .004096 (5)

5 1 .3350345E-05 .156097 2.313898 4.433381 .004100 (5)

6 1 .3404264E-05 .156661 2.310516 4.424542 .004124 (5)

7 1 .3503191E-05 .157680 2.304464 4.408728 .004167 (5)

8 1 .3640314E-05 .159058 2.296386 4.387619 .004224 (5)

9 1 .3796423E-05 .160581 2.287596 4.364650 .004289 (5)

10 1 .3991909E-05 .162426 2.277146 4.337342 .004367 (5)

11 1 .4272193E-05 .164960 2.263126 4.300707 .004474 (5)

12 1 .4685001E-05 .168482 2.244259 4.251406 .004625 (5)

13 1 .5097616E-05 .171784 2.227184 4.206786 .004767 (5)

14 1 .5487607E-05 .174731 2.212417 4.168198 .004895 (5)

15 1 .5779021E-05 .176836 2.202134 4.141326 .004987 (5)

16 1 .6047434E-05 .178709 2.193165 4.117891 .005069 (5)

17 1 .6394840E-05 .181045 2.182201 4.089240 .005172 (5)

18 1 .6905384E-05 .184318 2.167248 4.050166 .005317 (5)

19 1 .7591859E-05 .188455 2.148994 4.002467 .005501 (5)

20 1 .8422231E-05 .193115 2.129250 3.950871 .005711 (5)

21 1 .9356654E-05 .197980 2.109495 3.899251 .005931 (5)

22 1 .1032634E-04 .202675 2.091215 3.851483 .006146 (5)

23 1 .1139707E-04 .207506 2.073150 3.804276 .006368 (5)

24 1 .1272952E-04 .213086 2.053168 3.752060 .006627 (5)

25 1 .1439538E-04 .219506 2.031263 3.694821 .006927 (5)

26 1 .1631982E-04 .226297 2.009260 3.637323 .007248 (5)

27 1 .1871878E-04 .234010 1.985600 3.575498 .007616 (5)

28 1 .2174829E-04 .242811 1.960183 3.509079 .008039 (5)

29 1 .2533116E-04 .252170 1.934827 3.442820 .008495 (5)

30 1 .2964231E-04 .262271 1.909196 3.375843 .008992 (5)

Screen 46. Continued.

74

...Grid adjusted after iter = 80

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .3443899E-05 .157072 2.308067 4.418145 .004141 (5)

2 1 .3344942E-05 .156040 2.314240 4.434276 .004098 (5)

3 1 .3335160E-05 .155936 2.314862 4.435899 .004094 (5)

4 1 .3350440E-05 .156098 2.313892 4.433365 .004100 (5)

5 1 .3385750E-05 .156468 2.311670 4.427559 .004116 (5)

6 1 .3459766E-05 .157235 2.307096 4.415607 .004148 (5)

7 1 .3586949E-05 .158526 2.299488 4.395726 .004202 (5)

8 1 .3762755E-05 .160256 2.289457 4.369513 .004275 (5)

9 1 .3981143E-05 .162326 2.277706 4.338807 .004362 (5)

10 1 .4236447E-05 .164644 2.264856 4.305227 .004461 (5)

11 1 .4544717E-05 .167311 2.250453 4.267592 .004575 (5)

12 1 .4961024E-05 .170713 2.232659 4.221092 .004721 (5)

13 1 .5386835E-05 .173984 2.216117 4.177866 .004863 (5)

14 1 .5902483E-05 .177705 2.197951 4.130398 .005025 (5)

15 1 .6528443E-05 .181919 2.178161 4.078684 .005211 (5)

16 1 .7167620E-05 .185932 2.160043 4.031340 .005389 (5)

17 1 .7747829E-05 .189357 2.145106 3.992305 .005542 (5)

18 1 .8422861E-05 .193118 2.129235 3.950834 .005711 (5)

19 1 .9293064E-05 .197661 2.110768 3.902576 .005917 (5)

20 1 .1031082E-04 .202602 2.091492 3.852207 .006142 (5)

21 1 .1144234E-04 .207703 2.072429 3.802392 .006377 (5)

22 1 .1268032E-04 .212888 2.053863 3.753877 .006617 (5)

23 1 .1402284E-04 .218118 2.035905 3.706950 .006862 (5)

24 1 .1551981E-04 .223546 2.018033 3.660248 .007118 (5)

25 1 .1731760E-04 .229596 1.998973 3.610441 .007405 (5)

26 1 .1948574E-04 .236328 1.978750 3.557596 .007727 (5)

27 1 .2071425E-04 .239910 1.968385 3.530511 .007899 (5)

28 1 .2373317E-04 .248119 1.945602 3.470978 .008297 (5)

29 1 .2726277E-04 .256834 1.922780 3.411340 .008724 (5)

30 1 .3143247E-04 .266164 1.899761 3.351189 .009185 (5)

Screen 46. Continued.

75

...Grid adjusted after iter = 100

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .3029219E-05 .152591 2.335401 4.489572 .003955 (5)

2 1 .2933087E-05 .151489 2.342341 4.507707 .003909 (5)

3 1 .2936879E-05 .151533 2.342063 4.506979 .003911 (5)

4 1 .2960495E-05 .151806 2.340337 4.502469 .003922 (5)

5 1 .3003706E-05 .152301 2.337219 4.494321 .003943 (5)

6 1 .3081789E-05 .153183 2.331710 4.479927 .003979 (5)

7 1 .3205760E-05 .154550 2.323279 4.457895 .004036 (5)

8 1 .3374143E-05 .156346 2.312398 4.429461 .004111 (5)

9 1 .3584373E-05 .158500 2.299639 4.396121 .004201 (5)

10 1 .3842867E-05 .161026 2.285059 4.358021 .004307 (5)

11 1 .4162814E-05 .163986 2.268471 4.314673 .004433 (5)

12 1 .4581392E-05 .167620 2.248814 4.263307 .004588 (5)

13 1 .5011667E-05 .171112 2.230609 4.215737 .004738 (5)

14 1 .5448393E-05 .174442 2.213848 4.171937 .004883 (5)

15 1 .5972503E-05 .178192 2.195623 4.124314 .005047 (5)

16 1 .6650755E-05 .182708 2.174544 4.069232 .005246 (5)

17 1 .7315495E-05 .186823 2.156110 4.021062 .005429 (5)

18 1 .7972187E-05 .190633 2.139664 3.978085 .005599 (5)

19 1 .8791758E-05 .195083 2.121156 3.929722 .005800 (5)

20 1 .9810880E-05 .200221 2.100679 3.876214 .006033 (5)

21 1 .1100337E-04 .205769 2.079562 3.821031 .006288 (5)

22 1 .1234660E-04 .211527 2.058660 3.766412 .006554 (5)

23 1 .1386875E-04 .217536 2.037866 3.712074 .006835 (5)

24 1 .1561514E-04 .223879 2.016961 3.657447 .007133 (5)

25 1 .1764181E-04 .230639 1.995773 3.602080 .007454 (5)

26 1 .2002684E-04 .237925 1.974096 3.545436 .007804 (5)

27 1 .2206557E-04 .243682 1.957754 3.502732 .008082 (5)

28 1 .2543164E-04 .252418 1.934175 3.441117 .008507 (5)

29 1 .2930744E-04 .261525 1.911032 3.380641 .008955 (5)

30 1 .3366429E-04 .270807 1.888812 3.322577 .009416 (5)

Screen 46. Concluded.

76

10.3. File conv.out

The �le conv.out contains a running convergence history for the laura runs within the

LOCAL directory. With each laura run, new information is appended to this �le. The output for

the initial run of the sample case is displayed and discussed in the pages that follow.

A header identi�es the quantities contained in this output:

tsk task number

iter iteration number

L2 norm running total of L2 norms for all tasks

time CPU time, s

In addition, surface pressure values at two stations are output for each iteration (screen 47).

NOTE: For viscous calculations, surface heating is output at these same stations.

body pressure body heating

tsk iter residual time(sec) (stag) (end) (stag) (end)

1 1 .111251E+02 0.490 .576182E-02 .576182E-02 0. 0.

1 2 .380023E+02 0.960 .731007E-02 .577053E-02 -.123807E-05 -.382043E-07

1 3 .119971E+02 1.440 .182999E-01 .580280E-02 -.177536E-04 -.107455E-06

1 4 .210671E+02 1.910 .310216E-01 .584124E-02 -.248138E-04 -.175231E-06

1 5 .946205E+01 2.400 .522144E-01 .593069E-02 -.358498E-04 -.298696E-06

1 6 .145876E+02 2.880 .744622E-01 .602070E-02 -.357327E-04 -.413637E-06

1 7 .756324E+01 3.350 .106214 .617230E-02 -.486654E-04 -.597005E-06

1 8 .109528E+02 3.830 .137500 .631392E-02 -.477209E-04 -.760025E-06

1 9 .620669E+01 4.300 .180147 .652168E-02 -.611696E-04 -.997261E-06

1 10 .855677E+01 4.770 .219581 .670997E-02 -.596799E-04 -.120258E-05

1 11 .522298E+01 5.250 .271032 .696753E-02 -.727976E-04 -.148395E-05

1 12 .685348E+01 5.720 .316603 .719903E-02 -.706604E-04 -.172464E-05

1 13 .448989E+01 6.200 .374367 .750296E-02 -.825884E-04 -.204073E-05

1 14 .558383E+01 6.670 .423743 .777719E-02 -.797326E-04 -.231121E-05

1 15 .392410E+01 7.150 .485712 .812735E-02 -.898725E-04 -.265473E-05

1 16 .461184E+01 7.620 .536903 .844679E-02 -.865855E-04 -.295223E-05

1 17 .347849E+01 8.100 .600625 .884606E-02 -.946827E-04 -.331940E-05

1 18 .385990E+01 8.570 .651774 .921598E-02 -.914467E-04 -.364512E-05

1 19 .312473E+01 9.050 .713986 .966994E-02 -.975128E-04 -.403683E-05

1 20 .327746E+01 9.520 .762802 .100980E-01 -.947210E-04 -.439681E-05

1 21 .387234E+01 10.140 .819925 .106146E-01 -.320804 -.672383E-03

1 22 .251388E+01 10.620 .664872 .115725E-01 -.145658 -.908540E-03

1 23 .187591E+01 11.100 .625742 .111105E-01 -.108364 -.743926E-03

1 24 .205793E+01 11.580 .644236 .106750E-01 -.931990E-01 -.602291E-03

1 25 .148929E+01 12.060 .658604 .104534E-01 -.798007E-01 -.500528E-03

Screen 47.

NOTE: The pressure and heating output for this �le is for Surface #1, assuming

the following:

� i = 1 for the stagnation line

77

� i = iaq at the aftmost point of the body

� j = jaq is the leeside symmetry plane

� k = 1 is the body surface

If these assumptions are true, then the output contains leeside values at the stagna-

tion and body-end locations. This output can be altered in a LOCAL version of �le

swptask.F (screen 48).

1 26 .187973E+01 12.540 .685238 .104241E-01 -.742116E-01 -.448847E-03

1 27 .141504E+01 13.020 .712985 .105541E-01 -.691393E-01 -.411082E-03

1 28 .182014E+01 13.490 .741987 .107443E-01 -.661469E-01 -.391369E-03

1 29 .142090E+01 13.970 .779123 .111720E-01 -.646882E-01 -.390305E-03

1 30 .168131E+01 14.460 .812621 .115689E-01 -.629977E-01 -.387193E-03

1 31 .135707E+01 14.930 .855967 .122886E-01 -.630703E-01 -.411887E-03

1 32 .144442E+01 15.410 .892370 .128973E-01 -.620696E-01 -.420021E-03

1 33 .120762E+01 15.890 .936180 .138827E-01 -.624471E-01 -.463032E-03

1 34 .116881E+01 16.360 .971330 .146829E-01 -.617338E-01 -.479173E-03

1 35 .102043E+01 16.840 1.00944 .158844E-01 -.617355E-01 -.534729E-03

1 36 .912701E+00 17.310 1.03906 .168356E-01 -.610563E-01 -.556667E-03

1 37 .845157E+00 17.780 1.06690 .181956E-01 -.603972E-01 -.620733E-03

1 38 .707287E+00 18.260 1.08814 .192521E-01 -.596093E-01 -.647104E-03

1 39 .706961E+00 18.730 1.10360 .207174E-01 -.582580E-01 -.717083E-03

1 40 .558819E+00 19.210 1.11545 .218388E-01 -.572949E-01 -.747088E-03

1 41 .264632E+01 19.840 1.11871 .233640E-01 -.149085 -.180440E-02

1 42 .138680E+01 20.310 .990941 .227179E-01 -.877278E-01 -.121301E-02

1 43 .108160E+01 20.790 .975642 .234899E-01 -.705461E-01 -.110537E-02

1 44 .759772E+00 21.260 .995075 .244906E-01 -.628068E-01 -.105261E-02

1 45 .675046E+00 21.730 1.01105 .261073E-01 -.582437E-01 -.113698E-02

1 46 .521515E+00 22.200 1.02706 .273711E-01 -.557855E-01 -.116241E-02

1 47 .534753E+00 22.680 1.03041 .290843E-01 -.525408E-01 -.128204E-02

1 48 .405861E+00 23.150 1.03411 .303302E-01 -.507998E-01 -.132489E-02

1 49 .458732E+00 23.620 1.02696 .319379E-01 -.477138E-01 -.144554E-02

1 50 .338284E+00 24.100 1.02335 .330659E-01 -.461257E-01 -.149167E-02

1 51 .422194E+00 24.570 1.01128 .344691E-01 -.432762E-01 -.160161E-02

1 52 .307171E+00 25.050 1.00451 .354251E-01 -.418525E-01 -.164569E-02

1 53 .414815E+00 25.520 .991727 .365875E-01 -.394433E-01 -.174167E-02

1 54 .301292E+00 25.990 .984499 .373586E-01 -.382823E-01 -.178186E-02

1 55 .424912E+00 26.440 .973628 .382930E-01 -.363805E-01 -.186485E-02

1 56 .310424E+00 26.910 .967772 .388980E-01 -.354510E-01 -.190109E-02

1 57 .444238E+00 27.380 .960182 .396481E-01 -.340157E-01 -.197423E-02

1 58 .328462E+00 27.850 .956560 .401247E-01 -.332922E-01 -.200740E-02

1 59 .468710E+00 28.310 .952188 .407444E-01 -.322725E-01 -.207419E-02

1 60 .351790E+00 28.780 .950565 .411335E-01 -.317431E-01 -.210541E-02

Screen 48.

NOTE: The evaluation of surface-property convergence histories at key stations

provides the user a measure of overall solution quality.

78

1 61 .850596E+00 29.410 .948460 .416678E-01 -.286832E-01 -.344605E-02

1 62 .547339E+00 29.880 .948563 .417388E-01 -.284228E-01 -.339051E-02

1 63 .634605E+00 30.360 .948449 .410546E-01 -.280350E-01 -.303522E-02

1 64 .467012E+00 30.840 .949105 .409112E-01 -.278070E-01 -.287296E-02

1 65 .602136E+00 31.300 .948940 .413617E-01 -.274168E-01 -.281162E-02

1 66 .459770E+00 31.770 .949398 .418904E-01 -.271860E-01 -.277444E-02

1 67 .602692E+00 32.250 .948551 .425978E-01 -.267535E-01 -.280622E-02

1 68 .467766E+00 32.730 .948434 .431159E-01 -.265035E-01 -.281138E-02

1 69 .613552E+00 33.200 .946742 .436512E-01 -.260277E-01 -.285886E-02

1 70 .481572E+00 33.690 .945992 .439743E-01 -.257603E-01 -.287497E-02

1 71 .628930E+00 34.160 .943582 .442799E-01 -.252590E-01 -.291761E-02

1 72 .497649E+00 34.640 .942315 .444268E-01 -.249838E-01 -.293502E-02

1 73 .645697E+00 35.110 .939434 .445511E-01 -.244791E-01 -.296840E-02

1 74 .513746E+00 35.580 .937832 .445759E-01 -.242066E-01 -.298386E-02

1 75 .661562E+00 36.050 .934748 .445759E-01 -.237177E-01 -.300797E-02

1 76 .528288E+00 36.530 .933003 .445233E-01 -.234567E-01 -.302049E-02

1 77 .674542E+00 37.000 .929956 .444426E-01 -.229982E-01 -.303656E-02

1 78 .539965E+00 37.470 .928232 .443426E-01 -.227547E-01 -.304610E-02

1 79 .683141E+00 37.950 .925408 .442109E-01 -.223357E-01 -.305567E-02

1 80 .547736E+00 38.420 .923830 .440827E-01 -.221133E-01 -.306261E-02

1 81 .947471E+00 39.050 .921340 .439193E-01 -.196904E-01 -.288311E-02

1 82 .626324E+00 39.520 .920000 .438014E-01 -.195132E-01 -.289676E-02

1 83 .713803E+00 39.990 .918149 .436628E-01 -.192458E-01 -.290991E-02

1 84 .554506E+00 40.470 .917174 .435304E-01 -.190964E-01 -.291886E-02

1 85 .671584E+00 40.940 .915432 .433683E-01 -.188434E-01 -.292608E-02

1 86 .532733E+00 41.420 .914459 .432243E-01 -.187013E-01 -.293225E-02

1 87 .644253E+00 41.890 .912434 .430440E-01 -.184372E-01 -.293489E-02

1 88 .514715E+00 42.370 .911200 .428909E-01 -.182908E-01 -.293897E-02

1 89 .618159E+00 42.840 .909047 .426969E-01 -.180330E-01 -.293804E-02

1 90 .495591E+00 43.320 .907726 .425373E-01 -.178930E-01 -.294051E-02

1 91 .591651E+00 43.800 .906105 .423334E-01 -.176850E-01 -.293673E-02

1 92 .475097E+00 44.270 .905235 .421696E-01 -.175700E-01 -.293793E-02

1 93 .564757E+00 44.750 .904807 .419585E-01 -.174521E-01 -.293179E-02

1 94 .453562E+00 45.240 .904838 .417919E-01 -.173834E-01 -.293193E-02

1 95 .537530E+00 45.720 .905790 .415754E-01 -.173611E-01 -.292377E-02

1 96 .431251E+00 46.190 .906793 .414069E-01 -.173407E-01 -.292300E-02

1 97 .510013E+00 46.660 .908774 .411863E-01 -.173840E-01 -.291307E-02

1 98 .408316E+00 47.170 .910439 .410167E-01 -.173953E-01 -.291151E-02

1 99 .482306E+00 47.640 .912810 .407933E-01 -.174585E-01 -.290007E-02

1 100 .384926E+00 48.120 .914660 .406232E-01 -.174777E-01 -.289783E-02

Screen 48. Concluded.

79

10.4. File grid.out

The �le grid.out contains information about grid resolution at each surface de�ned by the

user. This �le is overwritten at the conclusion of each laura run. The output for the initial run

of the sample case is displayed and discussed here.

Each surface of each computational block has its own section, which is annotated with the

number of cells normal to the body through the message \Block , Surface (cells normal to

body)." A header identi�es the quantities contained in the following output (screen 49):

i, j station index

dh w height (dimension in k-direction) of cell adjacent

to wall

Recell w value of cell Reynolds number (recell) at the

wall for this station

max stretch maximum value of grid stretching factor used in

the stretching region (k-index of location in

parentheses)

y+ w value of normal coordinate parameter (y+) at

the wall for this station (nturb 6= 0 only)

80

Block 1, Surface 1

(16 cells normal to body)

i j dh w Recell w max. stretch

1 1 .321195E-05 6.958525 4.49 (6)

2 1 .328374E-05 7.247622 4.50 (6)

3 1 .338243E-05 7.303569 4.51 (6)

4 1 .348394E-05 7.302690 4.50 (6)

5 1 .359983E-05 7.295987 4.49 (6)

6 1 .374088E-05 7.284156 4.48 (6)

7 1 .389317E-05 7.222345 4.46 (6)

8 1 .407609E-05 7.150728 4.43 (6)

9 1 .429236E-05 7.064906 4.39 (6)

10 1 .457386E-05 6.984239 4.36 (6)

11 1 .497868E-05 6.957453 4.31 (6)

12 1 .551343E-05 6.928688 4.26 (6)

13 1 .610366E-05 6.945080 4.21 (6)

14 1 .665580E-05 6.854008 4.17 (6)

15 1 .737871E-05 6.824148 4.12 (6)

16 1 .818040E-05 6.740974 4.07 (6)

17 1 .903207E-05 6.585194 4.02 (6)

18 1 .987771E-05 6.303515 3.97 (6)

19 1 .111265E-04 6.146283 3.93 (6)

20 1 .125892E-04 5.961880 3.87 (6)

21 1 .144564E-04 5.827547 3.82 (6)

22 1 .166364E-04 5.676118 3.76 (6)

23 1 .191056E-04 5.484815 3.71 (6)

24 1 .221322E-04 5.323339 3.65 (6)

25 1 .258567E-04 5.191367 3.60 (6)

26 1 .302151E-04 5.039758 3.55 (6)

27 1 .352713E-04 5.029430 3.49 (6)

28 1 .418457E-04 4.834682 3.44 (6)

29 1 .498752E-04 4.627432 3.38 (6)

30 1 .587542E-04 4.395599 3.33 (6)

Screen 49.

81

10.5. Post-Processing Files

Six �les that allow graphical presentation of results are created at the conclusion of every

LAURA run. These �les are in PLOT3D format, but they can be easily converted to TecplotTM

format (ref. 27). The �les flow1.g and surf1.g contain the volume grid and surface grid,

respectively, written in a multiblock format (even when only one block is present).

The �le flow1.q contains the nondimensional values of density, u-, v-, and w-components of

velocities (in the x-, y-, and z-directions, respectively), and pressure.

NOTE: Although computations are performed at cell centers by laura, the values

in the �le flow1.q have been interpolated/extrapolated to cell corners for the entire

volume grid.

NOTE: If the �le RESTART.in is produced by PRELUDE, the initial values of these

ow �eld variables are written to �les flow0.g and flow0.q. This is also the case if

INITIALIZE is used to initialize an externally generated grid.

The �le flow2.q contains the translational and vibrational temperatures [K], the nondimensional

total enthalpy, the Mach number, and the ratio of frozen speci�c heats interpolated/extrapolated

to cell corners for the entire volume grid. Any other computed quantity can be substituted in

routine plotprep.F.

The �rst two entries of �le surf1.q are p and q, the surface pressure [lbf/ft2] and heating

rate [Btu/ft2-s], respectively. For viscous (igovern 6= 0), radiative equilibrium wall temperature

(tempbc = 2)
ows, the last three entries are the:

� surface temperature, K

� radiative equilibrium wall temperature, based on the local heating rate and an assumed

emissivity of 0.9

� relative di�erence between the actual wall temperature and the radiative equilibrium wall

temperature

Otherwise (for inviscid and/or �xed wall temperature
ows), the last three entries are p=pmax,

q=qmax, and p=p1. The �rst three entries of �le surf2.q are the x-, y-, and z-components of

the shear stress on the body surface. The fourth entry is the total shear stress, and the �fth is

the coe�cient of skin friction.

To convert these �les to TecplotTM format, use the command

preplot in�le -plot3d -f -m -3dw

along with the desired -ip, -jp, or -kp instructions (ref. 27), where

in�le =

8>>><
>>>:

flow1

flow2

surf1

surf2

NOTE: The command preplot is a preprocessor that is part of the TecplotTM

package.

82

Chapter 11

Advanced Applications

11.1. Grid Orientation

Although not a requirement, in hypersonic blunt-body applications, the origin of the coordi-

nate system generally sits at or near the stagnation point on the body, with the z-axis pointing

out from the body toward the oncoming
ow, as shown in �gure 2.1. The y = 0 plane de�nes

the symmetry plane. Lifting-body applications retain this orientation, with the origin of the

coordinate system at or near the vehicle stagnation point, the z-axis pointing out from the nose,

against the
ow, and the negative z-axis typically running through the interior of the vehicle.

Computational coordinates (�, �, �) run in the direction of increasing i-, j-, and k-indices,

respectively, as shown in �gure 2.2. The vehicle surface grid is usually de�ned by the k = 1 plane

because the shock alignment and cell-doubling features of LAURA require that the k-coordinate

be in the body-normal direction.

Axisymmetric and two-dimensional
ows are computed with three-dimensional grids, which

contain a single j-plane of cell centers and two j-planes of cell walls. A representative axisym-

metric surface grid (k = 1) is presented in �gure 11.1. The pie-shaped cut is bounded by the

j = 1 plane (negative y-coordinate) and the j = 2 plane (positive y-coordinate). The i index

equals 1 at the axis ([x; y] = [0; 0]) and increases from there toward the end of the body. The

j-planes are rotated �2:5 deg around the z-axis relative to the y = 0 plane for a total included

angle of 5 deg. In the case of a two-dimensional con�guration, the j-planes are o�set from the

y = 0 plane by �1 unit. The volume grid is constructed by de�ning rays normal to the body

in the y = 0 plane and rotating �2:5 deg for axisymmetric geometries or o�setting �1 unit for

two-dimensional geometries. This orientation is the only one permitted for axisymmetric and

two-dimensional
ows.

A representative three-dimensional surface grid (k = 1) is presented in �gure 11.2. The j = 1

plane de�nes the upper (leeside) plane of symmetry. The j = jblknblk plane de�nes the lower

(windside) plane of symmetry. The i = 1 index de�nes the axis and increases from there toward

the out
ow boundary at i = iblknblk.

The two examples presented above contain an axis singularity (cell wall with zero area).

Grids can be created which remove the singularity at the nose at the expense of creating skewed

cells on the out
ow boundary. A representative, singularity free surface grid for a blunted

geometry is presented in �gures 11.3 to 11.5. In this example, the j = 1 plane de�nes the plane

of symmetry. The j = jblknblk plane de�nes the out
ow boundary from approximately 45 deg to

135 deg around the center of the base (�g. 11.4). The i = 1 plane de�nes the out
ow boundary

from the symmetry plane (0 deg) to the beginning of the j = jblknblk plane. The i = iblknblk
plane de�nes the out
ow boundary from the end of the j = jblknblk plane to the symmetry plane

83

X Y

Z

j = 1

j = 2

i = iblk1

i = 1

Figure 11.1. Surface grid on 70-deg spherically capped cone with rounded shoulder.

X

YZ

j = 1

j = jblk1

i = iblk1

i = 1

Figure 11.2. Surface grid on nose of Space Shuttle.

84

-100 -50 0
-80

-60

-40

-20

0

20

x, in.

y, in.

45o135o

j = 1

i = 1

i = iblk1

j = jblk1

50

Figure 11.3. Projection of singularity free surface grid over blunt body on xy-plane.

-100 -50 0
-80

-60

-40

-20

0

20

x, in.

z, in.

45o

135o

50

Detail

Figure 11.4. Projection of singularity free surface grid over blunt body on xz-plane.

180 deg around the base. The surface grid cells on the out
ow boundary at the 45-deg and

135-deg locations appear triangular. (See the inset of �g. 11.4.) In fact, one face is composed of

two families of coordinate lines.

11.1.1. Boundary-Layer and Shock Grid Adaption

Resolution of the captured bow shock is required to evaluate the in
uence of thermochem-

ical nonequilibrium on radiative heating. Bow-shock resolution is potentially as important to

85

XY

Z

Figure 11.5. Singularity free surface grid over blunt body.

accurate radiative heating predictions as boundary-layer resolution is to convective heating pre-

dictions. Consequently, a simple algebraic grid adaption routine is used to distribute computa-

tional cells across the shock layer according to four quantities (recellw, fstr, ep0, and fsh) which

are discussed below.

First, the cell size at the body is set to yield a speci�ed cell Reynolds number (recellw) where

recell =
�a�s

�

and �s is the cell height. Second, the fraction of cells available for boundary-layer resolution fstr

is speci�ed. Third, the concentration of cells at the shock front is controlled with the parameter

ep0. Fourth, the outer boundary is adjusted to force the location of the captured shock in

physical space to lie at a constant fraction fsh of the length of the �-coordinate line extending

from the body, across the boundary layer and shock, and to the free-stream in
ow boundary.

The shock location is de�ned by the �rst point with a local property that exceeds its free-stream

value by a speci�ed amount.

Let s
[1]
i;j(k) denote the present (superscript [1]) arc length from the body surface to the kth

cell center along a �-coordinate line de�ned by K cells, where k � K. For simplicity, we drop

the i; j subscripts in subsequent notation, but keep in mind that this procedure is followed for

each �-coordinate line. Let

ŝ(k) =
s[2](k)

s[1](K)

denote the nondimensional length of the adapted grid (superscript [2]) along the �-coordinate

line, and let

�ŝ(k) = ŝ (k+)� ŝ (k�)

where

k+ = k +
1

2
and k� = k � 1

2

The fractional values (k � 1
2) refer to cell edges.

86

First, a transformation to resolve the boundary layer is de�ned. De�ne the nondimensional

height of the �rst cell by

�ŝ(1) =
recellw�(1)

�(1)a(1)s[1](K)
(11:1)

The height of the next kstr cells (kstr = fstr K) is de�ned by

�ŝ(k) = min

8>>>><
>>>>:

�
1 + C sin

�
[k � 1]�

kstr � 1

��
�ŝ(k � 1)

1� ŝ (k�)

K + 1� k

(11:2)

where

C =

�
fstr

�ŝ(1)

� 1

kstr � 1 (11:3)

This function provides a cell growth factor of 1 at k = 1 and k = kstr and a maximum growth

factor equal to 1 + C at k = kstr=2. It also precludes the nondimensional arc length ŝ (K+)

from exceeding 1 by limiting the continued application of cell growth factors, if necessary. The

remaining cells extending past k = kstr are equally spaced, thus

�ŝ(k) = �ŝ(k � 1)

for k > kstr. The distribution in ŝ is obtained by summation,

ŝ (k+) =
kX
l=1

�ŝ(l) (11:4)

The stretching function de�ned above is designed to yield a value of ŝ (K+) = O(1) with con-

tinuous �rst derivatives of the cell growth factor. An additional renormalization,

ŝ (k+)
ŝ (k+)

ŝ (K+)

forces the distribution to span 0 and 1 even when the ŝ (K+) < 1.

NOTE: This renormalization will increase the e�ective cell Reynolds number, pos-

sibly beyond the range where boundary-layer resolution is adequate for heat transfer

predictions. A warning message is written to standard output when the criteria for

recellw is not satis�ed. Cell Reynolds number information along the body is located

in output �le grid.out, which is created by wrapup.F. Values of recell across the

entire shock layer also can be viewed in the column labeled \Re cell" of the output

generated by outputa.F. This routine is not generally called, but can be engaged by

removing the comment from the call statement in wrapup.F.

NOTE: Users should rely on grid re�nement studies as the primary tool for evalu-

ating resolution quality.

A second transformation to ~s (k+) is designed to pull points toward the ~s = fsh location to

resolve the shock front

~s (k+) = [1� ep (k+)] ŝ (k+) + fsh ep (k+) (11:5)

87

where

ep (k+) = ŝ2 (k+) [1� ŝ (k+)] ep0 (11:6)

The weighting here is designed to give very little change in the near-wall grid distribution and

preserve the domain 0 � ~s � 1. Because ŝ2 << ŝ when ŝ is close to 0 (near the wall), the

value of ep is also very small, and the grid in the near wall region is hardly disturbed by this

new mapping. In a similar manner, grid points near the in
ow boundary (where ŝ is close to

1) are also protected from large movements by keeping the value of ep small with the factor

[1� ŝ (k+)]. The magnitude of ep0 is limited to keep the grid from folding back over itself in

the vicinity of fsh as mesh points are mapped into this region.

The third and �nal transformation returns dimensionality to the distribution. A scale factor

is applied which adjusts the outer boundary such that the captured shock lies a constant fraction

fsh of the distance s (K+) between the body and the outer boundary. Thus,

s[2](k) =
s[1](�)~s(k)

fsh
(11:7)

where s[1](�) is the location on the original grid where the captured shock is �rst sensed according
to criteria discussed earlier.

NOTE: In some cases, it is advantageous to adjust the outer boundary to force a

speci�ed distance between it and the captured shock. A simple rede�nition of fsh for

each coordinate line can accomplish this goal.

Interpolation and extrapolation are used to map the values of ~x
n
s
[1]
i;j (k+)

o
to ~x

n
s
[2]
i;j (k+)

o
,

where ~x is the vector of the Cartesian coordinates.

The shock location keys on the �rst point in from the free-stream in
ow boundary, which

satis�es the criterion

fctrjmp� proprty1 � proprty < �1� 10�6

where

proprty =

8><
>:

p (jump
ag = 1)

� (jump
ag = 2)

T (jump
ag = 3)

NOTE: Specifying jump
ag = 0 �xes the outer boundary at its current position.

With both the body surface and the outer grid boundaries �xed, algnshk.F simply

adjusts the cell distribution between them.

By default, LAURA uses pressure (p) to determine the shock position. However, limited

tests discussed in reference 17 indicate that pressure is not always the best choice, and other

options are provided for the user's convenience through the parameter jump
ag.

Another option for controlling mesh spacing across the shock layer will be employed when

the parameter betagrd is set greater than 1. In this case, equations 11.1 to 11.4 are replaced by

a simpler stretching function de�ned by

ŝ (k+) = 1 � betagrd

�
bz � 1

bz + 1

�

where

bz =

�
betagrd+ 1

betagrd� 1

�K+�k+

K+�1

88

k = 1

k = 32

k = 64

Figure 11.6. Detail of adapted grid and density contours in symmetry plane that shows enhanced

resolution of the captured bow shock.

Table 11.1. Block Indices

block A B C D E G

nblk 1 2 3 4 5 6

The parameters for controlling grid distribution across the shock layer are de�ned in

algnshk vars.strt. Default values for LAURA are as follows:

recellw = 1:0

jump
ag = 1

fctrjmp = 1:5

fsh = 0:8

fstr = 0:5

betagrd = 0:0

ep0 = 0:0

These values can be changed in a LOCAL copy of algnshk vars.strt, which can be created using

the LOCALIZE command (appendix K).

NOTE: Since ep0 = 0, the default gridding yields no clustering at the shock.

In calculations discussed in reference 17, the best resolution of the shock front was obtained by

keying on the �rst point in from the free stream where local density exceeded 1:5�1 (jump
ag =

2 and fctrjmp = 1:5) to sense shock location, in conjunction with setting recellw = 1:0 and

ep0 = 25=4 (which clusters cells about the shock). The values used for that case were fstr = 0:5

and fsh = 0:8. A representative grid that employs these mappings is shown in �gure 11.6.

11.2. Multiple Computational Blocks

A computational block is a rectangularly ordered array of cells de�ning all or part of the

solution domain. Six computational blocks are permitted in LAURA. Their designations are A,

B, C, D, E, and G. As shown in table 11.1, these blocks have nblk values of 1, 2, 3, 4, 5, and 6,

respectively.

89

NOTE: The natural designation of F for the sixth block is already occupied for

other purposes.

Block-to-block connections assume simple extensions of the running index. For example, the

i = iblknblk plane of Block X (X = A, B, C, D, E, G) can be coincident with the i = 1 plane of any

block. Further, the i = 1 plane of Block Y (Y = A, B, C, D, E, G; X 6= Y) can be coincident with

the i = iblknblk plane of any block. More complex connections are not provided in this release.

For example, the i = 1 plane cannot be coincident with the j- or k-plane of any other block nor

can it coincide with the i = 1 plane of any other block. Also, any pair of blocks can share, at

most, one boundary. Similar restrictions apply to j- and k-plane connections.

Multiple computational blocks can be used to de�ne the
ow �eld over complex con�gu-

rations. In many instances the solution can be generated on a block-by-block basis; the nose

region is solved �rst, and the windside and leeside blocks are solved subsequently. This approach

reduces computational time and memory requirements by a factor of 10 or more. The solution

state at the last, out
ow plane of one block can be injected into the next downstream block for

initialization. Further details on this approach are found in reference 28 and in appendix G.

The grid alignment capability in LAURA also can be used in the multi-block marching

mode. A single block solution over the nose region can be grid aligned in the standard way.

Grid alignment can be used in subsequent windside blocks under the special conditions that

follow:

1. Block A is a single plane of cells (iblk1 = 1) taken from the converged upstream block at

or near its out
ow boundary.

2. Block B de�nes the windside region to be solved and the in
ow plane of Block B coincides

with the out
ow plane of Block A.

3. Only one active task, which is assigned to Block B exists.

Boundary conditions for Block B are as follows:

1. Shared boundary at i = 1 with Block A

2. Out
ow boundary at i = iblk2

3. Out
ow (side
ow) boundary at j = 1

4. Plane of symmetry (no yaw) at j = jblk2

5. Wall at k = 1

6. Free stream at k = kblk2

LAURA will assume this con�guration if nblocks = 2 (in parameter.strt) and movegrd > 0 (in

data).

Grid alignment can be used in subsequent leeside blocks under the following special

conditions:

1. Block A is a single plane of cells (iblk1 = 1) taken from the converged upstream block at

or near its out
ow boundary.

2. Block B is a single plane of cells (jblk2 = 1) taken from the converged windside block

bounding the leeside block.

90

3. Block C de�nes the leeside region to be solved, and the in
ow plane of Block C coincides

with the out
ow plane of Block A and the side
ow plane of Block B.

4. Only one active task, which is assigned to Block C, exists.

Boundary conditions for Block C are as follows:

1. Shared boundary at i = 1 with Block A

2. Out
ow boundary at i = iblk3

3. Plane of symmetry (no yaw) at j = 1

4. Shared side
ow boundary with Block B at j = jblk3

5. Wall at k = 1

6. Free stream at k = kblk3

LAURA will assume this con�guration if nblocks = 3 (in parameter.strt) and movegrd > 0 (in

data).

NOTE: Users are cautioned that the very simpli�ed, one-dimensional approach used

for grid movement can introduce unacceptable grid skewness over complex con�gu-

rations. Experienced users may �nd that it is possible to modify code in algnshk.F

and/or algnshk vars.strt to tailor alignment speci�cations and/or block orienta-

tions to suit their own applications.

11.3. Sweeping Options

The relaxation algorithm in LAURA updates the solution in a computational plane using the

latest available data at neighboring planes and boundaries. For any cell within the computational

plane, the relaxation process is a Jacobian function with respect to other cells in the plane and

a Gauss-Seidel function with respect to cells in neighboring planes and boundaries. The global

solution is obtained by sweeping across the domain, forward and backward, one plane at a time

until the solution is converged.

In viscous hypersonic
ow problems, the boundary layer is usually the slowest to converge,

and sweeping strategies that pass across the boundary layer (using optimal viscous relaxation

factors) provide the best convergence speeds in LAURA (ref. 18). A discussion of the viscous

relaxation factor (rfvis) is presented at the end of section 9.1.3.2. As noted in section 11.1, the

body surface is usually de�ned by the k = 1 plane so that the default sweep direction involves the

sequential solution of k-planes. All the FORTRAN parameter de�nitions made with the execution

of PRELUDE assume that only k-directional sweeps are required.

NOTE: In certain advanced applications other sweep directions can be preferred

(i.e., body surfaces de�ned on i- and/or j-planes). This can be most easily accom-

plished through �le assign tasks (section 9.1.2). In such cases, the value of isjs in

a LOCAL version of �le parameter.strt also can require modi�cation.

The variable isjs (assigned in parameter.strt) must be greater than or equal to the maxi-

mum of the products

[L1� (L2 + 1)] and [(L1 + 1)� L2]

91

where L1 and L2 are the number of cells in the two directions perpendicular to the sweep

direction. LAURA compares these values with isjs for each block. If the maximum requirement

for all blocks is less than isjs, a warning message is issued stating that isjs can be reduced to

save memory. If any block requires more memory than isjs provides, an error message is issued

and the job is terminated. In response to this situation, the user can increase the value of isjs,

recompile with make, and repeat the LAURA execution. Sweeps in the i- and j-directions can be

activated by overwriting the default k-directional sweep in the �le assign tasks, as described

in the section 11.5.2.

NOTE: If an axisymmetric solution is being calculated, speci�cation of a circum-

ferential sweeping direction yields a pure-Jacobian relaxation.

11.4. Solid-State-Device (SSD) Memory

The point-implicit relaxation strategy used in LAURA requires calculation of a Jacobian

matrix at every computational cell. Because of the computational expense of evaluating and

triangularizing this matrix every sweep, the LU -triangularization required for subsequent Gauss

elimination is calculated once and stored (frozen) for njcobian sweeps before being updated. The

memory overhead (in words) for this storage is large

neq2 �
nblocksX
n=1

(iblkn jblkn kblkn)

and can require the job to be run in a large memory queue with relatively poor turnaround time.

CRAY computer systems are often equipped with fast, solid-state-device (SSD) memory that

can be used to reduce the in-core memory requirements for the job. The process is equivalent

to reading or writing the triangularized Jacobian to a fast disk drive once per solution sweep.

The SSD can be activated by setting issd = 1 (default: issd = 0) in a LOCAL copy of �le

issd assn.strt (which can be found in the STRTfiles subdirectory after running PRELUDE).

The executable will need to be recompiled by running make.

At this point, the triangularized Jacobian would be written to the disk on the executable

directory. The working �les now need to be assigned to the SSD. On some systems, space will

need to be reserved in the SSD directory. One may calculate (in words) the required reservation,

memSSD, using the formula

memSSD =
�
isjs neq2 + 512

�
�

nblocksX
n=1

LMAXn (11:8)

where LMAXn is the number of cells in the sweep direction for Block X (X = A, B, C, D, E,

or G). The values of the other variables can be found in the �le parameter.strt.

NOTE: This reservation includes bu�ers needed for well-formed I/O and simpli�-

cations associated with multi-block FORTRAN parameter de�nition.

11.4.1. Interactive Jobs

The reservation for SSD memory in an interactive session is made on the Numerical Aero-

dynamic Simulation (NAS) facility CRAY C-90 with the command

srfs -r MEGSSDMw $FASTDIR

92

where

MEGSSD = int

�
memSSD

106

�
+ 1

NOTE: Typically, $FASTDIR is used in conjunction with issd = 1, while $BIGDIR is

speci�ed for issd = 0.

The working �les are then assigned to the SSD with the command

assign -a $FASTDIR/scr80 -s u fort.80

where su�x 80 corresponds to Block A. If additional blocks are active, they would need to be

assigned similarly, with su�xes 81 through 85 corresponding to Blocks B through G (excluding

F, recall), respectively. The interactive session can now proceed as usual. When completed, the

�les on $FASTDIR should be removed, and the reservation concluded with the command

srfs -r0 $FASTDIR

11.4.2. Queued Jobs

The reservation for SSD memory in a queued job is made on the NAS CRAY C-90 with the

command

QSUB -lr '$FASTDIR,MEGSSDMw'

placed at or near the beginning of the submit �le. The variable MEGSSD was de�ned in the

previous subsection. The assignments are made via the following command lines:

/bin/rm -f .asgnf

setenv FILENV .asgnf

assign -a $FASTDIR/scr80 -s u fort.80

which are placed before the command

laura < data

Again, additional assignment statements are required when additional blocks are active, as

discussed in the previous subsection.

NOTE: LAURA cannot accommodate di�erent sweep directions in the same com-

putational block when SSD memory is engaged.

11.5. Multitasking

Multitasking in a numerical algorithm refers to the capability of simultaneous (parallel)

execution of di�erent pieces of code on multiple central processing units (CPU's) for the purpose

of decreasing elapsed wall clock time. The CRAY computers o�er two options for multitasking.

The �rst option most often exploited by users is labeled microtasking. In FORTRAN codes,

microtasking works on the \do-loop" level, thus spreading the work within a loop among several

CPU's. The microtasking, in its simplest form (autotasking), can be implemented at compile

93

time with no changes required in the source code. Microtasking works well on the same loops that

vectorize well, and in some situations (i.e. nested do-loops), compiler directives can be placed

within the source code to further enhance parallelization and vectorization. (CRAY manuals

should be consulted for more information on parallelization and vectorization.) LAURA makes

extensive use of do-loops that can be vectorized and microtasked by the CRAY compiler in this

way, although no special compiler directives are added to enhance microtasking.

NOTE: Users who wish to invoke autotasking in LAURA on a CRAY computer

should add the
ag \-Zp" to the list of options for \FFLAGS" in the �le Makefile,

after running PRELUDE and before compiling with make.

The second option for multitasking is labeled macrotasking. Macrotasks can include large

sections of code that are executed in parallel on multiple CPU's. Macrotasking requires the

insertion of CRAY speci�c code to start tasks, synchronize tasks, and stop tasks as required in

the algorithm. LAURA utilizes macrotasking by assigning pieces of the computational domain

to individual tasks. Each task gathers and scatters data to a master copy of the solution which is

saved in a shared memory, global common block. Subroutines are called by each task in parallel;

consequently, task-speci�c data to be shared among subroutines are stored in \task common"

blocks. The point-implicit relaxation used in LAURA makes it unnecessary to synchronize

tasks after they are created so that very high levels of uninterrupted, parallel processing can be

achieved. Sacri�cing synchronization of tasks also means that the path to a converged solution

is nondeterministic. Further discussion of asynchronous convergence is found in reference 18.

NOTE: Users are cautioned against invoking both microtasking and macrotasking

in the same job because more tasks can be created than the number of CPU's that

are available, thus creating counterproductive contention among tasks for CPU's.

Macrotasking generally achieves higher levels of average concurrent CPU use than micro-

tasking. However, there is a memory overhead per additional task (in words) approximately

equal to

memtask =
�
528 + 96ns+ 6neq+ 2neq2

�
� isjs (11:9)

where neq is the number of governing equations being solved. This overhead (in words) is larger

when the full Navier-Stokes equations are to be solved (igovern = 2):

memtask =
�
538 + 98ns+ 6neq+ 2neq2

�
� isjs (11:10)

11.5.1. Terminology

Some de�nitions are required before describing how macrotasking can be implemented in

LAURA. Recall that a computational block is a rectangularly ordered array of cells de�ning

all or part of the solution domain. A partition truncates a block in the computational sweep

direction. For example, the recommended sweep direction starts at the body surface and moves

across the boundary layer. In the default mode, this extends from k = 1 to k = kblk, where kblk

is the total number of cells in the k-direction of the active block (chapter 7). In this scenario, a

k-partition is de�ned by specifying limits on the starting and stopping location of the sweep in

the k-direction. An i-partition and a j-partition are de�ned similarly, by specifying limits on the

starting and stopping location of the sweep in the i- and j-directions, respectively. Partitions

can overlap in any computational block. Transverse sweep directions also can be accommodated.

NOTE: A maximum of 100 partitions are allowed in LAURA.

94

One or more partitions are assigned to a task. It is convenient to think of a task as being

assigned to a particular CPU. In practice, tasks get rolled in and out of execution in a multiuser

environment, and there is no guarantee that the same CPU will always process the same task.

NOTE: A maximum of 16 tasks can be accommodated in LAURA; however, it is

counterproductive to assign more tasks than available CPU's on the computer.

11.5.2. Implementation

At present, macrotasking options exist only for the CRAY computers, and they can be im-

plemented in two ways. In the default mode, the code assigns one k-partition per computational

block, and each partition is assigned to its own task. As a result, a single block job will not

macrotask in the default mode.

The user can overwrite the defaults by creating a �le called assign tasks in the executable

directory. Each line of �le assign tasks de�nes a partition through the following �ve
ags:

nbk de�nes the computational block containing the

partition (1 = Block A, 2 = B, 3 = C,

4 = D, 5 = E, and 6 = G)

mbk de�nes the sweep direction and partition type

(1 = i-, 2 = j-, and 3 = k-sweep)

lstrt de�nes the starting index of the sweep

(1 � lstrt � lstop)

lstop de�nes the stopping index of the sweep

(lstrt � lstop � LMAX)

mapcpu de�nes the processor (by number) to which the

partition is assigned

(1 � mapcpu � maxcpu)

11.5.3. Load Balancing

The user can assign partition sizes and tasks in such a way as to concentrate CPU cycles in

regions that are slow to converge. An option for dynamic load balancing exists for the case of a

single block divided into k-partitions, with each partition assigned to its own task. The option

can be switched on by setting mtaska = 1 (default: mtaska = 0) in the �le mtaska assn.strt

after running PRELUDE. The executable will need to be recompiled by running make. The algo-

rithm will dynamically change partition boundaries by comparing the error norms of adjacent

partitions, decreasing the size of partitions with large error norms, and increasing the size of

partitions with small error norms. While some very encouraging results have been obtained in

test cases (ref. 18), this option is considered to be experimental and is only recommended for

use by researchers interested in this speci�c topic.

Experience in a multiuser environment has shown that multiple tasks do not necessarily get

equal access to CPU time. Typically, tasks one through four of an eight-CPU machine get nearly

equal access, while subsequent tasks appear to be penalized, especially during peak load periods.

It is believed this discrepancy derives from the manner in which the system is tuned to promote

fair share access to all users. When this unequal access occurs, load balancing is disrupted, and

CPU cycles can be wasted. Consequently, requests for more than four tasks are not recommended

for small jobs run during peak activity periods. However, special multitasking queues can be

created for very large jobs that run at o�-peak times in a nearly dedicated, high-priority mode.

95

NOTE: The user should consult the system administrator for information on such

queues.

In this mode, our experience shows that all tasks get equal access, and we routinely obtain

average concurrent CPU use levels of greater than 7 on an 8-processor CRAY YMP and have

achieved values greater than 14 (15.3, on one occasion in a multitasking queue run at night with

minimal contention from other users) on a 16-processor CRAY C-90.

NOTE: Multitasking should not be run when the option for grid restructuring is

active. Grid restructuring requires synchronization of tasks, which is not provided

for in LAURA.

NOTE: Setup of the executable using PRELUDE assumes that only k-directional

sweeps are required in setting up dimension statements. De�ning i- and j-directional

sweeps can result in an error message from laura, followed by an abort of the

job request, if the required array dimensioning exceeds the prescribed value for isjs

(section 11.3).

11.6. Radiative Transport

The treatment of radiation phenomena in a high-temperature
ow requires a level of e�ort

that is a signi�cant fraction of the total e�ort required to express and solve the
uid equations.

It is therefore often omitted in CFD applications. Under certain conditions, however, the e�ect

of radiative heating on the
ow and the heating of the vehicle surface is not negligible. The

LORAN (Langley Optimized Radiative Nonequilibrium) algorithm (ref. 29) has been developed to

allow LAURA to be applied to this class of problems. In cases in which radiative e�ects on the

ow �eld are minor, LORAN can be used to post-process a LAURA solution. The details of this

application are given in reference 30. For cases in which radiation signi�cantly alters the
ow

�eld properties, LORAN may be iteratively coupled to the LAURA algorithm (ref. 31).

NASA Langley Research Center

Hampton, VA 23681-0001

October 10, 1995

96

Appendix A

Sample Case

An example case is included here to illustrate an application of the LAURA algorithm.

This simple case is the axisymmetric
ow over a sphere with a radius of 1 m. The thin-layer

Navier-Stokes equations are solved for laminar, perfect gas
ow. The free-stream conditions

are V1 = 5000 m/s, �1 = 0:001 kg/m3, and T1 = 200 K. A constant wall temperature of

Tw = 500 K is speci�ed. The grid dimensions are 30 cells in the streamwise direction and 64 in

the body-normal direction.

Files from the initial run for this sample case serve as examples throughout the manual. Files

from the second run for this sample case are contained in this appendix. The results presented

for this example can be replicated by creating a working directory and repeating the procedure

described below.

Typing the command

PRELUDE

and accepting the default values for each prompt will yield the initialization of RESTART.in used

here, as well as the �le data shown in section 9.1.3. The �le INPUTS is created by PRELUDE and

is a record of the responses to the prompts of stArt during the most recent PRELUDE session in

this LOCAL directory. Its contents for this sample case are shown in section 6.3. For subsequent

PRELUDE sessions, typing the command

PRELUDE INPUTS

yields the initialization of RESTART.in used here, as well as the �le data shown in section 9.1.3.

NOTE: Since a constant wall temperature (tempbc = 0) is speci�ed, the �les

TWALL.in and transition are not required. Further, the �le transition is not

required for laminar
ow.

The results presented herein are from a SUN Sparcstation with a single processor. No

assign tasks �le was incorporated. Since it is a simple case, no LOCAL or CUSTOM �les were

required. As mentioned above, the input and output �les for the initial run are interspersed

throughout this manual, and are not repeated here.

For the second run, PRELUDE does not need to be repeated. The adjustments are accomplished

through a direct modi�cation to �le data. The resultant data �le used for the second run is

shown below (screen 50):

97

VERSION=LAURA.4.1

2 nord 1(st-) or 2(nd-) order spatial accuracy

20 ntrnsprt iterations between transport property updates

20 njcobian iterations between jacobian updates

0 0 1 fi,j,kgvis . 0=off/1=on for fi,j,kg TL N-S viscous terms in block 1

.50000E+04 vinfb freestream velocity [m/s]

.10000E-02 rinfb freestream density [kg/m^3]

.20000E+03 tinf freestream temperature [K]

0 tempbc f0=constant, 1=variable, 2=radiative equilibriumg Tw

.50000E+03 twall if tempbc=0: wall temperature [K]

0.000 ept if tempbc=2: temperature relaxation factor (0 < ept < 1)

1.0000 rflngth conversion: grid units ==> meters (1 m = 1.0000 m)

0.000000E+00 zcg .. axial cg location [m]

0.000000E+00 xcg vertical cg location [m]

0.314159E+01 refarea reference area of body [m ^2]

0.200000E+01 reflen reference length of body [m]

1500 iterg maximum iterations for this run

200 movegrd frequency of grid adjustments

4 maxmoves maximum number of grid adjustments (0=no limit)

1 iabseig f0=normal, 1=scaledg limiter

0.300 epsa ... eigenvalue limiter

0.010 errd error criteria for grid doubling

10.00 hrs time limit for this run [hr]

1.60 rfinv inviscid relaxation factor, (rfinv > 1.5)

.60 rfvis viscous relaxation factor, (rfvis > 0.5)

Screen 50.

A.1. Screen Output

The constituent elements of the standard output are discussed in section 10.1. That section

also contains the standard output from the initial run of this sample case. The standard output

for the second run (excluding the preamble) is shown on the pages which follow, beginning with

the following iteration record (screen 51):

98

tsk blk ms iter L2 norm tsk norm inf norm i j k m time strt stp

CPU number 01 starting

1 1 3 20 1.737E-01 1.737E-01 4.920E-02 22 1 15 1 9.90 1 16

1 1 3 40 6.422E-02 6.422E-02 2.914E-02 30 1 15 1 19.31 1 16

1 1 3 60 1.680E-02 1.680E-02 1.626E-02 29 1 6 1 28.87 1 16

1 1 3 80 7.106E-03 7.106E-03 1.473E-02 29 1 6 1 38.24 1 16

...Grid doubled after iter = 80

1 1 3 100 3.304E-02 3.304E-02 1.841E-02 2 1 1 1 57.29 1 32

1 1 3 120 2.697E-02 2.697E-02 1.922E-02 18 1 1 1 76.15 1 32

1 1 3 140 2.167E-02 2.167E-02 2.068E-02 27 1 1 1 95.02 1 32

1 1 3 160 9.398E-03 9.398E-03 1.478E-02 28 1 1 1 113.90 1 32

...Grid doubled after iter = 160

1 1 3 180 3.031E-02 3.031E-02 1.641E-02 30 1 64 1 151.98 1 64

1 1 3 200 3.173E-02 3.173E-02 1.440E-02 5 1 1 1 189.79 1 64

...Grid adjusted after iter = 200

WARNING: Recell w criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

1 1 3 220 1.087E-01 1.087E-01 5.193E-02 30 1 57 1 228.12 1 64

1 1 3 240 5.979E-02 5.979E-02 4.544E-02 30 1 58 1 265.90 1 64

1 1 3 260 3.217E-02 3.217E-02 3.932E-02 30 1 59 1 303.71 1 64

1 1 3 280 1.342E-02 1.342E-02 1.963E-02 30 1 59 1 341.52 1 64

1 1 3 300 7.762E-03 7.762E-03 1.314E-02 30 1 60 1 379.33 1 64

1 1 3 320 5.779E-03 5.779E-03 9.356E-03 21 1 56 1 417.29 1 64

1 1 3 340 3.557E-03 3.557E-03 7.935E-03 27 1 59 1 455.12 1 64

1 1 3 360 1.342E-03 1.342E-03 4.642E-03 30 1 61 1 492.97 1 64

1 1 3 380 6.612E-04 6.612E-04 2.131E-03 28 1 55 1 530.79 1 64

1 1 3 400 5.078E-04 5.078E-04 2.195E-03 24 1 22 1 568.64 1 64

...Grid adjusted after iter = 400

WARNING: Recell w criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

Screen 51.

NOTE: The frequency of output for the iteration record is controlled by the param-

eter njcobian. In other words, output is produced only for those iterations in which

the Jacobian is updated. For the initial run, the update occurred for each iteration.

For the second run, however, the solution advances 20 iterations (screen 52) between

updates (as speci�ed in �le data).

99

1 1 3 420 6.391E-03 6.391E-03 1.384E-02 23 1 55 1 607.02 1 64

1 1 3 440 3.742E-03 3.742E-03 1.216E-02 25 1 55 1 644.82 1 64

1 1 3 460 2.631E-03 2.631E-03 1.041E-02 27 1 55 1 682.61 1 64

1 1 3 480 1.252E-03 1.252E-03 5.933E-03 30 1 55 1 720.36 1 64

1 1 3 500 4.885E-04 4.885E-04 2.682E-03 30 1 21 1 758.14 1 64

1 1 3 520 3.697E-04 3.697E-04 3.167E-03 25 1 56 1 795.94 1 64

1 1 3 540 3.619E-04 3.619E-04 4.036E-03 26 1 55 1 833.75 1 64

1 1 3 560 4.726E-04 4.726E-04 4.521E-03 28 1 55 1 871.52 1 64

1 1 3 580 4.010E-04 4.010E-04 4.339E-03 28 1 55 1 909.32 1 64

1 1 3 600 1.697E-04 1.697E-04 3.490E-03 30 1 55 1 947.08 1 64

...Grid adjusted after iter = 600

WARNING: Recell w criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

1 1 3 620 5.297E-03 5.297E-03 1.710E-02 27 1 55 1 985.40 1 64

1 1 3 640 2.632E-03 2.632E-03 1.246E-02 29 1 55 1 1023.18 1 64

1 1 3 660 9.894E-04 9.894E-04 6.683E-03 30 1 55 1 1060.89 1 64

1 1 3 680 4.246E-04 4.246E-04 3.904E-03 30 1 54 1 1098.69 1 64

1 1 3 700 2.298E-04 2.298E-04 2.218E-03 21 1 55 1 1136.46 1 64

1 1 3 720 1.804E-04 1.804E-04 1.619E-03 21 1 55 1 1174.19 1 64

1 1 3 740 1.579E-04 1.579E-04 2.185E-03 18 1 55 1 1211.99 1 64

1 1 3 760 1.261E-04 1.261E-04 2.283E-03 19 1 55 1 1249.73 1 64

1 1 3 780 1.067E-04 1.067E-04 2.039E-03 21 1 55 1 1287.47 1 64

1 1 3 800 1.097E-04 1.097E-04 2.090E-03 22 1 55 1 1325.25 1 64

...Grid adjusted after iter = 800

WARNING: Recell w criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

...Turning off algnshk after 4 adjustments

1 1 3 820 5.234E-03 5.234E-03 2.106E-02 24 1 55 1 1363.52 1 64

1 1 3 840 3.289E-03 3.289E-03 1.342E-02 26 1 55 1 1401.31 1 64

1 1 3 860 2.175E-03 2.175E-03 1.147E-02 28 1 55 1 1439.11 1 64

1 1 3 880 9.456E-04 9.456E-04 8.215E-03 30 1 55 1 1476.84 1 64

1 1 3 900 3.577E-04 3.577E-04 3.293E-03 30 1 55 1 1514.61 1 64

1 1 3 920 2.364E-04 2.364E-04 1.992E-03 25 1 55 1 1552.35 1 64

1 1 3 940 2.007E-04 2.007E-04 2.386E-03 27 1 55 1 1590.09 1 64

1 1 3 960 1.364E-04 1.364E-04 1.924E-03 20 1 56 1 1627.85 1 64

1 1 3 980 1.038E-04 1.038E-04 1.916E-03 18 1 55 1 1665.68 1 64

1 1 3 1000 1.142E-04 1.142E-04 2.600E-03 21 1 56 1 1703.47 1 64

Screen 52.

100

1 1 3 1020 8.953E-05 8.953E-05 1.570E-03 25 1 55 1 1741.34 1 64

1 1 3 1040 6.536E-05 6.536E-05 1.556E-03 27 1 55 1 1779.16 1 64

1 1 3 1060 3.570E-05 3.570E-05 1.027E-03 28 1 55 1 1816.92 1 64

1 1 3 1080 2.335E-05 2.335E-05 1.075E-03 18 1 56 1 1854.69 1 64

1 1 3 1100 1.438E-05 1.438E-05 5.557E-04 28 1 55 1 1892.42 1 64

1 1 3 1120 1.146E-05 1.146E-05 5.525E-04 28 1 55 1 1930.19 1 64

1 1 3 1140 7.489E-06 7.489E-06 4.855E-04 30 1 55 1 1967.91 1 64

1 1 3 1160 4.472E-06 4.472E-06 2.975E-04 30 1 55 1 2005.71 1 64

1 1 3 1180 2.943E-06 2.943E-06 2.075E-04 18 1 55 1 2043.49 1 64

1 1 3 1200 2.687E-06 2.687E-06 1.876E-04 18 1 55 1 2081.23 1 64

1 1 3 1220 2.376E-06 2.376E-06 1.661E-04 18 1 55 1 2118.99 1 64

1 1 3 1240 2.218E-06 2.218E-06 1.556E-04 22 1 55 1 2156.81 1 64

1 1 3 1260 2.234E-06 2.234E-06 1.579E-04 23 1 55 1 2194.51 1 64

1 1 3 1280 2.121E-06 2.121E-06 1.525E-04 26 1 55 1 2232.27 1 64

1 1 3 1300 1.961E-06 1.961E-06 1.331E-04 28 1 55 1 2270.04 1 64

1 1 3 1320 1.818E-06 1.818E-06 1.193E-04 28 1 55 1 2307.80 1 64

1 1 3 1340 1.731E-06 1.731E-06 1.177E-04 15 1 55 1 2345.58 1 64

1 1 3 1360 1.669E-06 1.669E-06 1.165E-04 15 1 55 1 2383.34 1 64

1 1 3 1380 1.605E-06 1.605E-06 1.143E-04 15 1 55 1 2421.25 1 64

1 1 3 1400 1.569E-06 1.569E-06 1.159E-04 21 1 56 1 2459.11 1 64

1 1 3 1420 1.725E-06 1.725E-06 3.111E-04 21 1 56 1 2496.90 1 64

1 1 3 1440 2.098E-06 2.098E-06 5.100E-04 21 1 56 1 2534.65 1 64

1 1 3 1460 3.145E-06 3.145E-06 7.075E-04 21 1 56 4 2572.44 1 64

1 1 3 1480 5.455E-06 5.455E-06 1.044E-03 21 1 56 4 2610.22 1 64

1 1 3 1500 6.254E-06 6.254E-06 1.258E-03 21 1 56 4 2648.03 1 64

CPU 1 terminated at 2648.08 seconds (after 1500 iterations).

Screen 52. Concluded.

The integrated surface quantities for this second run are as follows (screen 53):

cx = 0.99331755E-02

cy = 0.00000000E+00

cz = 0.12230405E-01

gy = -0.50450885E-02

summdot = -0.67376419E-07

sumheat = -0.27692626E-03

Screen 53.

101

A.2. File algnshk.out

The constituent elements of �le algnshk.out are discussed in section 10.2. That section also

shows the contents of this �le from the initial run of this sample case. Its contents are shown

for the second run on the pages that follow (screen 54):

...Grid adjusted after iter = 200

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .2290770E-05 .300507 1.045911 1.468397 .001765 (17)

2 1 .2246804E-05 .298642 1.045998 1.469286 .001751 (17)

3 1 .2228229E-05 .297847 1.046035 1.469667 .001746 (17)

4 1 .2231236E-05 .297976 1.046029 1.469605 .001747 (17)

5 1 .2254972E-05 .298990 1.045982 1.469120 .001754 (17)

6 1 .2317622E-05 .301634 1.045859 1.467862 .001773 (17)

7 1 .2418150E-05 .305778 1.045668 1.465916 .001803 (17)

8 1 .2550057E-05 .311046 1.045429 1.463485 .001841 (17)

9 1 .2711846E-05 .317265 1.045154 1.460674 .001886 (17)

10 1 .2894426E-05 .323996 1.044863 1.457703 .001934 (17)

11 1 .3057070E-05 .329760 1.044619 1.455215 .001977 (17)

12 1 .3195636E-05 .334511 1.044421 1.453200 .002011 (17)

13 1 .3383573E-05 .340744 1.044167 1.450607 .002057 (17)

14 1 .3653929E-05 .349320 1.043826 1.447127 .002120 (17)

15 1 .3977254E-05 .359043 1.043451 1.443297 .002192 (17)

16 1 .4367052E-05 .370094 1.043038 1.439087 .002275 (17)

17 1 .4820189E-05 .382152 1.042603 1.434654 .002365 (17)

18 1 .5307045E-05 .394301 1.042181 1.430346 .002457 (17)

19 1 .5822294E-05 .406384 1.041776 1.426211 .002549 (17)

20 1 .6406782E-05 .419266 1.041359 1.421953 .002648 (17)

21 1 .7086295E-05 .433308 1.040920 1.417481 .002756 (17)

22 1 .7877459E-05 .448583 1.040462 1.412800 .002874 (17)

23 1 .8809709E-05 .465340 1.039978 1.407871 .003005 (17)

24 1 .9902239E-05 .483560 1.039475 1.402737 .003148 (17)

25 1 .1117809E-04 .503242 1.038955 1.397434 .003304 (17)

26 1 .1265588E-04 .524281 1.038425 1.392022 .003472 (17)

27 1 .1440414E-04 .547192 1.037874 1.386405 .003657 (17)

28 1 .1664086E-04 .574000 1.037263 1.380165 .003874 (17)

29 1 .1975544E-04 .607668 1.036539 1.372785 .004151 (17)

30 1 .2242953E-04 .633914 1.036007 1.367350 .004368 (17)

Screen 54.

102

...Grid adjusted after iter = 400

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .2416946E-05 .305729 1.045670 1.465938 .001802 (17)

2 1 .2408198E-05 .305373 1.045686 1.466105 .001800 (17)

3 1 .2430496E-05 .306279 1.045645 1.465682 .001806 (17)

4 1 .2472090E-05 .307954 1.045569 1.464905 .001818 (17)

5 1 .2509823E-05 .309459 1.045501 1.464212 .001829 (17)

6 1 .2553366E-05 .311175 1.045424 1.463425 .001841 (17)

7 1 .2607570E-05 .313285 1.045329 1.462465 .001857 (17)

8 1 .2660392E-05 .315314 1.045240 1.461549 .001871 (17)

9 1 .2747521E-05 .318604 1.045095 1.460078 .001895 (17)

10 1 .2874395E-05 .323272 1.044894 1.458019 .001929 (17)

11 1 .3007800E-05 .328036 1.044691 1.455954 .001964 (17)

12 1 .3136876E-05 .332513 1.044504 1.454043 .001997 (17)

13 1 .3253230E-05 .336447 1.044342 1.452389 .002026 (17)

14 1 .3417432E-05 .341842 1.044123 1.450156 .002065 (17)

15 1 .3615713E-05 .348134 1.043873 1.447602 .002112 (17)

16 1 .3819755E-05 .354374 1.043630 1.445121 .002158 (17)

17 1 .4083910E-05 .362135 1.043334 1.442104 .002216 (17)

18 1 .4412589E-05 .371342 1.042992 1.438620 .002284 (17)

19 1 .4749112E-05 .380311 1.042669 1.435320 .002352 (17)

20 1 .5142228E-05 .390274 1.042320 1.431757 .002427 (17)

21 1 .5639128E-05 .402172 1.041916 1.427636 .002517 (17)

22 1 .6257911E-05 .416061 1.041461 1.422998 .002623 (17)

23 1 .6992771E-05 .431429 1.040978 1.418069 .002741 (17)

24 1 .7835977E-05 .447807 1.040484 1.413033 .002868 (17)

25 1 .8794738E-05 .465080 1.039986 1.407946 .003003 (17)

26 1 .9871012E-05 .483058 1.039489 1.402875 .003144 (17)

27 1 .1110448E-04 .502147 1.038984 1.397723 .003295 (17)

28 1 .1262878E-04 .523910 1.038434 1.392115 .003469 (17)

29 1 .1465093E-04 .550279 1.037802 1.385669 .003682 (17)

30 1 .1654355E-04 .572884 1.037287 1.380418 .003865 (17)

Screen 54. Continued.

103

...Grid adjusted after iter = 600

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .2371600E-05 .303874 1.045755 1.466806 .001789 (17)

2 1 .2382643E-05 .304327 1.045734 1.466593 .001792 (17)

3 1 .2399836E-05 .305032 1.045702 1.466264 .001797 (17)

4 1 .2422148E-05 .305940 1.045660 1.465840 .001804 (17)

5 1 .2455893E-05 .307305 1.045598 1.465206 .001814 (17)

6 1 .2499914E-05 .309064 1.045519 1.464393 .001826 (17)

7 1 .2560883E-05 .311470 1.045410 1.463291 .001844 (17)

8 1 .2623653E-05 .313906 1.045302 1.462184 .001861 (17)

9 1 .2697156E-05 .316711 1.045178 1.460922 .001882 (17)

10 1 .2798099E-05 .320481 1.045014 1.459245 .001909 (17)

11 1 .2914756E-05 .324729 1.044832 1.457384 .001940 (17)

12 1 .3043477E-05 .329286 1.044639 1.455417 .001973 (17)

13 1 .3176427E-05 .333861 1.044448 1.453474 .002007 (17)

14 1 .3331251E-05 .339032 1.044237 1.451314 .002045 (17)

15 1 .3516904E-05 .345028 1.043996 1.448856 .002089 (17)

16 1 .3728334E-05 .351607 1.043737 1.446215 .002137 (17)

17 1 .3966779E-05 .358736 1.043462 1.443416 .002190 (17)

18 1 .4261349E-05 .367164 1.043146 1.440189 .002253 (17)

19 1 .4593823E-05 .376227 1.042815 1.436812 .002321 (17)

20 1 .4930324E-05 .384968 1.042504 1.433641 .002387 (17)

21 1 .5328680E-05 .394824 1.042163 1.430164 .002461 (17)

22 1 .5795001E-05 .405761 1.041796 1.426420 .002544 (17)

23 1 .6345261E-05 .417948 1.041401 1.422382 .002637 (17)

24 1 .6983392E-05 .431239 1.040984 1.418129 .002740 (17)

25 1 .7737298E-05 .445953 1.040539 1.413593 .002854 (17)

26 1 .8585244E-05 .461415 1.040090 1.409007 .002974 (17)

27 1 .9535036E-05 .477589 1.039638 1.404394 .003101 (17)

28 1 .1070106E-04 .496063 1.039142 1.399340 .003247 (17)

29 1 .1226339E-04 .518857 1.038559 1.393393 .003429 (17)

30 1 .1372809E-04 .538561 1.038079 1.388489 .003587 (17)

Screen 54. Continued.

104

...Grid adjusted after iter = 800

norm. wall max. location of

i j hmin1 dist. stretch stretch maximum

1 1 .2375307E-05 .304026 1.045748 1.466735 .001790 (17)

2 1 .2388167E-05 .304554 1.045724 1.466487 .001794 (17)

3 1 .2411492E-05 .305507 1.045680 1.466042 .001801 (17)

4 1 .2436916E-05 .306539 1.045633 1.465562 .001808 (17)

5 1 .2470399E-05 .307886 1.045572 1.464937 .001818 (17)

6 1 .2515616E-05 .309688 1.045490 1.464107 .001831 (17)

7 1 .2574941E-05 .312019 1.045386 1.463040 .001848 (17)

8 1 .2639533E-05 .314516 1.045275 1.461908 .001866 (17)

9 1 .2708183E-05 .317128 1.045160 1.460736 .001885 (17)

10 1 .2781182E-05 .319857 1.045041 1.459522 .001904 (17)

11 1 .2871940E-05 .323184 1.044898 1.458058 .001929 (17)

12 1 .3009501E-05 .328095 1.044689 1.455928 .001964 (17)

13 1 .3178134E-05 .333919 1.044446 1.453449 .002007 (17)

14 1 .3350795E-05 .339674 1.044210 1.451048 .002049 (17)

15 1 .3535329E-05 .345611 1.043972 1.448620 .002093 (17)

16 1 .3749227E-05 .352243 1.043712 1.445963 .002142 (17)

17 1 .3987594E-05 .359345 1.043439 1.443180 .002195 (17)

18 1 .4253068E-05 .366932 1.043155 1.440277 .002251 (17)

19 1 .4578935E-05 .375830 1.042829 1.436957 .002318 (17)

20 1 .4962142E-05 .385774 1.042476 1.433353 .002393 (17)

21 1 .5374729E-05 .395931 1.042126 1.429780 .002470 (17)

22 1 .5814821E-05 .406213 1.041782 1.426268 .002548 (17)

23 1 .6326546E-05 .417545 1.041414 1.422513 .002634 (17)

24 1 .6914565E-05 .429846 1.041027 1.418568 .002729 (17)

25 1 .7596157E-05 .443273 1.040619 1.414407 .002833 (17)

26 1 .8388739E-05 .457924 1.040190 1.410027 .002947 (17)

27 1 .9304709E-05 .473769 1.039743 1.405468 .003071 (17)

28 1 .1044293E-04 .492094 1.039247 1.400408 .003216 (17)

29 1 .1198605E-04 .514955 1.038657 1.394390 .003397 (17)

30 1 .1344289E-04 .534835 1.038168 1.389400 .003557 (17)

Screen 54. Concluded.

105

A.3. File conv.out

The constituent elements of �le conv.out are discussed in section 10.3. That section also

shows the contents of this �le from the initial run of this sample case. Its contents are shown

for the second run (screen 55):

body pressure body heating

tsk iter residual time (sec) (stag) (end) (stag) (end)

1 20 .173680E+00 9.480 1.02787 .362811E-01 -.207159E-01 -.181072E-02

1 40 .642220E-01 18.890 .930974 .343741E-01 -.168117E-01 -.148686E-02

1 60 .167974E-01 28.450 .925715 .352460E-01 -.152770E-01 -.127062E-02

1 80 .710615E-02 37.820 .923494 .342261E-01 -.146595E-01 -.101474E-02

1 100 .330401E-01 56.870 .958593 .360259E-01 -.148522E-01 -.902765E-03

1 120 .269717E-01 75.730 .891812 .337655E-01 -.121135E-01 -.697635E-03

1 140 .216679E-01 94.600 .928096 .344724E-01 -.125548E-01 -.627335E-03

1 160 .939811E-02 113.480 .923566 .375377E-01 -.122950E-01 -.649356E-03

1 180 .303121E-01 151.560 .924323 .350256E-01 -.118011E-01 -.546651E-03

1 200 .317269E-01 189.370 .989561 .340480E-01 -.135799E-01 -.501591E-03

1 220 .108663E+00 227.700 .932868 .344543E-01 -.978973E-02 -.453082E-03

1 240 .597945E-01 265.480 .900657 .353153E-01 -.985254E-02 -.466547E-03

1 260 .321750E-01 303.290 .921168 .356246E-01 -.996108E-02 -.477142E-03

1 280 .134248E-01 341.100 .911631 .397506E-01 -.968400E-02 -.554359E-03

1 300 .776205E-02 378.910 .922587 .356448E-01 -.978836E-02 -.455140E-03

1 320 .577924E-02 416.870 .924712 .359903E-01 -.970618E-02 -.472353E-03

1 340 .355717E-02 454.700 .921260 .374134E-01 -.956439E-02 -.499765E-03

1 360 .134166E-02 492.550 .922012 .378405E-01 -.950948E-02 -.503842E-03

1 380 .661229E-03 530.370 .922229 .378553E-01 -.944654E-02 -.500433E-03

1 400 .507751E-03 568.220 .922666 .377150E-01 -.939521E-02 -.495071E-03

1 420 .639128E-02 606.600 .922256 .377506E-01 -.880919E-02 -.508537E-03

1 440 .374177E-02 644.400 .932637 .386944E-01 -.904346E-02 -.523425E-03

1 460 .263072E-02 682.190 .921975 .386469E-01 -.867947E-02 -.513020E-03

1 480 .125234E-02 719.940 .912888 .380557E-01 -.857411E-02 -.495906E-03

1 500 .488538E-03 757.720 .918442 .387008E-01 -.863178E-02 -.512426E-03

1 520 .369721E-03 795.520 .922170 .385519E-01 -.866181E-02 -.499670E-03

1 540 .361910E-03 833.330 .924905 .380903E-01 -.866811E-02 -.488361E-03

1 560 .472611E-03 871.100 .922862 .380120E-01 -.859700E-02 -.485701E-03

1 580 .401026E-03 908.900 .920210 .380712E-01 -.852818E-02 -.485206E-03

1 600 .169720E-03 946.660 .919402 .380940E-01 -.849003E-02 -.484321E-03

1 620 .529670E-02 984.980 .919623 .380117E-01 -.859598E-02 -.534466E-03

1 640 .263227E-02 1022.760 .920270 .382168E-01 -.856932E-02 -.537372E-03

1 660 .989424E-03 1060.470 .915966 .384135E-01 -.847342E-02 -.538888E-03

1 680 .424563E-03 1098.270 .919373 .383122E-01 -.851422E-02 -.533952E-03

1 700 .229767E-03 1136.040 .920236 .380983E-01 -.849428E-02 -.528916E-03

1 720 .180376E-03 1173.770 .919915 .383076E-01 -.846965E-02 -.534570E-03

1 740 .157903E-03 1211.570 .919846 .383422E-01 -.844631E-02 -.534464E-03

1 760 .126059E-03 1249.310 .919509 .382220E-01 -.842193E-02 -.531712E-03

1 780 .106714E-03 1287.050 .919529 .381634E-01 -.840353E-02 -.531835E-03

1 800 .109687E-03 1324.830 .919393 .383610E-01 -.838295E-02 -.537666E-03

Screen 55.

106

1 820 .523377E-02 1363.100 .919520 .382898E-01 -.837367E-02 -.547506E-03

1 840 .328934E-02 1400.890 .923097 .380419E-01 -.843978E-02 -.542679E-03

1 860 .217466E-02 1438.690 .928951 .380200E-01 -.849208E-02 -.543875E-03

1 880 .945589E-03 1476.420 .920814 .379861E-01 -.833722E-02 -.544010E-03

1 900 .357652E-03 1514.190 .919130 .381321E-01 -.830372E-02 -.549716E-03

1 920 .236392E-03 1551.930 .919473 .381633E-01 -.829368E-02 -.550581E-03

1 940 .200728E-03 1589.670 .920706 .381185E-01 -.829438E-02 -.551737E-03

1 960 .136390E-03 1627.430 .920990 .382616E-01 -.827712E-02 -.556893E-03

1 980 .103828E-03 1665.260 .920645 .382532E-01 -.825276E-02 -.557438E-03

1 1000 .114162E-03 1703.050 .920348 .381129E-01 -.823038E-02 -.555300E-03

1 1020 .895274E-04 1740.920 .920323 .380537E-01 -.821366E-02 -.555913E-03

1 1040 .653588E-04 1778.740 .920534 .382821E-01 -.820079E-02 -.563803E-03

1 1060 .357031E-04 1816.500 .920714 .384910E-01 -.818702E-02 -.569678E-03

1 1080 .233482E-04 1854.270 .920818 .384012E-01 -.817254E-02 -.568314E-03

1 1100 .143805E-04 1892.000 .920894 .382780E-01 -.815781E-02 -.566835E-03

1 1120 .114591E-04 1929.770 .920953 .382768E-01 -.814307E-02 -.568475E-03

1 1140 .748877E-05 1967.490 .921009 .383443E-01 -.812840E-02 -.571179E-03

1 1160 .447210E-05 2005.290 .921050 .383280E-01 -.811360E-02 -.571622E-03

1 1180 .294252E-05 2043.070 .921067 .382910E-01 -.809853E-02 -.571864E-03

1 1200 .268724E-05 2080.810 .921073 .383039E-01 -.808342E-02 -.573241E-03

1 1220 .237628E-05 2118.570 .921075 .382835E-01 -.806835E-02 -.573524E-03

1 1240 .221764E-05 2156.390 .921079 .382661E-01 -.805342E-02 -.574031E-03

1 1260 .223404E-05 2194.090 .921081 .382659E-01 -.803862E-02 -.574852E-03

1 1280 .212072E-05 2231.850 .921084 .382639E-01 -.802396E-02 -.575542E-03

1 1300 .196057E-05 2269.620 .921085 .382577E-01 -.800939E-02 -.576105E-03

1 1320 .181849E-05 2307.380 .921087 .382552E-01 -.799499E-02 -.576733E-03

1 1340 .173148E-05 2345.160 .921090 .382553E-01 -.798074E-02 -.577367E-03

1 1360 .166904E-05 2382.920 .921090 .382558E-01 -.796656E-02 -.577962E-03

1 1380 .160503E-05 2420.830 .921091 .382564E-01 -.795257E-02 -.578527E-03

1 1400 .156905E-05 2458.690 .921090 .382567E-01 -.793868E-02 -.579043E-03

1 1420 .172481E-05 2496.480 .921094 .382570E-01 -.792504E-02 -.579533E-03

1 1440 .209843E-05 2534.230 .921095 .382571E-01 -.791145E-02 -.579988E-03

1 1460 .314499E-05 2572.020 .921094 .382566E-01 -.789797E-02 -.580401E-03

1 1480 .545472E-05 2609.800 .921094 .382557E-01 -.788466E-02 -.580773E-03

1 1500 .625405E-05 2647.610 .921094 .382533E-01 -.787147E-02 -.581082E-03

Screen 55. Concluded.

107

A.4. File grid.out

The constituent elements of �le grid.out are discussed in section 10.4. That section also

shows the contents of this �le from the initial run of this sample case. Its contents are shown

here for the second run (screen 56):

Block 1, Surface 1

(64 cells normal to body)

i j dh w Recell w max. stretch

1 1 .132615E-05 3.307665 1.47 (18)

2 1 .134121E-05 3.311790 1.47 (18)

3 1 .136424E-05 3.313079 1.47 (18)

4 1 .139045E-05 3.308474 1.47 (18)

5 1 .142768E-05 3.307920 1.46 (18)

6 1 .146510E-05 3.282688 1.46 (18)

7 1 .151384E-05 3.253656 1.46 (18)

8 1 .158717E-05 3.245656 1.46 (18)

9 1 .165289E-05 3.193581 1.46 (18)

10 1 .172637E-05 3.135483 1.46 (18)

11 1 .182799E-05 3.102324 1.46 (17)

12 1 .198404E-05 3.116151 1.45 (18)

13 1 .211008E-05 3.034105 1.45 (18)

14 1 .234000E-05 3.055790 1.45 (18)

15 1 .248702E-05 2.927279 1.45 (18)

16 1 .278297E-05 2.934100 1.45 (17)

17 1 .309083E-05 2.895659 1.44 (18)

18 1 .337977E-05 2.790136 1.44 (17)

19 1 .385189E-05 2.781113 1.44 (18)

20 1 .423707E-05 2.657829 1.43 (18)

21 1 .479993E-05 2.596962 1.43 (18)

22 1 .543809E-05 2.517761 1.43 (18)

23 1 .616728E-05 2.427922 1.42 (18)

24 1 .708869E-05 2.356264 1.42 (18)

25 1 .814689E-05 2.268806 1.41 (18)

26 1 .939657E-05 2.180056 1.41 (18)

27 1 .109298E-04 2.098696 1.40 (18)

28 1 .129232E-04 2.023678 1.40 (18)

29 1 .152506E-04 1.912261 1.39 (18)

30 1 .177170E-04 1.835846 1.39 (18)

Screen 56.

108

Appendix B

Conic Geometry

This appendix provides the de�nitions for the conic geometry inputs (newjob = 1).

Nomenclature

b axial shape parameter

B cross-sectional shape parameter; ratio of principal radii of curvature

e axial eccentricity of nose

r, z, � cylindrical coordinates, in units speci�ed via iunit

raxi radius for axisymmetric conic body

RN body nose radius, in units speci�ed via iunit

Rxz radius of curvature in symmetry plane, in units speci�ed via iunit

Ryz radius of curvature in side plane, in units speci�ed via iunit

x, y, z Cartesian coordinates, in units speci�ed via iunit

� body half-angle for conic geometry, deg

Subscript:

junct juncture between blunted forebody and cone afterbody

For many con�gurations of interest, the body shape can be de�ned by a conic equation.

Consider an axisymmetric conic body rotated about the z-axis, whose nose is at (z = 0; r = 0):

r2axi = r2 = 2RNz � bz2 (B:1)

The slope for this body is
dr

dz
=

RN � bz

r
(B:2)

so that at the nose, the slope is in�nite.

The character of the conic nose is dictated by the axial shape parameter (b) which is related

to its eccentricity (e). The relationship for b � 1 is

e =
p
1� b or b = 1� e2

while for b > 1 it is

e =

r
1� 1

b
or b =

1

1� e2

109

Table B.1. Character of Axisymmetric Conic Geometry

Shape b e

Hyperbola < 0 > 1

Parabola 0 1

Ellipse > 0 < 1

Circle 1 0

These results are summarized in table B.1, which shows that b has a unique value for a parabola

(where b = 0) and a sphere (b = 1). The value of b for a hyperbola is related to the half-angle

(�) of its asymptote by the following equation:

b = � tan2 � (B:3)

An ellipse can be used to de�ne the forebody of a blunted cone. The afterbody can be

described by the simple equation

raxi = r = rjunct + (z � zjunct) tan � (B:4)

where rjunct and zjunct are the coordinates of the juncture between the ellipse and cone. The

slope of the cone is
dr

dz
= tan � (B:5)

At the juncture between the ellipsoidal forebody and cone afterbody, both the position and

slope of the body are continuous. The coordinates of this juncture can be determined by equating

equations (B.2) and (B.5), substituting equation (B.1) for r, and solving for z. The resultant

axial location of this juncture is

zjunct =
RN

b

�
1� tan �p

b+ tan2 �

�
=

RN

b

1� sin �p

b cos2 � + sin2 �

!
(B:6)

The corresponding value for rjunct can be found from equation (B.1):

r2junct = 2RNzjunct � bz2junct (B:7)

NOTE: Substituting a value of b = 1 into equation (B.1) yields

r2axi = r2 = 2RNz � z2

which is an equation for a circle. For axisymmetric
ow, this gives a spherical

forebody, with the sphere-cone juncture located at

zjunct = RN [1� sin �] rjunct = RN cos �

NOTE: The above discussion can be applied to two-dimensional conics by simply

replacing the variable r with y, the subscript axi with 2-D, and the word \cone" with

\wedge."

110

x

+ +
θ
z

y

Rxz

Ryz

Figure B.1. De�ning parameters for general conic geometry.

The above discussion can be extended to three-dimensional geometries (�g. B.1) with the

following expression:

r23-D = r2 =
r2axi

B cos2 � + sin2 �
(B:8)

where RN = Ryz jz=0 in equation (B.1), and

� =

8><
>:

0 (upper symmetry plane)

�=2 (side plane)

� (lower symmetry plane)

The cross-sectional shape parameter is de�ned as

B =
Ryz

Rxz

����
z=0

Values of B > 0 produce elliptical cross sections. The equation for an axisymmetric body is

recovered by setting B = 1, which gives a circular cross section.

NOTE: For b = B = 1, equation (B.8) gives a sphere of radius RN .

The cylindrical coordinates (r,�) can be converted to Cartesian coordinates (x,y) using the

following relations:

x = r cos� y = r sin�

111

112

Appendix C

Installation Procedure

This appendix covers the structure of INSTALL LAURA.4.1 and the structure of mAch+prOc.

C.1. Structure of INSTALL LAURA.4.1

This script installs the LAURA code on this machine using the following procedures. Create

a subdirectory for the LAURA source code (screen 57):

VERSION=LAURA.4.1

if [-d $VERSION]; then # (if $VERSION exists already)...

chmod 700 $VERSION

chmod 700 $VERSION/* 2> /dev/null

chmod 700 $VERSION/CUSTOM/* 2> /dev/null

rm -r $VERSION

fi

mkdir $VERSION

Screen 57.

Extract the source code from LAURA.4.1.tar.Z (screen 58):

cd $VERSION

zcat ../LAURA.4.1.tar.Z | tar xf -

Screen 58.

Compile and run the C program mAch+prOc to determine the machine architecture and number

of available processors (screen 59):

113

cc mach+proc.c -o mach+proc # Determine architecture type

set `mach+proc` -- # and number of processors.

Screen 59.

Compile the FORTRAN executables (ArrAy, flOwInIt, mAkEblk, sIzEIt, and stArt) as follows

(screen 60):

if ["$1" = "0"]; then

cf77 array.f -o ArrAy /dev/null

cf77 flowinit.f -o flOwInIt /dev/null

cf77 makeblk.f -o mAkEblk /dev/null

cf77 sizeit.f -o sIzEIt /dev/null

cf77 start.f -o stArt /dev/null

fi

if ["$1" = "1"]; then

f77 array.f -o ArrAy 2> /dev/null

f77 flowinit.f -o flOwInIt 2> /dev/null

f77 makeblk.f -o mAkEblk 2> /dev/null

f77 sizeit.f -o sIzEIt 2> /dev/null

f77 start.f -o stArt 2> /dev/null

fi

if ["$1" = "2"]; then

f77 array.f -o ArrAy 2> /dev/null

f77 flowinit.f -o flOwInIt 2> /dev/null

f77 makeblk.f -o mAkEblk 2> /dev/null

f77 sizeit.f -o sIzEIt 2> /dev/null

f77 start.f -o stArt 2> /dev/null

fi

if ["$1" = "3"]; then

fc array.f -o ArrAy 2> /dev/null

fc flowinit.f -o flOwInIt 2> /dev/null

fc makeblk.f -o mAkEblk 2> /dev/null

fc sizeit.f -o sIzEIt 2> /dev/null

fc start.f -o stArt 2> /dev/null

for FILE in *.F; do

NOEXT=`basename $FILE .F`

mv $FILE $NOEXT.FOR

done

fi

Screen 60.

NOTE: For CONVEX architectures, the su�xes of the subroutine �les are changed

from .F to .FOR.

Tailor DEFAULTS to this machine (screen 61):

114

echo " $1 machine 0=CRAY, 1=SUN, 2=SGI,

3=CONVEX" > temp

echo " $2 nprocmx number of processors a

vailable" >> temp

cat DEFAULTS >> temp

mv temp DEFAULTS

Screen 61.

Remove write privileges for all �les to discourage user alteration of the LAURA �les in

$HOME/LAURA.4.1 (screen 62):

chmod 500 *

chmod 400 DEFAULTS TOP *.f mAch+prOc.c start* *.F* *.data *.inc

cd ..

chmod 500 $VERSION

Screen 62.

Add aliases for ARCHIVE, BLOX, CUSTOMIZE, INITIALIZE, KEEPER, LOCALIZE, PRELUDE, RESTORE,

SIZEIT, and XCUSTOM to the user's .cshrc �le (screen 63):

if [! "`grep PRELUDE .cshrc | grep $VERSION .cshrc`"]; then

echo ">> Do you wish to add aliases to .cshrc (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

for FILE in ARCHIVE BLOX CUSTOMIZE INITIALIZE KEEPER LOCALIZE PR

ELUDE RESTORE SIZEIT XCUSTOM; do

echo "alias $FILE �/$VERSION/$FILE" >> .cshrc

done

fi

fi

Screen 63.

NOTE: Type the command

source .cshrc

to activate the PRELUDE alias for this shell.

115

C.2. Structure of mAch+prOc

The C program mAch+prOc determines the architecture type, as well as available processors

(nprocmx), for the host machine. This program is compiled and executed by INSTALL LAURA.4.1.

The information is used by INSTALL LAURA.4.1 to initialize the variables machine and nprocmx

in DEFAULTS, which is later accessed by stArt. The operating system is also identi�ed so that

the various script �les can be properly tailored to the host architecture.

NOTE: On SGI systems, the existence of the R8000 CPU hardware is considered. If

it exists, start.f is modi�ed so that the appropriate
ags are used in the compilation

of laura via the Makefile.

The source code for mAch+prOc.c is as follows (screen 64):

#include <stdio.h>

#include <unistd.h>

#ifdef CONVEX SOURCE

include <sys/sysinfo.h>

#elif sun || sgi

include <sys/utsname.h>

include <string.h>

ifdef sgi

include <sys/sysmp.h>

include <invent.h>

endif

#endif

#ifdef sgi

istfp()

f
ifdef INV IP21BOARD

inventory t *entry;

while ((entry=getinvent())!=NULL) f
if (entry->inv class==INV PROCESSOR)

if (entry->inv type==INV CPUBOARD)

if (entry->inv state==INV IP21BO

ARD) f
endinvent();

return(1);

g
g
return(0);

else

return(0);

endif

g
#endif

Screen 64.

116

main()

f
int machine=0, processors=0, ostype=0, tfp=0;

if sun || sgi

struct utsname name;

char *i;

elif CONVEX SOURCE

struct system information sysinfo;

endif

ifdef CRAY

machine=0;

ifdef SC CRAY NCPU

processors=(int)sysconf(SC CRAY NCPU);

else

processors=1;

endif

endif

ifdef sun

machine=1;

ifdef SC NPROCESSORS CONF

processors=(int)sysconf(SC NPROCESSORS CONF);

else

processors=1;

endif

uname(&name);

if ((i=strchr(name.release,'.'))!=NULL)

*i='n0';
if (strcmp(name.release,"5")==0)

ostype=1;

endif

Screen 64. Continued.

117

ifdef sgi

machine=2;

processors=sysmp(MP NPROCS);

uname(&name);

if ((i=strchr(name.release,'.'))!=NULL)

*i='n0';
if (strcmp(name.release,"6")==0)

ostype=1;

if (istfp()==1)

tfp=1;

endif

ifdef CONVEX SOURCE

machine=3;

getsysinfo(SYSINFO SIZE, &sysinfo);

processors=sysinfo.cpu count;

endif

printf("machine, processors, ostype, tfp);

exit(0);

g

Screen 64. Concluded.

118

Appendix D

Structure of PRELUDE

In addition to serving as a front end for stArt, the script PRELUDE provides �le manage-

ment capability in the working (LOCAL) directory. Speci�cally, the user is given the option to

remove or keep LOCAL versions of �les that are created by stArt. By default, PRELUDE uses the

$HOME/LAURA.4.1 (baseline) version of stArt. However, if CUSTOM versions of any stArt source

�les exist, a CUSTOM version of stArt is used in lieu of the baseline version. Further, if LOCAL

versions of any stArt source �les exist, a LOCAL version of stArt is used in lieu of the baseline or

CUSTOM version. After stArt is completed, PRELUDE creates subdirectory STRTfiles and places

those include �les created by stArt there (.strt su�xes). If STRTfiles already exists, then

the �les it contains are updated based on this latest execution of stArt.

The �le conv.out contains the running residual history for a given case. If a new case is to

be run in the same directory, the user may wish to remove the existing �le so that the �le begins

with the new case (screen 65):

VERSION=LAURA.4.1

if [-f conv.out]; then

echo "File n`conv.out' already exists."

echo " Do you wish to remove it (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm conv.out

echo " File n`conv.out' removed."

else

echo " File n`conv.out' saved."

fi

fi

Screen 65.

119

The user is also given the option to preserve or overwrite existing RESTART.in, TWALL.in,

and data �les each time PRELUDE is run (screen 66):

if files RESTART.in TWALL.in data already exist...

for FILE in `ls RESTART.in TWALL.in data 2> /dev/null`; do

echo "File n`$FILE' already exists."

echo " Do you wish to update it nc"
echo "during this PRELUDE session (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $FILE

echo " File n`$FILE' removed."

else

echo " File n`$FILE' saved."

fi

done

Screen 66.

Next, PRELUDE checks for the existence of LOCAL �les with a .strt su�x. If any exist, the

user is given the option to save or discard them before stArt is executed (screen 67):

for FILE in `ls *.strt 2> /dev/null`; do

echo "LOCAL n`$FILE' exists."

echo " Do you wish to preserve it (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

echo " LOCAL n`$FILE"' saved.

else

rm $FILE

echo " LOCAL n`$FILE"' removed.

fi

done

Screen 67.

120

PRELUDE expects to �nd the �le DEFAULTS in the LOCAL directory. If it is present, but empty,

PRELUDE removes it. If it is present, but outdated, the user is given the option to update it. The

�le is removed, if an update is speci�ed. After these possibilities are considered, a �nal check is

made to see if it exists. If not, the $HOME/LAURA.4.1 version is copied to the LOCAL directory

(screen 68):

if [-f DEFAULTS]; then

if ["`wc -l DEFAULTS | awk 'fprint $1g'`" -lt "`wc -l $HOMER/DEFAULTS |

awk 'fprint $1g'`"]; then

rm DEFAULTS # rm DEFAULTS if empty or incomplete

fi

fi

if [-f DEFAULTS]; then

if ["`grep nprocmx DEFAULTS | awk 'fprint $1g'`" = "0"]; then

rm DEFAULTS # rm DEFAULTS if corrupted

fi

fi

if [-f DEFAULTS]; then

if ["`grep nprocs DEFAULTS | awk 'fprint $1g'`" = "0"]; then

rm DEFAULTS # rm DEFAULTS if corrupted

fi

fi

if [-f DEFAULTS]; then

if [! "`grep $VERSION DEFAULTS`"]; then

echo "WARNING: File n`DEFAULTS' outdated. Update (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm DEFAULTS

fi

echo "WARNING: File n`INPUTS' may be outdated as well."

fi

fi

if [! -f DEFAULTS]; then #

cp $home/$VERSION/DEFAULTS . # If LOCAL DEFAULTS file DNE,

chmod 600 DEFAULTS # copy INSTALL'ed version.

fi #

Screen 68.

121

If any LOCAL versions of stArt source �les exist, a LOCAL stArt executable is created and

used in lieu of the $HOME/LAURA.4.1 version. This compilation requires the creation of symbolic

links to any stArt source �les (in either $HOME/LAURA.4.1 or $HOME/LAURA.4.1/CUSTOM) which

are not LOCAL. If a LOCAL executable already exists, PRELUDE checks to see if it needs to be

recompiled (screen 69):

if ["`ls -t st*rt* | awk 'fprint $1g' | head -1`" = "stArt"]; then

echo " < LOCAL n`stArt' executable is up to date >"

else

if [-f stArt]; then

echo " < Updating LOCAL n`stArt' executable >"

else

echo " < Creating LOCAL n`stArt' executable >"

fi

if [-d $HOMER/CUSTOM]; then

for FILE in `cd $HOMER/CUSTOM; ls -t start* 2> /dev/null`; do

if [! -f $FILE]; then

ln -s $HOMER/CUSTOM/$FILE .

fi

done

fi

for FILE in `cd $HOMER; ls -t start*`; do

if [! -f $FILE]; then

ln -s $HOMER/$FILE .

fi

done

$(compile) start.f -o stArt

for FILE in `ls -t start*`; do

if ["`ls -lt $FILE | grep LAURA`"]; then

rm $FILE

fi

done

fi

Screen 69.

where

compile =

(
CF (CRAY architectures)

FC (all others)

If LOCAL stArt source �les are not present, the possibility of CUSTOM �les is considered. If

they exist and the stArt executable is not up to date, it is recompiled. First, however, symbolic

links are created to any stArt source �les (in $HOME/LAURA.4.1), which are not in CUSTOM

(screen 70):

122

(cd $HOMER/CUSTOM;

if ["`ls -t st*rt* | awk 'fprint $1g' | head -1`" = "stArt]; then

echo " < CUSTOM n`stArt' executable is up to date>";

else

if [-f stArt]; then

echo " < Updating CUSTOM n`stArt' executable >";

else

echo " < Creating CUSTOM n`stArt' executable >";

fi

chmod 700 $HOMER;

chmod 700 $HOMER/CUSTOM;

for FILE in `cd $HOMER; ls -t start*`; do

if [! -f $FILE]; then

ln -s $HOMER/$FILE .;

fi

done;

$(compile) start.f -o stArt;

for FILE in `ls -t start*`; do

if ["`ls -lt $FILE | grep LAURA`"]; then

rm $FILE;

fi

done

chmod 500 $HOMER;

chmod 500 $HOMER/CUSTOM;

fi)

ln -s $HOMER/CUSTOM/stArt . # link to CUSTOM stArt

Screen 70.

If no LOCAL or CUSTOM versions of stArt source �les exist, create a symbolic link to the

$HOME/LAURA.4.1 stArt executable and use the following:

ln -s $HOMER/stArt . # ...use DEFAULT stArt.

123

Now stArt is executed, and it reads its required inputs either from the screen or from �le

INPUTS (screen 71):

if ["$1"]; then # Run start...

stArt < $1 # ...reading from INPUTS.

else #

stArt # ...reading from screen.

fi #

if ["`ls -lt stArt | grep LAURA`"]; then # Remove stArt if it's

rm stArt # just a sym-link

fi # to default stArt.

if [-f variabletw]; then

if ["`wc -l variabletw | awk 'print $1'`" = "0"]; then

rm variabletw # rm variabletw if it is empty

fi

fi

Screen 71.

After stArt is executed, several subdirectories are created (if they do not already exist). Next,

the old CHILDREN �le is removed, and a new symbolic link is established (screen 72):

mkdir OBJfiles OBJfiles/LOCAL OBJfiles/CUSTOM STRTfiles 2> /dev/null

rm -f OBJfiles/CHILDREN CHILDREN # remove old CHILDREN file & sym-link

touch OBJfiles/CHILDREN # create empty OBJfiles/CHILDREN file

ln -s OBJfiles/CHILDREN CHILDREN # create new CHILDREN sym-link

Screen 72.

124

A reference copy of Makefile is created, and the INPUTS and DEFAULTS �les are updated

(screen 73):

if [! -f .Makefile]; then

cp Makefile .Makefile # make a reference copy of Makefile

fi

mv INPUTS.active INPUTS # update INPUTS file for stArt

update DEFAULTS file (including VERSION number) for stArt

echo " VERSION=$VERSION" > TeMP

tail +2 DEFAULTS.active >> TeMP

mv TeMP DEFAULTS

rm DEFAULTS.active

Screen 73.

Based on user speci�cations, up to three LAURA input �les are created by stArt: data,

RESTART.in, and TWALL.in. In actuality, these are initially written to temporary �les (with

.TeMP su�xes). Before stArt was executed by PRELUDE, the user was given the opportunity to

save data, RESTART.in, and TWALL.in, if they were already in existence. If a �le was saved then,

its new version is removed now. If it was not saved, the new �le takes its place (screen 74):

if [-f data]; then

rm data.TeMP

else

mv data.TeMP data

fi

for FILE in `ls TWALL.TeMP RESTART.TeMP 2> /dev/null`; do #

INPUT=`echo $FILE | awk -F. 'fprint $1g'`.in

if [-f $INPUT]; then

rm $FILE

else

if ["`ls -lt $FILE | grep ' 0 '`"]; then # remove

rm $FILE # existing file

fi # (if empty).

mv $FILE $INPUT

fi

done #

Screen 74.

125

Next, the �les created by stArt (.TeMP su�xes) are moved to STRTfiles (with a .strt

su�x). However, if the �le already resides in STRTfiles, and it is identical to the LOCAL �le,

the LOCAL �le is simply removed (screen 75):

for FILE in *.TeMP; do # for *.strt just created...

STRT=`echo $FILE | awk -F. 'fprint $1g'`.strt

if [! -f STRTfiles/$STRT]; then # if file DNE in STRTfiles,

mv $FILE STRTfiles/$STRT # move it there,

chmod 400 STRTfiles/$STRT # and make it read only

else #

diff $FILE STRTfiles/$STRT > /dev/null 2>&1

if [$? -ne 0]; then # if files differ...

echo " Updated file n`$STRT'"
mv -f $FILE STRTfiles/$STRT # move to STRTfiles

chmod 400 STRTfiles/$STRT # make it read only

else #

echo " No change in file n`$STRT'"
rm $FILE # else...

fi # remove LOCAL file

fi #

done

Screen 75.

Any LOCAL �les with a .strt su�x are compared with their new counterparts (now in STRTfiles).

If they are identical, the LOCAL version is removed (screen 76):

126

if ["`ls *.strt 2> /dev/null`"]; then

for FILE in *.strt; do

diff $FILE STRTfiles > /dev/null 2>&1

if [$? -ne 0]; then # if new & old files are identical...

rm -f $FILE

echo "LOCAL n`$FILE' identical to STRTfiles version"

echo " Therefore, LOCAL n`$FILE' removed."

fi

done

fi

Screen 76.

An estimate for the memory required, based on values from stArt, is calculated through

execution of the LAURA utility SIZEIT (appendix M). If an external grid (newjob = 0) was

speci�ed in stArt, the user is given the option to initialize this grid now. This initialization

requires that the user input the name of the �le that contains the grid (in PLOT3D format). The

LAURA utility INITIALIZE (appendix I) is then executed for this �le (screen 77):

$HOME/$VERSION/SIZEIT

if ["`grep newjob DEFAULTS | awk 'fprint $1g'`" = "0"]; then

if [! -f RESTART.in]; then # if RESTART.in DNE...

echo "Do you wish to initialize grid file now (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

echo "Enter name of grid file: "

read GRIDIN

$HOME/$VERSION/INITIALIZE $GRIDIN

fi

fi

fi

Screen 77.

127

128

Appendix E

Makefile and Its Supporting Files

When PRELUDE is run, stArt creates a sophisticated Makefile for LAURA based on the

user inputs and the machine architecture. When the resultant Makefile is activated, it in turn

executes a number of script �les. The structure of the Makefile and its supporting cast are

discussed in the subsections of this appendix.

E.1. Structure of Makefile

The Makefile contains a preamble that is common to all cases and architectures (screen 78):

PROG= laura

SHELL= /bin/sh

SOURCE= $(HOME)/LAURA.4.1

OBJDIR= OBJfiles

STRTDR= STRTfiles

DBGDIR= BUGOUT

FORDIR= FORTRAN

Screen 78.

The source �les are supplied through the SRCS list. The contents of this list are case dependent

as shown below (screen 79):

129

SRCS= aaa.F abseig.F abseig1.F algnshk.F asave.F atime.F n
blkout.F bmat.F bndr.F bndrfmn.F bndrmn.F bound.F n
blturb.F csturb.F parab.F prabola.F stretch.F n (turbulence)

boundf.F boundr.F boundu.F boundv.F consrv.F defbod.F n
defmom.F dirswp.F double.F dropone.F drv.F efg.F n
etherm.F prand.F tannehill.F vinokur.F vintabl.F visc.F n (equilibrium)

gatdf1.F gatdf2.F gatdf3.F gatgeof.F nsbnd.F n (full Navier-Stokes)

gatface.F gatfgmn.F gatfmn.F gatgeo.F gatgeoa.F gatgmn.F n
gatmn.F gatscat.F gatscta.F gauss.F invflx.F limiter.F n
inv2d.F n (ndim 6= 3)

kinetic.F source.F air.F n (nonequilibrium)

metric.F minmod.F moment.F outputa.F plotprep.F prpavg.F n
prpaxj.F q4iuniv.F reload.F rmat.F saveblk.F n
sample handler.F n (SUN)

setup.F swptask.F taskit.F thermo.F trnsprt.F viscflx.F n
sthrlnd.F n (perfect gas)

wrapup.F

OBJS= $(SRCS:.F=.o)

Screen 79.

NOTE: The LAURA algorithm uses compile directives to activate and deactivate

coding based on user speci�cations for a given application. These directives are

used by the host machine's preprocessor. On most architectures, the preprocessor

is applied automatically to any �le with a .F su�x during its FORTRAN compilation.

For CONVEX architectures, however, the preprocessor is applied automatically to

any �le with a .FOR su�x. This anomaly is handled during the installation process

(chapter 5) and by stArt. However, notice the .FOR su�xes if the Makefile is edited

on CONVEX architectures.

The compilation
ags (which are architecture dependent) are supplied next. For CRAY

machines, they are as follows (screen 80):

NPROC= nprocs

#PROFLIB=-lprof # Profile library

#FFLAGS=-Wf"-a stack -ez" # profile

#FFLAGS=-Wf"-a stack -ez" -F # flowtrace

FFLAGS= -Wf"-a stack -o aggress" # optimize

DFLAGS= -Wf"-a stack -g" # debug

Screen 80.

For SUN machines, the
ags are as follows (screen 81):

130

#FFLAGS=-C -p # check bounds & profile

FFLAGS= -O3 # optimize

DFLAGS= -C -g # check bounds & debug

Screen 81.

For SGI machines, they are as follows (screen 82):

#FFLAGS=-check bounds -p # check bounds & profile

FFLAGS= -O2 # optimize

DFLAGS= -check bounds -g # check bounds & debug

Screen 82.

For CONVEX machines, they are as follows (screen 83):

#FFLAGS=-cs -p # check bounds & profile

FFLAGS= -O3 # optimize

DFLAGS= -cs -g # check bounds & debug

Screen 83.

The epilogue to the Makefile is

include CHILDREN

which provides the Makefile with a list of included �les (.inc and .strt su�xes) that each

source �le (.F, .FOR, or .f su�x) is dependent upon. This allows make to recognize whether a

�le (or any include �le it depends upon) has been modi�ed since the last make. If not, the �le

is not recompiled, thus saving compilation time and costs.

E.1.1. Command: make

The command

make

executes the following \default" procedure (screen 84):

131

default:

@echo ""; n
@echo "<Estimating memory requirements for executable >"; n
@echo ""; n
@$(SOURCE)/SIZEIT

@echo ""; n
@echo "<Building symbolic links in $(OBJDIR) >"; n
@echo ""; n
@$(SOURCE)/SYMLINKS $(SOURCE) $(OBJDIR) $(STRTDR) $(PROG) $(DBGDIR)

@if ["$(FORTDR)" = "$(FORDIR)"]; then n
echo ""; n
echo "< Preprocessing .F files >"; n
echo ""; n
(cd $(FORDIR); n

for FILE in $(SRCS); do n

Screen 84.

The structure of the script SIZEIT is given in appendix M. The structure of the script SYMLINKS

is given in appendix E, section E.2. The preprocessing sequence is machine dependent. For

CRAY and SGI machines, it is as follows:

$(compile) -P ../$(OBJDIR)/$$FILE; n
mv `basename $$FILE .F`.i `basename $$FILE .F`.f; n

where

compile =

(
CF (CRAY architectures)

FC (all others)

For SUN machines, it is as follows:

$(FC) -F ../$(OBJDIR)/$$FILE; n

For CONVEX machines, it is as follows:

NOEXT=`basename ../$(OBJDIR)/$$FILE .FOR`; n
cpp ../$(OBJDIR)/$$FILE > $$NOEXT.f; n

The remainder of the default procedure is shown below (screen 85):

132

done); n
else n

$(SOURCE)/CHECKERS $(OBJDIR) $(DBGDIR); n
echo ""; n
echo "< Building object files and executable >"; n
echo ""; n
(cd $(OBJDIR); n
make FFLAGS='$(FFLAGS)' $(PROG)); n

fi

@if [! "$(OBJDIR)" = "$(DBGDIR)"]; then n
echo ""; n
echo "< Removing symbolic links in $(OBJDIR) >"; n
echo ""; n
(cd $(OBJDIR); n

rm -f Make* start* *.F* *.f *.inc *.strt *.trace; n
exit 0); n

fi

$(PROG):$(OBJS)

$(compile) $(FFLAGS) -o $@ $(OBJS)

Screen 85.

where

make =

(
pmake� Jnprocs; (SGI architectures)

make; (all others)

The structure of the script CHECKERS is given in appendix E, section E.3. The following sequence

is required for SGI architectures only:

$(OBJS):$(@:.o=.F)

$(FC) $(FFLAGS) -c $(@:.o=.F)

The following sequence is required for CONVEX architectures only:

$(OBJS):$(@:.o=.FOR)

$(FC) -pp=cpp $(FFLAGS) -c $(@:.o=.FOR)

133

E.1.2. Command: make debug

The command

make debug

executes the following procedure (which, in turn, executes the default make procedure, (screen 86)):

debug:

@if [! -d $(DBGDIR)]; then n
echo ""; n
echo "< Creating $(DBGDIR) to hold required files >"; n
echo ""; n
mkdir $(DBGDIR) $(DBGDIR)/CUSTOM $(DBGDIR)/LOCAL; n
for FILE in data RESTART.in transition TWALL.in variabletw; do n

if [-f $$FILE]; then n
ln -s ../$$FILE $(DBGDIR)/$$FILE; n

fi n
done n

fi

@make FFLAGS='$(DFLAGS)' OBJDIR=$(DBGDIR)

Screen 86.

E.1.3. Command: make fortran

The command

make fortran

executes the following procedure (which, in turn, executes the default make procedure (screen 87)):

fortran:

@if [! -d $(FORDIR)]; then n
echo ""; n
echo "< Creating $(FORDIR) to hold preprocessed files >"; n
echo ""; n
mkdir $(FORDIR) ; n

fi

@make FORTDR=$(FORDIR)

Screen 87.

134

E.1.4. Command: make clean

The command

make clean

removes all existing object �les (.o su�x) from the OBJfiles subdirectory. The procedure is as

follows (screen 88):

clean:

@if ["`cd $(OBJDIR); ls *.o 2> /dev/null`"]; then n
echo ""; n
echo "< Removing object files from $(OBJDIR) >"; n
echo ""; n
rm $(OBJDIR)/*.o; n

else n
echo ""; n
echo "< ERROR: No object files exist in $(OBJDIR) >"; n
echo ""; n

fi

Screen 88.

135

E.2. Structure of SYMLINKS

The script SYMLINKS is executed by the Makefile during its compilation of the LAURA

code. This script establishes symbolic links to the source �les necessary for this compilation.

As a result, the Makefile knows when to use a LOCAL or CUSTOM version of a �le in lieu of the

installed ($HOME/LAURA.4.1) version. The �rst step in this linking process is to remove any links

that might remain from a previously aborted compilation (screen 89):

VERSION=LAURA.4.1

SOURCE=$1

OBJECT=$2

START=$3

PROG=$4

DEBUG=$5

cd $OBJECT

rm -f Make* *.data *.F* *.f *.inc *.strt 2> /dev/null

Screen 89.

Next, the default links are reestablished (screen 90):

ln -s ../$START/* . 2> /dev/null

ln -s ../Makefile . 2> /dev/null

ln -s $SOURCE/Makedep* . 2> /dev/null

ln -s $SOURCE/*.F* . 2> /dev/null

ln -s $SOURCE/*.inc . 2> /dev/null

ln -s $SOURCE/*.data . 2> /dev/null

if ["$OBJECT" != "$DEBUG"]; then

rm -f ../$PROG 2> /dev/null

ln -s $OBJECT/$PROG ../$PROG

fi

rm -f start* CUSTOM/*.rm LOCAL/*.rm 2> /dev/null

Screen 90.

136

If any CUSTOM �les exist, they are used instead of the $HOME/LAURA.4.1 versions. To accom-

plish this, the $HOME/LAURA.4.1 symbolic link is replaced with a link to the CUSTOM �le. The

possibility that CUSTOM �les from the last compilation will no longer exist is also considered.

First, the status of CUSTOM subroutine �les (.F, .FOR, and .f su�xes) is checked (screen 91):

rm CUSTOM/*.rm 2> /dev/null

for FILE in `cd CUSTOM; ls *.F* *.f 2> /dev/null`; do

echo "CUSTOM n`$FILE' used in last compilation..."

NOEXT=`echo $FILE | awk -F. 'fprint $1g'`
if [! -f $SOURCE/CUSTOM/$FILE]; then

echo "but CUSTOM n`$FILE' does not exist."

if [-f $NOEXT.o]; then

rm $NOEXT.o

rm CUSTOM/$FILE

fi

else

echo " CUSTOM n`$FILE' still exists, and will be used in this c

ompilation."

if [! "`grep $VERSION $SOURCE/CUSTOM/$FILE`"]; then

echo " WARNING: VERSION mismatch. Still use (y/n) fng
?"

read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $NOEXT.F*

ln -s $SOURCE/CUSTOM/$FILE .

else

rm $NOEXT.o 2> /dev/null

touch CUSTOM/$FILE.rm

fi

else

rm $NOEXT.F*

ln -s $SOURCE/CUSTOM/$FILE .

fi

fi

done

Screen 91.

137

Next, the status of CUSTOM include �les (.inc su�xes) is reviewed (screen 92):

for INC in `cd CUSTOM; ls *.inc 2> /dev/null`; do

echo "CUSTOM n`$INC' used in last compilation..."

if [! -f $SOURCE/CUSTOM/$INC]; then

echo "but CUSTOM n`$INC' does not exist."

rm CUSTOM/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in `cd $DIR; grep -l $INC *.F* *.f 2> /dev/null

`; do

NOEXT=`echo $FILE | awk -F. 'fprint $1g'`
if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

done

else

echo " CUSTOM n`$INC' still exists, and will be used in this co

mpilation."

if [! "`grep $VERSION $SOURCE/CUSTOM/$INC`"]; then

echo "WARNING: VERSION mismatch. Still use (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $INC

ln -s $SOURCE/CUSTOM/$INC .

else

touch CUSTOM/$INC.rm

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in `cd $DIR; grep -l $INC *.F*

*.f 2> /dev/null`; do

NOEXT=`echo $FILE | awk -F. 'fpr
int $1g'`

if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

done

fi

else

rm $INC

ln -s $SOURCE/CUSTOM/$INC .

fi

fi

done

Screen 92.

138

New CUSTOM �les may have been created since the last compilation. Therefore, the next step

is to locate any CUSTOM �les that were not used in the previous compilation and replace the

$HOME/LAURA.4.1 link with a link to the CUSTOM �le (screen 93):

for FILE in `cd $SOURCE/CUSTOM; ls *.F* *.f 2> /dev/null | grep -v start`; do

if ["`cd CUSTOM; ls $FILE 2> /dev/null`"]; then

if ["`cd CUSTOM; ls $FILE.rm 2> /dev/null`"]; then

rm CUSTOM/$FILE*

fi

else

echo "CUSTOM n`$FILE' exists, and will be used in this compilati

on."

if [! "`cd LOCAL; ls $FILE 2> /dev/null`"]; then

NOEXT=`echo $FILE | awk -F. 'fprint $1g'`
if [! "`grep $VERSION $SOURCE/CUSTOM/$FILE`"]; then

echo " WARNING: VERSION mismatch. Still use (

y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; the

n

rm $NOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

ln -s $SOURCE/CUSTOM/$FILE .

touch CUSTOM/$FILE

fi

else

rm $NOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

ln -s $SOURCE/CUSTOM/$FILE .

touch CUSTOM/$FILE

fi

fi

fi

done

Screen 93.

139

for INC in `cd $SOURCE/CUSTOM; ls *.inc 2> /dev/null | grep -v start`; do

if ["`cd CUSTOM; ls $INC 2> /dev/null`"]; then

if ["`cd CUSTOM; ls $INC.rm 2> /dev/null`"]; then

rm CUSTOM/$INC*

fi

else

echo "CUSTOM n`$INC' exists, and will be used in this compilatio

n."

if [! "`cd LOCAL; ls $INC 2> /dev/null`"]; then

if [! "`grep $VERSION $SOURCE/CUSTOM/$INC`"]; then

echo " WARNING: VERSION mismatch. Still use (

y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; the

n

rm $INC

ln -s $SOURCE/CUSTOM/$INC .

touch CUSTOM/$INC

else

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in `cd $DIR; grep -l $I

NC *.F* *.f 2> /dev/null`; do

NOEXT=`echo $FILE | awk

-F. 'fprint $1g'`
if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

done

fi

else

rm $INC

ln -s $SOURCE/CUSTOM/$INC .

touch CUSTOM/$INC

fi

fi

fi

done

Screen 93. Concluded.

140

An analogous procedure is employed for LOCAL �les. If a LOCAL �le exists, it is used in place

of the $HOME/LAURA.4.1 or CUSTOM versions through the creation of a link to the LOCAL �le. The

status of LOCAL subroutine �les (.F, .FOR, and .f su�xes) is checked (screen 94):

rm LOCAL/*.rm 2> /dev/null

for FILE in `cd LOCAL; ls *.F* *.f 2> /dev/null`; do

echo "LOCAL n`$FILE' used in last compilation..."

NOEXT=`echo $FILE | awk -F. 'fprint $1g'`
if [! -f ../$FILE]; then

echo " but LOCAL n`$FILE' does not exist."

if [-f $NOEXT.o]; then

if [-f $SOURCE/CUSTOM/$FILE]; then

touch CUSTOM/$FILE

fi

rm $NOEXT.o

rm LOCAL/$FILE

fi

else

echo " LOCAL n`$FILE' still exists, and will be used in this co

mpilation."

if [! "`grep $VERSION ../$FILE`"]; then

echo " WARNING: VERSION mismatch. Still use (

y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $NOEXT.F* CUSTOM/$NOEXT.* 2> /dev/null

ln -s ../$FILE .

else

if [-f $SOURCE/CUSTOM/$FILE]; then

touch CUSTOM/$FILE

fi

rm $NOEXT.o 2> /dev/null

touch LOCAL/$FILE.rm

fi

else

rm $NOEXT.F* CUSTOM/$NOEXT.* 2> /dev/null

ln -s ../$FILE .

fi

fi

done

Screen 94.

Next, the status of LOCAL include �les (.inc and .strt su�xes) is reviewed (screen 95):

141

for INC in `cd LOCAL; ls *.inc *.strt 2> /dev/null`; do

echo "LOCAL n`$INC' used in last compilation..."

if [! -f ../$INC]; then

echo "but LOCAL n`$INC' does not exist."

if [-f $SOURCE/CUSTOM/$INC]; then

touch CUSTOM/$INC

fi

rm LOCAL/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [-d $DIR]; then

for FILE in `cd $DIR; grep -l $INC *.F* *.f 2> /

dev/null`; do

NOEXT=`echo $FILE | awk -F. 'fprint $1g'
`

if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

fi

done

else

echo " LOCAL n`$INC' still exists, and will be used in this com

pilation."

if [! "`grep $VERSION ../$INC`"]; then

echo "WARNING: VERSION mismatch. Still use (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $INC CUSTOM/$INC 2> /dev/null

ln -s ../$INC .

else

if [-f $SOURCE/CUSTOM/$FILE]; then

touch CUSTOM/$FILE

fi

touch LOCAL/$INC.rm

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [-d $DIR]; then

for FILE in `cd $DIR; grep -l $I

NC *.F* *.f 2> /dev/null`; do

NOEXT=`echo $FILE | awk

-F. 'fprint $1g'`
if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

fi

done

fi

else

rm $INC CUSTOM/$INC 2> /dev/null

ln -s ../$INC .

fi

fi

done

Screen 95.

142

Finally, any LOCAL �les that were not used in the previous compilation are located, and the

existing link is replaced with a link to the LOCAL �le (screen 96):

for FILE in `cd ..; ls *.F* *.f 2> /dev/null | grep -v start`; do

if ["`cd LOCAL; ls $FILE 2> /dev/null`"]; then

if ["`cd LOCAL; ls $FILE.rm 2> /dev/null`"]; then

rm LOCAL/$FILE*

fi

else

echo "LOCAL n`$FILE' exists, and will be used in this compilatio

n."

NOEXT=`echo $FILE | awk -F. 'fprint $1g'`
if [! "`grep $VERSION ../$FILE`"]; then

echo "WARNING: VERSION mismatch. Still use (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $NOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

ln -s ../$FILE .

touch LOCAL/$FILE

else

if [-f $SOURCE/CUSTOM/$FILE]; then

touch CUSTOM/$FILE

fi

fi

else

rm $NOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

ln -s ../$FILE .

touch LOCAL/$FILE

fi

fi

done

Screen 96.

143

for INC in `cd ..; ls *.inc *strt 2> /dev/null | grep -v start`; do

if ["`cd LOCAL; ls $INC 2> /dev/null`"]; then

if ["`cd LOCAL; ls $INC.rm 2> /dev/null`"]; then

rm LOCAL/$INC*

fi

else

echo "LOCAL n`$INC' exists, and will be used in this compilation

."

NOEXT=`echo $INC | awk -F. 'fprint $1g'`
if [! "`grep $VERSION ../$INC`"]; then

echo "WARNING: VERSION mismatch. Still use (y/n) fng?"
read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $INC CUSTOM/$INC 2> /dev/null

ln -s ../$INC .

touch LOCAL/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [-d $DIR]; then

for FILE in `cd $DIR; grep -l $I

NC *.F* *.f 2> /dev/null`; do

NOEXT=`echo $FILE | awk

-F. 'fprint $1g'`
if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

fi

done

else

if [-f $SOURCE/CUSTOM/$INC]; then

touch CUSTOM/$INC

fi

fi

else

rm $INC CUSTOM/$INC 2> /dev/null

ln -s ../$INC .

touch LOCAL/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [-d $DIR]; then

for FILE in `cd $DIR; grep -l $INC *.F*

*.f 2> /dev/null`; do

NOEXT=`echo $FILE | awk -F. 'fpr
int $1g'`

if [-f $NOEXT.o]; then

rm $NOEXT.o

fi

done

fi

done

fi

fi

done

Screen 96. Concluded.

144

The �nal task performed by SYMLINKS is to create the �le ECHOSTRT. This �le is a concatena-

tion of those include �les (with a .strt su�x) which contain FORTRAN parameter statements.

As discussed in section 9.2, these �les provide user control of LAURA during compilation. At

laura run-time, this �le is printed to standard output.

NOTE: The �le ECHOSTRT should not be mistakenly edited in an attempt to e�ect

changes to the laura executable. Modi�cations should be made via PRELUDE, or

through a LOCAL version of the appropriate source �les, followed by a recompilation

of laura (screen 97):

rm -f ECHOSTRT 2> /dev/null

cat $HOME/$VERSION/TOP > ECHOSTRT

echo " File n`ECHOSTRT' was created by n`make' on `date`." >> ECHOSTRT

for FILE in HEADER.strt algnshk vars.strt gas model vars.strt n
issd assn.strt iupwind assn.strt mtaska assn.strt n
nordbc assn.strt parameter.strt source vars.strt n
sthrlnd vars.strt; do

if [-f $FILE]; then

echo "Contents of LOCAL file n`$FILE':" >> ECHOSTRT

LINES=`wc -l $FILE | awk 'fprint $1g'`
LINES=`expr $LINES - 8`

tail +6 $FILE | head -$LINES >> ECHOSTRT

else

if ["`cd $START; wc -l $FILE | awk 'fprint $1g'`" = "8"]; then

echo "File n`$FILE' is not active." >> ECHOSTRT

else

echo "Contents of file n`$FILE':" >> ECHOSTRT

LINES=`wc -l $START/$FILE | awk 'fprint $1g'`
LINES=`expr $LINES - 8`

tail +6 $START/$FILE | head -$LINES >> ECHOSTRT

fi

fi

done

Screen 97.

NOTE: As mentioned in section 10.1, the contents of �le data (as well as �les

assign tasks, transition, and variabletw, if they exist at run-time), are also

echoed to standard output. However, since these �les provide user control during

execution rather than compilation, their contents are not included in �le ECHOSTRT.

Rather, as their contents are read in by LAURA, they are also echoed to the screen

so that the values that are actually used in the current run are re
ected.

The logic here checks for the presence of LOCAL versions of these �les. If any are present, they

are concatenated in lieu of the originals produced by stArt (which are located in STRTfiles,

a subdirectory of the LOCAL directory). A complete list of LOCAL and CUSTOM �les used in this

145

compilation is also included in ECHOSTRT. Thus, ECHOSTRT is a record of the user-de�ned tailoring

that was used in the most recent compilation of LAURA (screen 98):

if [-d $OBJECT/LOCAL]; then

if ["`ls -t $OBJECT/LOCAL`"]; then # if dir is not empty...

echo "The following LOCAL files were used in the last n`make':"
>> ECHOSTRT

for FILE in `cd $OBJECT/LOCAL; ls * 2> /dev/null`; do

echo " $FILE" >> ECHOSTRT

done

fi #

fi

if [-d $OBJECT/CUSTOM]; then

if ["`ls -t $OBJECT/CUSTOM`"]; then # if dir is not empty...

echo "The following CUSTOM files were used in the last n`make':"
>> ECHOSTRT

for FILE in `cd $OBJECT/CUSTOM; ls * 2> /dev/null`; do

if [! -f $OBJECT/LOCAL/$FILE]; then

echo " $FILE" >> ECHOSTRT

fi

done

fi #

fi

chmod 400 ECHOSTRT

Screen 98.

146

E.3. Structure of CHECKERS

CHECKERS executes Makedep to determine which included �les each source �le depends upon.

The structure of the script Makedep is given in appendix E, section E.4. CHECKERS also compares

the Makefile being executed with a reference copy (�le .Makefile). If the compilation
ags

have been changed since the last make, the object �les are removed. File . Makefile is initially

created by PRELUDE. It is updated each time this check is positive (screen 99):

OBJECT=$1

DEBUG=$2

echo "< Building dependency list >"

(cd $OBJECT; Makedep > CHILDREN)

REMOVER=0

if ["$OBJECT" = "$DEBUG"]; then

if [-f $DEBUG/.Makefile]; then

if ["`diff Makefile $DEBUG/.Makefile | grep DFLAGS=`"]; then

REMOVER=1

fi

if ["`diff Makefile $DEBUG/.Makefile | grep LFLAGS=`"]; then

REMOVER=1

fi

else

cp Makefile $DEBUG/.Makefile

fi

else

if ["`diff Makefile .Makefile | grep FFLAGS=`"]; then

REMOVER=1

fi

if ["`diff Makefile .Makefile | grep LFLAGS=`"]; then

REMOVER=1

fi

fi

Screen 99.

147

if ["$REMOVER" = "1"]; then

if ["`cd $OBJECT; ls *.o 2> /dev/null`"]; then

echo " < Flags in n`Makefile' have changed >"

echo " < since last compilation, therefore >"

echo " < removing object files from $OBJECT. >"

rm $OBJECT/*.o

if ["$OBJECT" = "$DEBUG"]; then

cp Makefile $DEBUG/.Makefile

else

cp Makefile .Makefile

fi

fi

fi

Screen 99. Concluded.

E.4. Structure of Makedep

This script determines the include dependencies of each LAURA source �le. Makedep is

the front end for the \awk" (a UNIX utility) �le Makedep.awk (screen 100):

for file in *.f *.F *.FOR; do

awk -f Makedep.awk $file 2> /dev/null

done

Screen 100.

Makedep.awk establishes the �le interdependencies by locating all include statements in

each of the subroutine �les (.f, .F, and .FOR su�xes). (See screen 101.)

148

BEGIN f
n=0;

g

With BEGIN finished, read the file.

/ include/ f
This is the pattern to match.

m=split($0,nf,"n"") # Try to split the line using the "

if (m==1) m=split($0,nf,"'"); # separator. If line was not split

if (m>1) # into m > 1 parts, then try to split

f # using the ' separator. If either

fc=substr(nf[1],1,1); # split works, then check whether the

if (fc=="#" || fc==" ") # character in column 1 is a # or space.

f # If either is true, then the 2nd

n++; # field on the line is the file name

fn[n]=nf[2] # to include.

g
g

g

Screen 101.

Although only \preprocessor" include statements are used in LAURA, this search also checks

for FORTRAN include statements that might be introduced in tailored �les.

149

These dependencies are output in a format that is usable in the Makefile (screen 102).

END f
split(FILENAME,inp,"."); # Extract the input filename.

line=inp[1] ".o: nt"; # Add .o extension and tab to name.

if (n==0) # If no includes were found in

f # this file, then just print

print line; # the filename and exit.

exit ;

g
j=1;

while (j<=n) # Loop though each included filename.

f
i=1;

while (i<=3) # Only put 3 filenames on one line.

f
line=line fn[j] " "; # Concatenate the names.

j++;

if (j-1==n) break; # Determine if

if (i==3) line=line "nn"; # continuation

i++; # characters

g # are required.

print line; # Output the line.

line="nt nt";
g

g

Screen 102.

Makedep is executed each time the Makefile is executed, and its output is directed to the

�le CHILDREN. The �le CHILDREN is accessed by the Makefile to determine which include �les

(.inc and .strt su�xes) each source �le (.F, .FOR, or .f su�x) is dependent upon. If any of

these �les have been modi�ed more recently than the object �le (.o su�x) was created, then

the object �le is recompiled. In other words, with each execution of make, only those object �les

that are outdated are recompiled.

150

Appendix F

Structure of ARCHIVE

The script ARCHIVE provides the user with an archival capability for the given working

directory. In other words, a user can use this command to save key �les for future use. These

�les can be restored at some future date using the RESTORE command (appendix L). After the

restoration process, the solution can be picked up where it left o�.

The command ARCHIVE is executed from the present working (LOCAL) directory. The proce-

dure is as follows. First, a temporary subdirectory named ARCHIVE is created:

HOMER=$HOME/$VERSION

mkdir ARCHIVE 2> /dev/null

Within this directory, several subdirectories are created to hold various classes of �les. First,

the DEFAULTS and INPUTS �les are saved in case the user would like to repeat PRELUDE in the

future (screen 103):

if ["`ls DEFAULTS INPUTS 2> /dev/null`"]; then

mkdir ARCHIVE/IN 2> /dev/null

for FILE in DEFAULTS INPUTS; do

if [-f $FILE]; then

cp $FILE ARCHIVE/IN

fi

done

fi

Screen 103.

151

Next, the input �les for laura (RESTART.in, assign tasks, transition, TWALL.in, and variabletw)

are saved to provide a smooth restart capability (screen 104):

mkdir ARCHIVE/CONTROL 2> /dev/null

for FILE in RESTART.in assign tasks data transition TWALL.in variabletw; do

if [-f $FILE]; then

cp $FILE ARCHIVE/CONTROL

fi

done

if [! "`ls -t ARCHIVE/CONTROL`"]; then

rmdir ARCHIVE/CONTROL

fi

Screen 104.

If the master input �les (RESTART.MASTER and TWALL.MASTER) exist, they are also saved, along

with the �le conv.out, which contains the convergence history for the run (screen 105):

if ["`ls RESTART.MASTER TWALL.MASTER 2> /dev/null`"]; then

mkdir ARCHIVE/MASTER 2> /dev/null

for FILE in RESTART.MASTER TWALL.MASTER; do

if [-f $FILE]; then

cp $FILE ARCHIVE/MASTER

fi

done

fi

if [-f conv.out]; then

mkdir ARCHIVE/CONV 2> /dev/null

cp conv.out ARCHIVE/CONV

fi

Screen 105.

152

Copies of any CUSTOM �les that might exist are saved as follows (screen 106):

if ["`ls OBJfiles/CUSTOM`"]; then

mkdir ARCHIVE/CUSTOM 2> /dev/null

for FILE in `ls OBJfiles/CUSTOM 2> /dev/null`; do

cp $HOMER/CUSTOM/$FILE ARCHIVE/CUSTOM

done

fi

Screen 106.

Any LOCAL �les are also saved (screen 107):

if ["`ls OBJfiles/LOCAL`"]; then

mkdir ARCHIVE/LOCAL 2> /dev/null

for FILE in `ls OBJfiles/LOCAL 2> /dev/null`; do

cp $FILE ARCHIVE/LOCAL

done

fi

Screen 107.

153

Now the contents of the subdirectory ARCHIVE are ready to be packaged in a tarfile. First,

the user is prompted for the desired name for this �le. Next the tarfile is created. As a �nal

step, the subdirectory ARCHIVE and its contents are removed (screen 108):

echo " Enter name for ARCHIVE file: "

read TARFILE

if [-f $TARFILE]; then

echo " File n`$TARFILE' already exists. Overwrite it (y/n) fng? "

read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm -f $TARFILE

else

echo " ARCHIVE procedure aborted"

exit 0

fi

fi

cd ARCHIVE

tar cf ../$TARFILE *

chmod 400 ../$TARFILE

cd ..

rm -r ARCHIVE

Screen 108.

154

Appendix G

Structure of BLOX

The script BLOX allows a user to assemble several computational blocks into a single-block,

master copy of the solution. This utility also allows the user to partition a master copy of the

solution into several blocks to reduce memory overhead associated with multitasking. Smaller

working blocks can also be created from the master to concentrate relaxation cycles in critical

regions or to implement a block marching strategy (from nose to tail and/or from windside to

leeside) over vehicles. As solutions in the smaller working blocks are converged, they can be

resaved in the master copy using the BLOX utility.

BLOX operates on the working copy restart �le, RESTART.in, and, if necessary, on the asso-

ciated wall temperature �le, TWALL.in. The respective master �les are called RESTART.MASTER

and TWALL.MASTER. To use this utility, the user types

BLOX

which serves as a front-end to the mAkEblk FORTRAN executable. The user is prompted for

information through a series of questions. When this interactive mAkEblk session is completed,

the BLOX utility automatically compiles �le exchange.f to create ExchAngE, which is the FORTRAN

executable that implements the speci�ed exchange from either the working �le to the master �le

or vice versa.

The utility then attempts to execute ExchAngE. If the restart �les are very large, local system

defaults may not permit interactive execution of ExchAngE. In these cases, the user will need to

submit ExchAngE in the working directory as a batch job according to local system protocol. A

sample script �le is shown in screen 109.

.

QSUB -lT 100

QSUB -lM 20mw

cd work dir

ExchAngE

Screen 109.

155

Here, it is speci�ed that the size of the executable is less than 20 megawords and requires less

than 100 seconds of CPU time (screen 110).

NOTE: The utility BLOX has no e�ect on the executable laura. Changes in bound-

ary conditions or working block dimensions associated with reblocking, if necessary,

are implemented with the utility PRELUDE.

VERSION=LAURA.4.1

HOMER=$HOME/$VERSION

rm mAkEblk exchange.f 2> /dev/null

ln -s $HOMER/mAkEblk .

mAkEblk

rm mAkEblk

if [! -f exchange.inc]; then

mv exchange.tmp exchange.inc

ln -s $HOMER/exchange.f .

f77 exchange.f -o ExchAngE

rm exchange.f

else

diff exchange.tmp exchange.inc > /dev/null 2>&1

if [$? -ne 0]; then # if files differ...

mv exchange.tmp exchange.inc

ln -s $HOMER/exchange.f .

f77 exchange.f -o ExchAngE

rm exchange.f

else

rm exchange.tmp

fi

fi

Screen 110.

156

if ["`grep machine $HOMER/DEFAULTS | awk 'fprint $1g'`" = "0"]; then

ExchAngE > errout 2>&1

if ["`wc -l errout | awk 'fprint $1g'`" = "1"]; then

echo " ABORT: Job is too large to run interactively on this ma

chine."

echo " n`ExchAngE' must be submitted as a batch job."

else

cat echout

echo " ...Completed n`ExchAngE' procedure"

fi

rm echout 2> /dev/null

else

ExchAngE

echo " ...Completed n`ExchAngE' procedure"

fi

for FILE in TWALL.in TWALL.MASTER; do

if ["`wc -c $FILE | awk 'fprint $1g'`" = "0"]; then

rm $FILE

fi

done

Screen 110. Concluded.

157

158

Appendix H

Structure of CUSTOMIZE

As discussed in chapter 8, the philosophy behind the �le directory structure of LAURA is

that the bulk of the LAURA algorithm can be packaged such that the constituent �les do not

change from one application to the next. These �les reside in the user's \$HOME/LAURA.4.1"

directory. For advanced applications, LOCAL copies of these �les can be created (appendix K)

and modi�ed. Subsequent compilations of LAURA will use these local �les rather than the

$HOME/LAURA.4.1 versions.

A LOCAL version of �le lfn will only be used in the current working directory. There may be

occasions when the user would like to use this tailored �le in directories other than the current

one. The obvious approach is to copy the LOCAL �le to the other directory. Rather than copying

a LOCAL �le from directory to directory, however, the command

CUSTOMIZE lfn

can be used to place this LOCAL �le in the $HOME/LAURA.4.1/CUSTOM directory. Any future

compilations of LAURA (from any working directory on this machine) will use this

$HOME/LAURA.4.1/CUSTOM �le in lieu of the $HOME/LAURA.4.1 version.

Several steps must be performed by this command to create a CUSTOM �le. First, the write-

protection for \$HOME/LAURA.4.1" must be removed, and the subdirectory CUSTOM created as

follows (screen 111):

VERSION=LAURA.4.1

FILE=$1

chmod 700 $HOME/$VERSION # make CUSTOM read/write/execute

if [! -d $HOME/$VERSION/CUSTOM]; then # if subdirectory CUSTOM DNE...

mkdir $HOME/$VERSION/CUSTOM; # ...create it

fi #

chmod 700 $HOME/$VERSION/CUSTOM # make CUSTOM read/write/execute

Screen 111.

Next, the LOCAL �le is moved to CUSTOM. However, if a CUSTOM version of lfn already exists,

159

and the two �les are identical, the LOCAL �le is simply removed. On the other hand, if a CUSTOM

version of lfn already exists, and the two �les di�er, the user is given the option to update the

CUSTOM �le (screen 112):

if file DNE in CUSTOM...

if [! -f $HOME/$VERSION/CUSTOM/$FILE]; then

mv $FILE $HOME/$VERSION/CUSTOM # move it there, &

chmod 400 $HOME/$VERSION/CUSTOM/$FILE # make it read only

echo "File n`$FILE' added to n$HOME/$VERSION/CUSTOM."
echo "Future compilations will use this file in lieu"

echo "of the n$HOME/$VERSION version of n`$FILE'."

else #

diff $FILE $HOME/$VERSION/CUSTOM/$FILE > /dev/null 2>&1

if [$? -ne 0]; then # if files differ...

echo "File n`$FILE' already exists"

echo "in n$HOME/$VERSION/CUSTOM. Update (y/n)?"

read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

mv -f $FILE $HOME/$VERSION/CUSTOM # move to CUSTOM

chmod 400 $HOME/$VERSION/CUSTOM/$FILE # make read only

echo "File n`$FILE' updated in n$HOME/$VERSION/CUSTOM."
echo "Future compilations will use this in lieu "

echo "of the n$HOME/$VERSION version of n`$FILE'."

fi #

else # else...

rm -f $FILE # ...remove it

echo " No change in $FILE in n$HOME/$VERSION/CUSTOM"#

fi #

fi #

Screen 112.

The �nal step is to reestablish write protection for the \$HOME/LAURA.4.1" �les as follows:

chmod 500 $HOME/$VERSION/CUSTOM # make read/execute

chmod 500 $HOME/$VERSION # make read/execute

160

Appendix I

Structure of INITIALIZE

As discussed in section 9.1.1, the LAURA restart �le (RESTART.in) consists of
ow �eld prop-

erties (velocities, temperatures, and densities) for each cell, along with the grid. The INITIALIZE

script allows the user to use an externally generated grid with LAURA. This utility creates a

RESTART.in �le from a grid �le in PLOT3D format. The command

INITIALIZE lfn

takes a grid �le lfn, initializes its
ow �eld to free-stream values, and outputs the �le RESTART.in.

NOTE: INITIALIZE gleans information from several �les that are created by stArt.

Therefore, PRELUDE must be executed before an externally generated grid can be

initialized.

In laura, the grid must be oriented such that y = 0 is the plane of symmetry. The user can

encounter externally generated grids with other orientations. Before running INITIALIZE, it is

recommended that the user reorient the grid to conform to the examples shown in �gures 2.1

and 2.2. An alternative involves changing the de�nition of uinf, vinf, and winf for laura and

INITIALIZE (section 7.9.1).

INITIALIZE uses the following procedure. First, it checks to see if the �le RESTART.in exists.

If so, the user is given the option to overwrite it as follows (screen 113):

161

VERSION=LAURA.4.1

GRIDIN=$1

if [-f $GRIDIN]; then

if [-f RESTART.in]; then

echo " File n`RESTART.in' already exists."

echo " Do you wish to remove it (y/n) fng?"
read ANSWER

if ["$ANSWER" = "n" -o "$ANSWER" = "N"]; then

exit 0

fi

fi

else

echo " ERROR: File n`$GRIDIN' not found."

exit 0

fi

Screen 113.

The species indices are obtained from �le species strt (which is created by stArt). If a LOCAL

version of species strt exists, that �le is used. This information is placed in �le flowinit.in,

as shown in screen 114:

HOMER=$HOME/$VERSION

rm flowinit.in 2> /dev/null

if ["`ls STRTfiles/species.strt species.strt`"]; then

if [! -f species.strt]; then

ln -s STRTfiles/species.strt .

fi

grep "=" species.strt | awk -F= 'print $2' > flowinit.in

if ["`ls -lt species.strt | grep STRTfiles`"]; then

rm species.strt

fi

else

echo "ERROR: File n`species.strt' not found."

fi

Screen 114.

162

The number of species is obtained from �le parameter strt (which is created by stArt). If

a LOCAL version of parameter strt exists, that �le is used. This value is added to the �le

flowinit.in (screen 115):

if ["`ls STRTfiles/parameter.strt parameter.strt`"]; then

if [! -f parameter.strt]; then

ln -s STRTfiles/parameter.strt .

fi

grep "ns =" $FILE | awk -F= 'print $2' >> flowinit.in

if ["`ls -lt parameter.strt | grep STRTfiles`"]; then

rm parameter.strt

fi

else

echo "ERROR: File n`parameter.strt' not found."

fi

Screen 115.

The angle of attack, angle of yaw, free-stream temperature, and free-stream velocity are obtained

from �le DEFAULTS (which is updated by stArt). This information is added to �le flowinit.in

(screen 116):

if [-f DEFAULTS]; then

grep attack DEFAULTS >> flowinit.in

grep yaw DEFAULTS >> flowinit.in

grep tinf DEFAULTS >> flowinit.in

grep vinfb DEFAULTS >> flowinit.in

else

echo "ERROR: File n`DEFAULTS' not found."

fi

Screen 116.

163

The program ArrAy reads the prescribed computational block dimensions from �le lfn. If a

larger dimension is required than that speci�ed in the $HOME/LAURA.4.1 version of flowinit.inc,

a LOCAL version of flowinit.inc is created, and flowinit.f is recompiled. Next, flOwInIt is

executed to initialize the grid based on the values in flowinit.in. The resultant
ow �eld is

output to create RESTART.in (screen 117):

rm grid.in 2> /dev/null

ln -s $GRIDIN grid.in

$HOME/$VERSION/ArrAy # create LOCAL flowinit.inc, if necessary.

if ["`ls flowinit.* 2> /dev/null`"]; then

echo " < LOCAL n`flOwInIt' executable will be used

>"

if ["`ls -t fl* | awk 'fprint $1g' | head -1`" = "flOwInIt"]; then

echo " < LOCAL n`flOwInIt' executable is up to da

te >"

else

echo " < Creating LOCAL n`flOwInIt' executable

>"

if [-d $HOMER/CUSTOM]; then

for FILE in `cd $HOMER/CUSTOM; ls flowinit.* 2> /dev/

null`; do

if [! -f $FILE]; then

ln -s $HOMER/CUSTOM/$FILE .

fi

done

fi

for FILE in `cd $HOMER; ls flowinit.*`; do

if [! -f $FILE]; then

ln -s $HOMER/$FILE .

fi

done

FC flowinit.f -o flOwInIt

for FILE in `ls flowinit.*`; do

if ["`ls -lt $FILE | grep LAURA`"]; then

rm $FILE

fi

done

fi

else

rm flOwInIt 2> /dev/null

fi

Screen 117.

164

if [! -f flOwInIt]; then

if [-d $HOMER/CUSTOM]; then

if ["`cd $HOMER/CUSTOM; ls flowinit.* 2> /dev/null`"]; then

echo " < CUSTOM n`flOwInIt' executable wi

ll be used >"

(cd $HOMER/CUSTOM;

rm *trace 2> /dev/null;

if ["`ls -t fl* | awk 'fprint $1g' | head -1`" = "flOwI

nIt"]; then

echo " < CUSTOM n`flOwInIt' execu

table is up to date >";

else

echo " < Creating CUSTOM n`flOwIn
It' executable >";

chmod 700 $HOMER;

chmod 700 $HOMER/CUSTOM;

for FILE in `cd $HOMER; ls flowinit.*`; do

if [! -f $FILE]; then

ln -s $HOMER/$FILE .;

fi

done;

FC flowinit.f -o flOwInIt;

for FILE in `ls flowinit.*`; do

if ["`ls -lt $FILE | grep LAURA`"]; then

rm $FILE;

fi

done

chmod 500 $HOMER;

chmod 500 $HOMER/CUSTOM;

fi)

ln -s $HOMER/CUSTOM/flOwInIt .

else

rm $HOMER/CUSTOM/flOwInIt 2> /dev/null

if [! "`ls $HOMER/CUSTOM`"]; then

chmod 700 $HOMER

chmod 700 $HOMER/CUSTOM

rmdir $HOMER/CUSTOM

chmod 500 $HOMER

fi

ln -s $HOMER/flOwInIt .

fi

else

ln -s $HOMER/flOwInIt .

fi

fi

Screen 117. Continued.

165

flOwInIt

if ["`ls -lt flOwInIt | grep LAURA`"]; then # Remove flOwInIt if

rm flOwInIt # it's just a sym-link

fi # to default flOwInIt.

rm grid.in 2> /dev/null

exit 0

Screen 117. Concluded.

166

Appendix J

Structure of KEEPER

This script allows the user to create backups of RESTART.in and TWALL.in by simply typing

the command

KEEPER

Backups for the master �les (RESTART.MASTER and TWALL.MASTER), which exist when multiple

computational blocks are employed in the solution procedure, are also created. If a previous

backup �le is encountered, the user is given the option of updating it (screen 118):

BACKUP='backup'

echo " Enter desired suffix for these backup files f$BACKUPg:"
read BACKUP

for FILE `ls in RESTART.in TWALL.in *.MASTER 2> /dev/null`; do

if [-f $FILE.$BACKUP]; then

echo "LOCAL file n`$FILE.$BACKUP' already exists. Update (y/n) f
ng?"

read ANSWER

if ["$ANSWER" = "y" -o "$ANSWER" = "Y"]; then

rm $FILE.$BACKUP

cp $FILE $FILE.$BACKUP

echo "File n`$FILE' copied to n`$FILE.$BACKUP'"
fi

else

cp $FILE $FILE.$BACKUP

echo "File n`$FILE' copied to n`$FILE.$BACKUP'"
fi

fi

Screen 118.

167

NOTE: These LAURA restart �les (RESTART.in and TWALL.in) are only overwrit-

ten at the conclusion of a successful run, so \backing up" these �les is not mandatory.

In some cases, however, doing so can provide peace of mind for the user.

168

Appendix K

Structure of LOCALIZE

As discussed in chapter 8, the philosophy behind the �le directory structure of LAURA is that

the bulk of the LAURA algorithm can be packaged such that the constituent �les do not change

from one application to the next. These �les reside in the user's $HOME/LAURA.4.1 directory.

For advanced applications, LOCAL copies of these �les can be created with the command

LOCALIZE lfn

and modi�ed. Subsequent compilations of LAURA will use these LOCAL �les rather than the

$HOME/LAURA.4.1 versions.

First, LOCALIZE checks to see if a LOCAL lfn already exists. If so, the user has the option to

abort the request or continue (and overwrite the existing LOCAL �le) as shown in screen 119:

VERSION=LAURA.4.1

FILE=$1

if [-f $FILE]; then

echo " LOCAL file n`$FILE' already exists. Overwrite (y/n) fng?"
read ANSWER

else

ANSWER='y'

fi

Screen 119.

If the request is not aborted, LOCALIZE checks the following directories for the existence of

lfn:

� $HOME/LAURA.4.1|the directory containing baseline �les (.F, .FOR, and .inc su�xes)

� STRTfiles|the directory containing �les created by stArt(.strt su�xes)

� FORTRAN|the directory containing pure-FORTRAN �les (.f su�xes); this directory, and the

�les it contains, are created by the command

make fortran

169

which is discussed in section 8.3.

LOCALIZE copies the �le lfn from its directory of residence and makes it user-writable (screen 120):

EXIST=0

if [-f $HOME/$VERSION/$FILE]; then

if [-d $HOME/$VERSION/CUSTOM]; then

if [-f $HOME/$VERSION/CUSTOM/$FILE]; then

echo " WARNING: CUSTOM version of file n`$FILE' exists."

fi

fi

EXIST=1

cp $HOME/$VERSION/$FILE . # copy installed version

to LOCAL directory,

chmod 600 $FILE # and make it user-writable

fi

if [-f STRTfiles/$FILE]; then

EXIST=1

cp STRTfiles/$FILE . # copy file from STRTfiles

to LOCAL directory,

chmod 600 $FILE # and make it user-writable

fi

if [-f FORTRAN/$FILE]; then

EXIST=1

cp FORTRAN/$FILE . # copy file from FORTRAN to LOCAL dir

fi

Screen 120.

With any future compilations of LAURA (from this working directory), this LOCAL �le will be

used in lieu of the $HOME/LAURA.4.1 or CUSTOM (appendix H) versions.

170

If �le lfn does not exist in any of these directories, the following error message is sent to the

screen, and the request is aborted (screen 121):

if ["$EXIST" = "0"]; then

echo " ERROR: File n`$FILE' does not exist in the "

echo " n$HOME/$VERSION, STRTfiles, or FORTRAN directories."

else

echo " LOCAL copy of the n$HOME/$VERSION version of n`$FILE' created."

echo " Future compilations will use this LOCAL file in lieu of the"

echo " n$HOME/$VERSION or CUSTOM versions of n`$FILE'."
fi

Screen 121.

171

172

Appendix L

Structure of RESTORE

The script RESTORE allows the user to reconstruct a working directory from a �le lfn created

with the ARCHIVE command (appendix F). First, create a new working directory. Next, move

lfn (the tarfile created by ARCHIVE) to that directory. While in the new directory, type the

command

RESTORE lfn

and the following procedure will be executed. The tar�le is unloaded as shown in screen 122:

TARFILE=$1

tar xf $TARFILE

Screen 122.

The DEFAULTS and INPUTS �le are retrieved (screen 123):

if [-d IN]; then

for FILE in `ls -t IN`; do

mv IN/$FILE .

done

rmdir IN

fi

Screen 123.

173

The �le conv.out is retrieved (screen 124):

if [-d CONV]; then

mv CONV/conv.out .

rmdir CONV

fi

Screen 124.

Any input �les for laura (RESTART.in, assign tasks, transition, TWALL.in, and variabletw)

that were saved are retrieved (screen 125):

if [-d CONTROL]; then

for FILE in `ls -t CONTROL`; do

mv CONTROL/$FILE .

done

rmdir CONTROL

fi

Screen 125.

If the master input �les (RESTART.MASTER and TWALL.MASTER) were saved, they are restored

(screen 126):

if [-d MASTER]; then

for FILE in `ls -t MASTER`; do

mv MASTER/$FILE .

done

rmdir MASTER

fi

Screen 126.

174

If any LOCAL �les were saved, they are reinstated (screen 127):

if [-d LOCAL]; then

for FILE in `ls -t LOCAL`; do

mv LOCAL/$FILE .

done

rmdir LOCAL

fi

Screen 127.

NOTE: If any CUSTOM �les were saved, they are saved in a CUSTOM subdirec-

tory below this LOCAL directory. They are not automatically reinstated in the

$HOME/LAURA.4.1/CUSTOM directory to avoid the possibility of overwriting existing

CUSTOM �les. To restore them as CUSTOM �les, the user should cd to CUSTOM and use

the CUSTOMIZE command (appendix H) on the individual �les.

The following steps are required to pick up the solution where it left o� before archival:

� Type the command

PRELUDE INPUTS

to create the required subdirectories and source �les (.strt su�xes).

NOTE: Be sure to preserve the existing RESTART.in, data, and conv.out �les

when prompted.

� Type the command

make

to compile the LAURA source code and create the laura executable.

� Type the command

laura < data

to advance the solution.

175

176

Appendix M

Structure of SIZEIT

This script allows the user to estimate the memory requirements for the current application,

by simply typing the command

SIZEIT

Both PRELUDE and Makefile execute this script as part of their procedures.

The script SIZEIT serves as the front end for sIzEIt, which is the executable for the FORTRAN

routine sizeit.f. This routine solves equation (11.8), as well as equation (11.9) or (11.10), to

determine memory allocations for each task de�ned in �le assign tasks. If �le assign tasks

is not found, a single task with sweeping in the k-direction is assumed.

First, the size of the laura executable is determined (excluding the overhead associated with

the use of multitasking and/or the solid-state-device), as shown in screen 128:

if [-f laura]; then

if ["`ls -t STRTfiles/*.strt *.strt *.inc *.F* *.f laura 2> /dev/null |

awk 'f print $1g' | head -1`" = "laura"]; then

size laura | tail -1 | awk 'fprint $4g' > sizeit.in

else

echo "0" > sizeit.in

fi

else

echo "0" > sizeit.in

fi

Screen 128.

177

Next, the information required by sIzEIt is gathered from �les created by PRELUDE. Then

sIzEIt is executed to determine any additional memory requirements for the current job. The

results are saved in �le ECHOSIZE and echoed to the screen (screen 129):

if ["`ls -t STRTfiles/parameter.strt parameter.strt 2> /dev/null`"]; then

if [! -f DEFAULTS]; then

ln -s $HOME/$VERSION/DEFAULTS .

fi

if [! "`ls HEADER.strt 2> /dev/null`"]; then

ln -s STRTfiles/HEADER.strt .

fi

if ["`grep NAVIER HEADER.strt`"]; then

echo "2" >> sizeit.in

else

echo "0" >> sizeit.in

fi

if ["`ls -lt HEADER.strt | grep STRTfiles`"]; then

rm HEADER.strt

fi

if ["`grep machine DEFAULTS | awk 'fprint $1g'`" = "0"]; then

ln -s $HOME/$VERSION/eval param.f .

for FILE in issd assn.strt parameter.strt; do

if [! -f $FILE]; then

ln -s STRTfiles/$FILE .

fi

done

FC eval param.f -o EvAl pArAm 2> /dev/null

for FILE in issd assn.strt parameter.strt; do

if ["`ls -lt $FILE | grep STRTfiles`"]; then

rm $FILE

fi

done

EvAl pArAm >> sizeit.in

rm eval param.f EvAl pArAm

fi

Screen 129.

178

rm -f ECHOSIZE 2> /dev/null

$HOME/$VERSION/sIzEIt

if ["`wc -l ECHOSIZE | awk 'fprint $1g'`" = "0"]; then

rm ECHOSIZE # rm ECHOSIZE if it is empty

else

chmod 400 ECHOSIZE

cat ECHOSIZE

fi

rm sizeit.in

if ["`ls -lt DEFAULTS | grep LAURA`"]; then # Remove DEFAULTS if

rm DEFAULTS # it's just a sym-link

fi # to default DEFAULTS.

else

echo "ERROR: File n`parameter.strt' not found."

fi

Screen 129. Concluded.

179

180

Appendix N

Structure of XCUSTOM

The command

XCUSTOM lfn

nulli�es the

CUSTOMIZE lfn

command. In other words, it moves the �le lfn from the CUSTOM directory (appendix H) to the

LOCAL directory. This command performs the following tasks. First, the write-protection for

$HOME/LAURA.4.1, the subdirectory CUSTOM, and the �le lfn must be removed. Then the �le

itself is moved to the LOCAL directory. The �nal step is to reestablish write protection for the

$HOME/LAURA.4.1 �les (screen 130):

FILE=$1

if [-f $HOME/$VERSION/CUSTOM/$FILE]; then

chmod 700 $HOME/$VERSION # make dir read/write/execute

chmod 700 $HOME/$VERSION/CUSTOM # make dir read/write/execute

chmod 600 $HOME/$VERSION/CUSTOM/$FILE # make file read/write

mv $HOME/$VERSION/CUSTOM/$FILE . # move file to LOCAL directory

echo "CUSTOM n`$FILE' moved to LOCAL directory."

echo "Unless removed, future compilations will use this

echo "LOCAL version of n`$FILE'."
if [! "`ls -t $HOME/$VERSION/CUSTOM`"]; then # if dir is now empty...

rmdir $HOME/$VERSION/CUSTOM # ...remove it

else # else...

chmod 500 $HOME/$VERSION/CUSTOM # ...make read/execute

fi #

chmod 500 $HOME/$VERSION # make dir read/execute

else

echo "File n`$FILE' does not exist in n$HOME/$VERSION/CUSTOM."
fi

Screen 130.

181

182

Appendix O

LAURA Algorithm

Nomenclature

Note that boldface, lowercase symbols refer to vectors in parameter space. Boldface, up-

percase symbols refer to matrices in parameter space. An arrow over a lowercase symbol refers

to vectors in physical space, with (x; y; z)-coordinates. With the exception of the reaction rate

coe�cients and temperatures, all variables are nondimensional.

a frozen sound speed, nondimensionalized by V1
A Jacobian matrix of g with respect to q

B Jacobian matrix of h with respect to q

Cv;tr speci�c heat for translational-rotational energy

Cv;V speci�c heat for vibrational-electronic energy

cs mass fraction of species s

�cs average molecular speed of molecule s

Ds e�ective di�usion coe�cient of species s

E total energy per unit mass of mixture, nondimensionalized by V21
es energy per unit mass of species s

eV mixture vibrational-electronic energy per unit mass

eV;s vibrational-electronic energy per unit mass of species s
~f
ux vector in Cartesian space

g inviscid component of
ux vector relative to cell face

H total enthalpy per unit mass of mixture

h viscous component of
ux vector relative to cell face

h enthalpy

hs enthalpy per unit mass of species s

hV;s vibrational-electronic enthalpy per unit mass of species s

kb;r backward reaction rate coe�cient for reaction r

kf;r forward reaction rate coe�cient for reaction r
~l unit vector tangent to computational cell wall (~l � ~m = 0)

lx, ly, lz components of ~l in x-, y-, z-directions, respectively

ML point-implicit Jacobian of
ux terms

ML; INV point-implicit Jacobian of inviscid terms

ML;VIS point-implicit Jacobian of viscous terms

ML;SRC point-implicit Jacobian of source terms

Ms molecular weight of species s

~m unit vector tangent to computational cell wall (~l � ~m = 0)

183

mx, my, mz components of ~m in x-, y-, z-directions, respectively

N iteration level index

Nr number of reactions

Ns number of species

n normal distance

~n unit vector normal to computational cell wall (~n �~l = ~n � ~m = 0)

nx, ny , nz components of ~n in x-, y-, z-directions, respectively

~n number density

njcobian number of iterations between Jacobian updates

ntrnsprt number of iterations between transport property updates

p pressure

Qrad divergence of radiative
ux

q vector of conserved variables
�R universal gas constant

Rb;r backward reaction rate for reaction r

Rf;r forward reaction rate for reaction r

R matrix of left eigenvectors of A

r right-hand-side residual vector

r reaction rate

rf i relaxation factor used with inviscid Jacobian matrices

rf v relaxation factor used with viscous Jacobian matrices

s arc length

sl, sm, sn arc lengths in ~l-, ~m-, ~n-directions, respectively

T translational-rotational temperature

TV vibrational-electron-electronic excitation temperature

t time

U , V , W velocity component in the ~n-, ~l-, and ~m-directions, respectively

u, v, w velocity components in x-, y-, z-directions, respectively

V1 free-stream total velocity, m/s

x, y, z Cartesian coordinates

ys mole fraction of species s

�s;r stoichiometric coe�cient for reactants in reaction r

� In general, � = @p=@ (�E); for perfect gas, this reduces to � =
 � 1

�s;r stoichiometric coe�cient for products in reaction r

 ratio of speci�c heats

~
r @p=@�r
�, �o parameters for de�ning minimum eigenvalue

� frozen thermal conductivity for translational-rotational energy

�V frozen thermal conductivity for vibrational-electronic energy

� 0 for �rst-order; 1 for second-order approximation to inviscid
ux

� eigenvalue of A
~� restricted eigenvalue of A

� diagonal matrix of eigenvalues of A

� mixture viscosity

�sj reduced mass of species s and j

�, �, � computational coordinates

� mixture density

�s density of species s

184

� cell face area

�s cross section of species s for translational-vibrational energy exchange

� shear stress

< �s > vibrational relaxation time de�ned in equation (O.56)

��V relaxation time de�ned in equation (O.53)

� @p=@ (�eV)

� dummy variable for �, �, or �

_! vector of source terms

_!s mass production rate of species s per unit volume

_!V vibrational-electronic energy source term

 cell volume

Subscripts:

e electron

I, J, K indices of cell centers in �-, �-, �-directions, respectively

i, j, k indices of cell walls in �-, �-, �-directions, respectively

L dummy index for cell center

l dummy index for cell wall

r reaction r or species r

s species s

V vibrational-electronic

Superscripts:

n iteration level index

� relating to the thin-layer approximation

The following algorithm description is substantially the same as that provided in reference 32.

Updates are provided as appropriate for LAURA.

O.1. Finite-Volume Fundamentals

The integral form of the conservation laws applied to a single cell in the computational

domain is written Z Z Z
@ q

@t
d
 +

Z Z
~f � ~n d� =

Z Z Z
_! d
 (O:1)

In equation (O.1) the �rst term describes the time rate of change of conserved quantity q in

the control volume; the second term describes convective and dissipative
ux ~f through the cell

walls; and the third term accounts for sources or sinks of conserved quantities within the control

volume. The third term is identically zero for perfect-gas
ows, but it is required for
ows in

chemical or thermal nonequilibrium.

The �nite-volume approximation to equation (O.1) for a general, unstructured grid is written

�
� (q
)

�t

�
L

+

MLX
m=1

~fm � ~nm�m = [_!
]L (O:2)

185

where

�q = qn+1 � qn and �t = tn+1 � tn

and
L is constant with respect to time. Further, ML is the number of faces of cell L having

volume
, and subscript m refers to cell face m with surface area �m. The quantity ~nm is a

unit vector normal to cell face m in a direction facing away from the cell center. The dependent

variable q is de�ned at cell centers. The independent variables x, y, and z are de�ned at cell

corners.

The �nite-volume approximation to equation (O.1) for a rectangularly ordered, structured

grid is written �
�q

�t

�
I;J;K

+
h
~fi+1 � ~ni+1�i+1 �~fi � ~ni�i

i
J;K

+
h
~fj+1 � ~nj+1�j+1 �~fj � ~nj�j

i
I;K

(O.3)

+
h
~fk+1 � ~nk+1�k+1 �~fk � ~nk�k

i
I;J

= [_!
]I;J;K

A shorthand notation for equation (O.3) that will be used throughout this paper follows:�
�q

�t

�
L

+
X

l=i;j;k

h
~fl+1 � ~nl+1�l+1 �~fl � ~nl�l

i
= [_!
]L (O:4)

Note in equations (O.2) to (O.4) that the uppercase integer variables I , J , K, and L denote

computational coordinates at the cell centers, and the lowercase integer variables i, j, k, l, andm

denote the cell faces or the cell corners. For example, �i;J;K refers to the cell wall corresponding

to indices I� 1
2
; J;K (�g. O.1). In the shorthand notation of equation (O.4), the integer variable

l is used as a generic index for i; j; or k. This notation is convenient because most of the

formulations for quantities at the cell faces are independent of the coordinate direction. The

geometric quantities
, �, and ~n are easily derived given the Cartesian coordinates of the cell

corners. Details are found in appendix A of reference 2.

The formulations that follow are based on a rectangularly ordered, structured grid. A �rst-

order-accurate formulation of the inviscid equations on a structured grid is identical to the for-

mulation on an unstructured grid. The modi�cations required to achieve second-order accuracy

on an unstructured grid are not addressed in this paper. However, note that the formulations

for obtaining second-order accuracy only involve modi�cations to the right-hand-side residual

vector. The point-implicit relaxation procedure that will be de�ned by the formulation of the

left-hand-side matrix is independent of grid structure. Consequently, much of the development

that follows will carry over to unstructured grid formulations, as in the paper by Thareja et al.

(ref. 33).

O.2. Conservation Equations

The inviscid, viscous, and source term contributions to the complete conservation laws are

considered separately for convenience. Let

~fl � ~nl = gl + hl (O:5)

where gl de�nes the inviscid terms and hl de�nes the viscous terms. The �nite-volume formu-

lation of the conservation laws is now expressed as�
�q

�t

�
L

+
X

l=i;j;k

[gl+1�l+1 � gl�l] +
X

l=i;j;k

[hl+1�l+1 � hl�l] = [_!
]L (O:6)

186

i-1 i i+1 i+2 i+3

j-1

j

j+1

j+2

J+1

J

J-1

I+1I-1 I I+2

Cell center (I,J)

Cell corner (i,j)

Cell wall (I,j or i,J)

Figure O.1. Cell indexing system with cell corners de�ned by lowercase letters and cell centers

de�ned by uppercase letters.

In the case of a reacting gas
ow in which thermal nonequilibrium is modeled using a two-

temperature approximation, the vectors q, g, h, and _! are de�ned as

q =

2
66666664

�s
�u

�v

�w

�E

�eV

3
77777775

(O:7)

g =

2
66666664

�sU

�Uu+ pnx
�Uv + pny
�Uw+ pnz

�UH

�UeV

3
77777775

(O:8)

187

Table O.1. Species Indices

s 1 2 3 4 5 6 7 8 9 10 11

species N O N2 O2 NO N+ O+ N+
2 O+

2 NO+ e�

h =

2
6666666666666666666666666664

��Ds
@ys
@sn

��nx

��ny

��nz

�u�nx � v�ny � w�nz � �
@T

@sn
� �V

@TV

@sn
� �

NsX
s=1

hsDs
@ys

@sn

��V
@TV

@sn
� �

NsX
s=1

hV;sDs
@ys

@sn

3
7777777777777777777777777775

(O:9)

_! =

2
66666664

_!s
0

0

0

Qrad

_!V

3
77777775

(O:10)

The �rst element of the vectors de�ned in equations (O.7) to (O.10) describes the species

conservation; the next three elements describe x, y, and z momentum conservation; the �fth ele-

ment describes total energy conservation; and the sixth element describes vibrational-electronic

energy conservation. The present model considers the Ns = 11 species shown in table O.1.

Consequently, the vectors de�ned in equations (O.7) to (O.10) are composed of a total of 16

elements. Implicit in the use of a vibrational-electronic energy equation is the assumption that

the partition of energy in the vibrational, bound electronic, and free-electron modes among all

species can be described by a single temperature TV . This approximation is based on rapid equi-

libration of vibrational and electronic energy and electron translational modes (refs. 6 and 34).

The translational and rotational energy modes of heavy particles are assumed to be fully excited

and described by temperature T .

The thermochemical nonequilibrium model is described in detail in reference 4. Some speci�cs

on its formulation are given in a later section, but a brief overview is given below. The reactive

source terms for the species conservation equations are denoted by _!s. The radiative energy

transport term Qrad can be treated as a source term in the total energy equation. Although

its e�ects are not included in the baseline LAURA algorithm, one approach for including it is

discussed in section 11.6. Finally, the vibrational-electronic energy source term _!V accounts

for the mechanisms by which vibrational-electronic energy is lost or gained caused by collisions

among particles in the cell. These mechanisms include the energy exchange (relaxation) between

188

vibrational and translational modes caused by collisions within the cell, the vibrational energy

lost or gained because of molecular depletion (dissociation) or production (recombination) in the

cell, the electronic-translational energy exchange because of elastic collisions between electrons

and heavy particles, the energy loss caused by electron impact ionization, the rate of energy

loss caused by radiation caused by electronic transitions (a subset of Qrad in the total energy

equation (section O.5.3), and a term related to the work done on electrons by an electric �eld

induced by the electron pressure gradient minus the
ow work caused by electron pressure.

The electron pressure
ow work is normally considered as part of the electronic enthalpy in

the inviscid (convective) portion of the
ux balance. Moving the electron pressure from the

convective term to the source term simpli�es the expressions for eigenvalues and eigenvectors of

the Jacobian of the inviscid
ux vector.

O.3. Formulation of Inviscid Terms

The inviscid
ux vector at cell face l is de�ned

gl =

�
1

2
[gL;l + gL�1;l]

�
�
(

1

2 (�n)l
Rl j�lj

h
sl � �liml

i)
(O:11)

where

gL;l =
h
~fL � ~nl

i
INV

The �rst term in braces is a second-order-accurate base approximation for gl. The second

term in braces provides the upwind-biased numerical dissipation. It is a �rst-order dissipation

when � = 0. It is a second-order dissipation when � = 1. The term (�n)l is a shorthand notation

for ~r� � ~nl, and can be thought of as the inverse of the projected distance between cell centers

L and L � 1 in a direction normal to cell face l. It is de�ned in equations (O.69) to (O.71) in

section O.7. The variable � is a generic computational coordinate running in the direction of

increasing generic index L.

The vector sl is de�ned

sl = (�n)lR
�1
l

�
qL � qL�1

�
(O:12)

The matrix R�1l in equation (O.12) and the matrices Rl and �l in equation (O.11) are related

to the Jacobian of the inviscid
ux vector g with respect to q in the following manner:

A =
@g

@q
= R�R�1 (O:13)

The matrix Rl is the matrix of eigenvectors of Al, and �l is a diagonal matrix containing the

eigenvalues ofAl. These matrices are de�ned in section O.3.1. Their elements, which are required

at a cell face, are evaluated as appropriate averages of quantities at adjacent cell centers. This

averaging procedure is discussed in section O.6. The matrix j�lj is a diagonal matrix containing
the absolute values of the eigenvalues ofAl with constraints on the minimum allowed magnitude

of an eigenvalue given by

~�l =

8>>><
>>>:
j�lj ; j�lj � 2�l

�2l
4�l

+ �l; j�lj < 2�l

(O:14)

The eigenvalue limiter �l was �rst used by Harten (ref. 35) to prevent the formation of

expansion shocks across a sonic line where one eigenvalue equals zero. Its application is critical

189

in blunt body
ows to prevent instabilities (often in the form of reversed
ows at the stagnation

point); these instabilities occur in the stagnation region where the eigenvalue Ul is near zero. The

magnitude of �l, which is nondimensionalized by the free-stream velocity, is problem dependent.

Yee et al. (ref. 36) has suggested a functional dependence of �l on the local values of sound speed

and velocity. This relation has been adapted for use in the present work as follows:

�l = �o (al + jUlj+ jVlj+ jWlj) (O:15)

where �o is a user-de�ned constant that generally varies from 0.01 to 0.3. The larger values of

�o are required for
ows with extensive stagnation regions, as in the case of blunt-body
ows.

This limiter is called exclusively when the parameter iabseig = 0.

Experience shows that calculated convective heating levels are increased in the presence of a

highly stretched grid across the boundary layer (cell growth factor greater than 1.2) and values

of �o � 0:01. However, small values of �o (�o < 0:01) applied in all coordinate directions can

cause instabilities. Several approaches to reduce the limiter across the boundary layer have

been tried and documented in earlier versions of LAURA. The present approach, suggested by

Netter�eld (private communication, M. P. Netter�eld, Fluid Gravity Engineering, Ltd., U.K.,

January 1993), changes the limiter for the following eigenvalue Ul:

�l = max [�o (jUlj+ jVlj+ jWlj) ; 0:001al] (O:16)

This limiter is called when the parameter iabseig = 1 and viscous terms are active across the cell

face. Equation (O.15) is still used for the remaining eigenvalues. The parameter iabseig may

need to be kept equal to 0 for some problems early in the relaxation process to survive di�cult

transients as the solution evolves.

The antidissipative
ux correction for second-order accuracy is formulated for each element

of sl in a symmetric mode (parameter iupwind = 0, default) with

sliml = minmod

�
2sl+1 ; 2sl ; 2sl�1 ;

(sl�1 + sl+1)

2

�
(O:17)

and in an upwind biased mode (iupwind = 1) with

sliml = D+
l minmod [sl�1 ; sl] + D�l minmod [sl+1 ; sl] (O:18)

where

D+
l =

1

2

"
1 +

�l
~�l

#
and D�l =

1

2

"
1� �l

~�l

#
(O:19)

The minmod function returns the argument of smallest absolute magnitude when all the argu-

ments are of the same sign, or it returns 0 if the arguments are of the opposite sign. The scheme

reduces to �rst-order at cell faces where there is a sign change in the arguments of the minmod

function. The symmetric limiter, derived by Yee (refs. 37 and 38) does not yield a strictly up-

wind biasing on the formulation of the
ux vector. It involves symmetric functions of gradients

in the neighborhood of the cell face, and algorithms based on these limiters are referred to as

symmetric total variation diminishing (STVD) schemes. The STVD schemes involve little extra

programming work over simple �rst-order algorithms because most of the quantities required

in their implementation are already available. The upwind limiter, following the form of Wang

and Richards (ref. 39), retains the proper zone of in
uence for the inviscid
ux calculation.

Marginally better convergence rates have been observed for the upwind limiter compared with

the symmetric limiter; however, the symmetric limiter appears less di�usive in nonequilibrium

ows. LAURA defaults to the symmetric limiter.

190

Equation (O.11) can be approximately linearized with respect to �qL in the following manner.

De�ne

g�l;L =
1

2

h
gn+1L;l + g�L�1;l

i
� 1

2 (�n)l
Rl j�lj

h
(�n)lR

�1
l

�
qn+1L � q�L�1

�
� �slim

�

l

i
(O:20)

where superscript n refers to the current value at cell center L, superscript n + 1 refers to the

new value to be computed at cell center L, and superscript � refers to the latest available value
at neighbor cell L� 1. The notation g�l;L refers to the inviscid
ux through cell face l evaluated

using the latest available data from cell center L � 1 and the predicted data at cell center L.

Elements of the vector slim*l are also computed using current data at cell centers L and L� 1.

Substitute gnL;l +AL;l�qL for gn+1L;l in equation (O.20) to obtain

g�l;L = gl +
1

2
(AL;l � jAlj) �qL

where

jAlj = Rl j�ljR�1l
In a similar manner, one can show that

g�l+1;L = gl+1 +
1

2
(AL;l+1 + jAl+1j) �qL

The point-implicit discretization of the inviscid part of equation (O.6) can now be expressed

byX
l=i;j;k

h
g�l+1;L�l+1 � g�l;L�l

i
=

X
l=i;j;k

[gl+1�l+1 � gl�l]

+
X

l=i;j;k

[(AL;l+1 + jAl+1j)�l+1 � (AL;l � jAlj) �l] �qL (O.21)

An application of Stokes theorem to the summation of AL;l and AL;l+1 in equation (O.21) will

show that X
l=i;j;k

[AL;l+1�l+1 �AL;l�l] �qL =
X

l=i;j;k

�~fL;INV � [~nl+1�l+1 � ~nl�l] = 0

Therefore, equation (O.21) can be simpli�ed asX
l=i;j;k

h
g�l+1;L�l+1 � g�l;L�l

i
=

X
l=i;j;k

[gl+1�l+1 � gl�l] + ML;INV�qL (O:22)

where

ML;INV =
1

2

X
l=i;j;k

[jAl+1j �l+1 + jAlj �l] (O:23)

The de�nition of A, R, R�1, and � follow. The Jacobian of g with respect to q is

A =

2
66666666666666664

U (�sr � cs) csnx csny csnz 0 0

~
rnx � Uu unx (1� �) + U ��vnx + uny ��wnx + unz �nx �nx

~
rny � Uv ��uny + vnx vny (1� �) + U ��wny + vnz �ny �ny

~
rnz � Uw ��unz +wnx ��vnz +wny wnz (1� �) + U �nz �nz

~
rU � UH ��uU +Hnx ��vU +Hny ��wU +Hnz �U + U �U

�UeV eV nx eV ny eV nz 0 U

3
77777777777777775

(O:24)

191

The similarity transformation matrices R and R�1 are de�ned as

R =

2
6666666666666666666666666664

�sr

a2
0 0

cs

2a2
cs

2a2
0

u=a2 lx mx
u+ anx

2a2
u� anx

2a2
0

v=a2 ly my
v + any

2a2
v � any

2a2
0

w=a2 lz mz
w + anz

2a2
w � anz

2a2
0

�
�
u2 + v2 + w2

�� ~
r

�a2
V W

H + aU

2a2
H � aU

2a2
� �

�a2

0 0 0
eV

2a2
eV

2a2
1

a2

3
7777777777777777777777777775

(O:25)

R�1 =

2
66666666666666666664

a2�sr � cs~
r �ucs �vcs �wcs �cs ��cs

�V lx ly lz 0 0

�W mx my mz 0 0

~
r � Ua ��u + anx ��v + any ��w + anz � �

~
r + Ua ��u � anx ��v � any ��w � anz � �

�eV ~
r �ueV �veV �weV ��ev a2 � �eV

3
77777777777777777775

(O:26)

The diagonal matrix of eigenvalues of A is de�ned by

� =

2
66666664

U 0 0 0 0 0

0 U 0 0 0 0

0 0 U 0 0 0

0 0 0 U + a 0 0

0 0 0 0 U � a 0

0 0 0 0 0 U

3
77777775

(O:27)

The variable cs is the mass fraction of species s where

cs =
�s

�

The variables �, �, and ~
r are related to the partial derivatives of pressure with respect to q.

� =
@p

@ (�E)
=

�R

�Cv;tr

NsX
r=1;r 6=e

�r

Mr
(O:28)

� =
@p

@ (�eV)
=

�R

�Cv;V

�e

Me
� � (O:29)

192

~
s =
@p

@�s
=

�RTq

Ms
+
�

2

�
u2 + v2 + w2

�
� �es � �eV;s (O:30)

The variable a is the frozen speed of sound.

a2 =
NsX
s=1

cs~
s + �
h
H � u2 � v2 � w2

i
+ �eV = (1 + �)

p

�
(O:31)

This de�nition of a2 comes from the evaluation of the eigenvalues of A. The variable �R is the

universal gas constant, and Ms is the molecular weight of species s.

The variables nx, ny , and nz are the x-, y-, and z-components of a unit vector normal to a

computational cell face, and U is the normal component of velocity through the cell face, de�ned

by

U = ~V � ~n = unx + vny + wnz (O:32)

The two unit vectors ~l and ~m are de�ned such that ~n, ~l, and ~m are mutually orthogonal (i.e.,

nili = nimi = limi = 0). The velocity components in the ~l- and ~m-directions, tangent to the

cell face, are then de�ned by

V = ~V �~l = ulx + vly + wlz (O:33)

W = ~V � ~m = umx + vmy + wmz (O:34)

In the matrices de�ned above, the �rst row and column correspond to the Ns species con-

tinuity equations. The subscript s refers to row s and species s, and the subscript r refers to

column r and species r where both s and r vary from 1 to 11 in the present model. Note in

equation (O.30) that Tq = TV when s is an electron; otherwise, Tq = T . Further details of the

derivations may be found in reference 4.

O.4. Formulation of Viscous Terms

The viscous stresses on a cell face with unit normal ~n in the orthogonal directions ~n, ~l, and

~m are given by

�nn = �l

�
@U

@sn
+
@V

@sl
+

@W

@sm

�
+ 2�l

@U

@sn
(O.35)

�nl = �l

�
@V

@sn
+
@U

@sl

�
(O.36)

�nm = �l

�
@W

@sn
+

@U

@sm

�
(O.37)

where U , V , and W are velocity components, and sn, sl, and sm are arc lengths in the ~n-, ~l-, and

~m-directions, respectively. The variables � and � are the viscosity coe�cients. All transport

properties at cell face l are obtained as linear averages of properties at adjacent cell centers.

The component of shear stress acting in the s-direction (s being a dummy variable for x, y,

or z) on a cell face with unit normal ~n can be expressed

�ns = �nnns + �nlls + �nmms (O:38)

193

Substituting equations (O.35) to (O.37) into equation (O.38), collecting terms, and simpli-

fying (ref. 2) yields the following relation for shear stress in the s-direction:

�ns = �l

�
@ _s

@�
�n +

@ _s

@�
�n +

@ _s

@�
�n +

@U

@�

@�

@s
+

@U

@�

@�

@s
+

@U

@�

@�

@s

�

+ �l

�
@~u

@�
� ~r� +

@~u

@�
� ~r� +

@~u

@�
� ~r�

�
ns (O.39)

where _s is a dummy variable for u, v, or w corresponding to s = x, y, or z, and terms like �n

or �l are shorthand notations for ~r� � ~n or ~r� � ~l, respectively. A thin-layer approximation in

the �-coordinate direction (� = �, �, or �) simpli�es equation (O.39) by neglecting derivatives

in the other two coordinate directions. Consequently,

��ns = �l

�
@ _s

@�
+
1

3

@U

@�
ns

�
�n (O:40)

where n refers to the direction normal to a constant �-surface, and the prime superscript refers

to the thin-layer approximation. The Stokes relation, � = �2
3
�, and geometric identities have

also been used in the simpli�cation of equation (O.39). The viscous terms on the other two

coordinate surfaces are also neglected in the thin-layer approximation because their contribution

to the overall momentum and energy balance is small. These approximations are valid so long

as the boundary layer is relatively thin and the �-direction is approximately normal to the high

gradient region.

Mass di�usion and energy conduction contributions to the viscous terms are functions of

gradients normal to the cell face. For example, the gradient of T in the normal (n) direction is

expressed
@T

@sn
= ~r (T) � ~n =

@T

@�
�n+

@T

@�
�n+

@T

@�
�n (O:41)

The thin-layer approximation to equation (O.41) is expressed

@T

@sn
=

@T

@�
�n (O:42)

Derivatives in the �-direction are evaluated to second-order accuracy in computational space

as follows: �
@u

@�

��
l;L

= un+1L � u�L�1 = unL + �uL � u�L�1 =

�
@u

@�

�
l

+ �uL

�
@u

@�

��
l+1;L

= u�L+1 � un+1L = u�L+1 � unL � �uL =

�
@u

@�

�
l+1

� �uL

For instance, the partial of u with respect to � in the �-direction is evaluated as follows (assuming

a rectangular ordering of mesh points) :

�
@u

@�

�
i+1;J;K

=
u�I;J+1;K � u�I;J�1;K + u�I+1;J+1;K � u�I+1;J�1;K

4

The derivatives in the directions along the face (i.e., those derivatives neglected in the thin-

layer approximation) have no functional dependence on the cell center. Therefore, the point-

implicit treatment of the full Navier-Stokes equations is identical to the thin-layer Navier-Stokes

equations.

194

Now, de�ne hl as a function of di�erences evaluated using currently available data, for

example
�
@u
@�

�
l
, and de�ne h�l;L as a function of di�erences using predicted values at cell center

L, for example
�
@u
@�

��
l;L
. These de�nitions permit the linearization of the viscous terms to be

expressed as follows:

h�l;L = hl �Bl;L�qL (O.43)

h�l+1;L = hl+1 +Bl+1;L�qL

where

Bl;L = �@h
�
l;L

@qL
= �@

�h�l;L

@qL
(O.44)

Bl+1;L =
@h�l+1;L

@qL
=

@�h�l+1;L

@qL

The point-implicit implementation of the viscous terms follows the example set in the previ-

ous section on the inviscid termsX
l=i;j;k

h
h�l+1;L�l+1 � h�l;L�l

i
=

X
l=i;j;k

[hl+1�l+1 � hl�l] +ML;VIS�qL (O:45)

where

ML;VIS =
X

l=i;j;k

[Bl+1;L�l+1 +Bl;L�l] (O:46)

In the case of the thin-layer Navier-Stokes equations, the summation would only include one of

the i-, j-, or k-directions, depending on the orientation of the computational coordinates with

the body.

O.5. Formulation of Source Terms

O.5.1. Species Conservation

The mass rate of production of species s per unit volume is expressed as

_!s = Ms

NrX
r=1

(�s;r � �s;r) [Rf;r �Rb;r] (O:47)

where Nr is the number of reactions; �s;r and �s;r are the stoichiometric coe�cients for reactants

and products in the r-reaction, respectively; and Rf;r and Rb;r are the forward and backward

reaction rates for the r-reaction, respectively. These rates are de�ned by

Rf;r = kf;r

NsY
s=1

�
�s

Ms

��s;r
and Rb;r = kb;r

NsY
s=1

�
�s

Ms

��s;r

where kf;r and kb;r are the forward and backward reaction rate coe�cients, respectively, de�ned

in reference 4, and Ns is the number of chemical species. Five di�erent chemical kinetic models

for air chemistry are supported within LAURA (in �les kinetic.F and source.F) through

the de�nition of kmodel in gas model vars.strt. The default is kmodel = 3 in which the

equilibrium constants are taken from reference 34 and which correspond to a number density

195

of 1016 cm�3. The forward reaction rates are taken from reference 40. Numerical di�culties

associated with chemical source terms are alleviated by limiting the minimum and maximum

values of temperature used to compute the reaction rate coe�cients. The parameters tmin and

tmax are set to 1000 and 50 000, respectively, in air.F, which is a block data routine. As a

converged solution is approached, the lower limit can usually be further diminished; however,

experience with problems tested so far shows no signi�cant e�ect on aerothermal loads. The

upper limit is established to re
ect the range of validity of the curve �ts for thermodynamic

properties.

The reaction rate coe�cients are explicit functions of T and TV . Consequently, the Jacobian

of _!s with respect to q can be explicitly evaluated as follows:

@ _!s

@qj
=

@ _!s

@qj

�����
T;TV

+
@ _!s

@T

����
TV ;q

@T

@qj
+

@ _!s

@TV

����
T;q

@TV

@qj
(O:48)

where all derivatives with respect to qj are evaluated at qk (k 6= j). The di�erential relations

between T and q and between TV and q can be expressed as

�Cv;tr dT =
u2 + v2 + w2

2
d��

NsX
s=1

(es � eV;s) d�s

� ud (�u) � vd (�v) � wd (�w) + d (�E) � d (�eV) (O.49)

�Cv;V dTV = d (�eV) �
NsX
s=1

eV;s d�s (O.50)

O.5.2. Total Energy Conservation

The radiative energy transport term Qrad is treated in a purely explicit manner. Radiative

energy transport has been calculated using the method of Hartung (ref. 29), which is based

initially on converged, nonradiative, nonequilibrium
ow �eld solutions. These radiative source

terms are then held constant, while the governing equations are relaxed again. In cases of

strong radiation, this relaxation process may require a slower introduction of the source through

appropriate averaging of the old and new source terms (ref. 31). There is no point-implicit

contribution from this term in the algorithm.

O.5.3. Vibrational-Electronic Energy Conservation

The vibrational-electronic energy source term _!V can be subdivided into three functionally

distinct sets of terms.

_!V =

8<
:
X

s=mol:

_!sD̂s �
X

r=elec:imp:

(Rf;r � Rb;r) Îr

9=
;

+

8<
:
X

s=mol:

�s

�
e�V;s � eV;s

�
< �s >

+ 3�e �R (T � TV)
X
s6=e

�es

Ms

9=
;

+
n
Qrad � pe~r � ~u

o
(O.51)

The �rst set, the reactive source terms in the �rst pair of braces of equation (O.51), is

composed of terms that are proportional to either _!s or to (Rf;r �Rb;r). In the �rst case, the

proportionality factor, D̂s, represents the average vibrational energy per unit mass created or

196

destroyed through recombination or dissociation of molecules. In the simplest approximation, it

is set equal to the average vibrational-electronic energy, eV , although more comprehensive treat-

ments that model preferential dissociation of vibrationally excited molecules can be employed.

In the second case, the proportionality factor, Îr, represents the average translational energy per

mole (mol.) lost by a free electron in freeing another electron from a neutral heavy particle in

reaction r through the process of electron impact (elec.imp.) ionization. It is approximated by

the ionization energy from an excited state of the target particle. Further details on these points

are available in references 34 and 4. The point-implicit formulation of these terms treats the

proportionality factor explicitly and the reaction rates implicitly according to equations (O.48)

to (O.50).

The second set, the relaxation terms in the second pair of braces in equation (O.51), mod-

els the energy exchange between heavy particle translational-rotational modes and vibrational-

electronic and electron translational modes. The �rst term in these braces, which models the

exchange between vibrational and heavy particle translational modes, can be approximated by

X
s=mol:

�s
e�V;s � eV;s

< �s >
� �Cv;V

T � TV

��V
(O:52)

where

1

��V
=

X
s=mol:

�s

Ms < �s >X
s=mol:

�s

Ms

(O:53)

The approximations in equations (O.52) to (O.53) are made to reduce the number of thermody-

namic and relaxation time variables to be carried through the calculation. Also, direct evaluation

of the equilibrium value, e�V;s, is more cumbersome than working directly with the translational

temperature T . This approximation degenerates as the di�erences between T and TV get very

large, but it is believed to be consistent within the total context of approximations made in the

two-temperature model. The vibrational relaxation time < �s > is related to a number density

weighted correlation of Millikan and White (ref. 41)

p�MW
s =

NsX
j=1;j 6=e

~nj exp
h
As;j

�
T�1=3 � 0:015�

1=4
s;j

�
� 18:42

i
NsX

j=1;j 6=e

~nj

(O:54)

and a high-temperature limiting correction of Park (ref. 34)

�Ps = (�s�cs~n)
�1 (O:55)

so that

< �s >= �MW
s + �Ps (O:56)

where

As;j = As;s

�s;j

�s;s

!1=2

and

As;s =

8><
>:

220 (N2)

129 (O2)

168 (NO)

197

The pressure p in equation (O.54) is in units of atmospheres. The two-temperature model should

also have a corresponding term relating the energy exchange of translational and electronic

energy. This transfer has not yet been formally included in the present work; however, it should

be noted that the driving potential in the present approximation is already based on both the

vibrational and electronic energies. The second term in these braces in equation (O.51) models

the direct exchange of translational energy between electrons and heavy particles. This exchange

rate is generally much slower than the previous term. Both terms in this set are now proportional

to the di�erence between the translational and vibrational temperatures, T � TV . Here again,

the point-implicit formulation of these terms treats the proportionality factor explicitly and the

driving potential T � TV implicitly according to equations (O.49) and (O.50).

The third set, the �eld-dependent terms in the third pair of braces of equation (O.51), is the

functions of properties at the cell center and at the neighboring cells. (The �rst two sets are

functions only of properties at the cell center.) These terms include radiative energy transport,

which is work done by the electric �eld on electrons and electron pressure
ow work, combined

into a single term. Radiative energy transport is treated explicitly, if at all, as described before.

The other contribution to the �eld-dependent terms is also treated explicitly. In fact, in the cases

tested to date (where the maximum electron number densities were approximately 4 percent of

the total number density), omission of this term has little e�ect on the
ow �eld.

O.5.4. Point-Implicit Relaxation of Source Term

The source term in equation (O.6) can be approximately linearized in the following manner:

_!n+1L = _!nL + ML;SRC�qL (O:57)

where

ML;SRC =
@ _!L

@qL
(O:58)

and the elements of ML;SRC are calculated as described above.

O.6. Averaging Procedure

The variables at cell faces are evaluated as follows:

dl =
C1dL + dL�1

C1 + 1
(O:59)

where d is a dummy variable representing u, v, w, cs, H , eV , hs, and eV;s. (Only the aver-

aged values of velocities and total enthalpy are required for perfect gas
ows.) The weighting

parameter is de�ned by

C1 =

�
�L

�L�1

� 1
2

The variables �, �, and T are computed using a pressure-weighted average as de�ned below

with dummy variable d.

dl =
dLdL�1 (pL + pL�1)

pLdL�1 + pL�1dL

The variable es;l required in the evaluation of ~
s;l is de�ned as

es;l = hs;l �
�RTl

Ms

198

All quantities required for the evaluation of sound speed at the cell wall are now available.

A lower limit on sound speed evaluated using cell wall averages, equal to the free-stream sound

speed, has been applied to deal with di�cult transients across strong shocks in equilibrium and

nonequilibrium
ows.

This simple averaging procedure does not exactly satisfy Roe's property U for equilibrium

and nonequilibrium
ows. The pressure weighting averaging on � can be shown to nearly satisfy

Roe's property U for strong shocks and equilibrium
ow. Vinokur (ref. 42), Liu and Vinokur

(ref. 43), and Grossman and Cinnella (ref. 44) have proposed averaging schemes that enforce

Roe's property U. These formulations have not been investigated here.

O.7. Geometrical Relations

The recommended, second-order-accurate formulations for face-centered metrics, which are

required in the evaluation of the viscous dissipation terms across cell faces, are presented below.

~r�i;J;K =

I;J;K (~�i�1;J;K + ~�i;J;K) +
I�1;J;K (~�i;J;K + ~�i+1;J;K)

4
I;J;K
I�1;J;K
(O.60)

~r�I;j;K =

I;J;K (~�i;J�1;K + ~�i+1;J�1;K) +
I;J�1;K (~�i;J;K + ~�i+1;J;K)

4
I;J;K
I;J�1;K

(O.61)

~r�I;J;k =

I;J;K (~�i;J;K�1 + ~�i+1;J;K�1) +
I;J;K�1 (~�i;J;K + ~�i+1;J;K)

4
I;J;K
I;J;K�1
(O.62)

~r�i;J;K =

I;J;K (~�I�1;j;K + ~�I�1;j+1;K) +
I�1;J;K (~�I;j;K + ~�I;j+1;K)

4
I;J;K
I�1;J;K
(O.63)

~r�I;j;K =

I;J;K (~�I;j�1;K + ~�I;j;K) +
I;J�1;K (~�I;j;K + ~�I;j+1;K)

4
I;J;K
I;J�1;K
(O.64)

~r�I;J;k =

I;J;K (~�I;j;K�1 + ~�I;j+1;K�1) +
I;J;K�1 (~�I;j;K + ~�I;j+1;K)

4
I;J;K
I;J;K�1
(O.65)

~r�i;J;K =

I;J;K (~�I�1;J;k + ~�I�1;J;k+1) +
I�1;J;K (~�I;J;k + ~�I;J;k+1)

4
I;J;K
I�1;J;K
(O.66)

~r�I;j;K =

I;J;K (~�I;J�1;k + ~�I;J�1;k+1) +
I;J�1;K (~�I;J;k + ~�I;J;k+1)

4
I;J;K
I;J�1;K
(O.67)

~r�I;J;k =

I;J;K (~�I;J;k�1 + ~�I;J;k) +
I;J;K�1 (~�I;J;k + ~�I;J;k+1)

4
I;J;K
I;J;K�1
(O.68)

In the case of the thin-layer Navier-Stokes equations, only the vectors de�ned by equa-

tions (O.60), (O.64), and (O.68) are required, depending on the orientation of the coordinate

system. The dot product of these vectors with the corresponding unit normal to the cell face

(recall, �n = ~r� � ~n) can be approximated as follows:

�ni;J;K �
I;J;K (�i�1;J;K + �i;J;K) +
I�1;J;K (�i;J;K + �i+1;J;K)

4
I;J;K
I�1;J;K
(O.69)

�nI;j;K �
I;J;K (�I;j�1;K + �I;j;K) +
I;J�1;K (�I;j;K + �I;j+1;K)

4
I;J;K
I;J�1;K

(O.70)

�nI;J;k �
I;J;K (�I;J;k�1 + �I;J;k) +
I;J;K�1 (�I;J;k + �I;J;k+1)

4
I;J;K
I;J;K�1
(O.71)

Another useful formulation in the programming of the thin-layer Navier-Stokes equations

involves a geometric relation between the unit normal to a cell face and the gradient of the

199

computational coordinate that de�nes the cell face

�
@�

@s

�
i;J;K

= (�nns)i;J;K (O.72)

�
@�

@s

�
I;j;K

= (�nns)I;j;K (O.73)

�
@�

@s

�
I;J;k

= (�nns)I;J;k (O.74)

where s is a dummy variable for x, y, or z.

O.8. Relaxation Algorithm

The governing relaxation equation is obtained by combining the results of equations (O.6),

(O.23), (O.46), and (O.58) and taking the limit as time step �t goes to in�nity. Thus,

ML�qL = rL (O:75)

where ML is the point-implicit Jacobian given by

ML = rf iML;INV + rf vML;VIS �
LML;SRC (O:76)

and r is the right-hand-side solution (residual) vector given by

rL = �
X

l=i;j;k

[(gl+1 + hl+1) �l+1 � (gl + hl)�l] + _!L
L (O:77)

Relaxation factors are used to control stability and convergence. Numerical tests in reference 18

indicate that underrelaxation is appropriate for the inviscid contribution to the residual, with

rf i > 1:5. Overrelaxation is appropriate for the viscous contribution to the residual with rf v >

0:5 provided relaxation sweeps are across the boundary layer; otherwise, rf v � 1. The viscous

relaxation factor is automatically set to 1 for directions tangent to the sweep direction. The

lower limits yield the fastest convergence rates, but can lead to instabilities if the solution is far

from convergence or if the point-implicit Jacobian is \frozen," as discussed below, for too long.

It is sometimes necessary to choose rf i � 3 and rf v � 2 to get past some di�cult transients in

the early stages of the relaxation process which defy linear analysis. When these transients pass,

it is then advisable to switch to the lower limits of these parameters to get the best convergence

rate. Convergence can eventually stall at some point because of limit cycles associated with

the minmod function in equation (O.17). This stalling can be alleviated by again increasing the

relaxation factors.

The solution vector rL and the Jacobian ML are evaluated using the latest available data.

Consequently, the algorithm requires only a single level of storage. One can solve for �qL using

Gaussian elimination. Numerical experiments have shown that pivoting is not required, and so

the algorithm is easily vectorized. An LU factorization of the Jacobian can be saved (frozen)

over large blocks of iterations (10 to 50, as de�ned by njcobian) to further reduce computational

costs as the solution converges. The Jacobian will generally need to be updated every iteration

early in the calculation, when rapid adjustment of the solution occurs. There is a large cost

in computational memory required for the Jacobian freezing; however, the use of solid-state

memory (see section 11.4) essentially eliminates this problem on CRAY class computers.

200

One �nal scaling can be applied to �qL before computing qn+1L to dampen potentially catas-

trophic perturbations in the evolving solution. De�ne �L by

�L = min

"
1;

safe �L

j�qLj1

#
(O:78)

where safe = 0:5 is presently the hard-coded value, and the standard de�nition of an L1 norm

is employed. The value of �L is usually equal to 1; however, early in the relaxation process

and occasionally in regions of very severe expansions, this parameter will engage to limit the

computed solution as follows:

qn+1L = qnL + �L�qL (O:79)

New values for T and TV are obtained through a Newton-Raphson iteration based on equa-

tions (O.49) and (O.50). Thermodynamic properties and reaction rate coe�cients are advanced

every iteration based on these updated values of T and TV . Transport properties are updated

every ntrnsprt iterations.

The strategy used to drive the right-hand side of equation (O.77) to zero should take advan-

tage of the host computer architecture and the physics of the problem. Generally, the solution

is relaxed one plane at a time, and vector lengths are equal to the number of cells in a plane.

Numerical tests indicate that relaxation sweeps which run from a wall across the boundary layer

to the opposite boundary and then back again are the most e�cient for the blunt-body problem.

E�ects of a perturbation at a wall are felt at the opposite wall after one sweep. E�ects of a

perturbation at one cell in a plane parallel to the wall require N iterations to be felt by a cell

whose index di�ers from the source cell by N .

The ordering of the sweeps can be used to speed convergence, but in numerical tests per-

formed to date, �nal, converged steady-state solution is not a�ected. Thus, one should be able

to solve a large number of cells using a massively parallel processing computer in which each cell

(or small group of cells) is relaxed semi-independently of its neighbor cells (cell groups) using

its own processor. The expression \semi-independently" means that a cell (cell group) will need

updated information from its neighbor cells (cell groups), but neither the order that it receives

this information nor the lag time it takes for this information to arrive is critically important.

As long as each processor has immediate access to some level of information from its neighbors

(which could be stored locally), the execution stream could proceed uninterrupted in a parallel,

asynchronous mode. A crude simulation of asynchronous iteration, discussed in reference 45,

demonstrated that computational cells could be advanced in a random order without sacri�ce

of stability or convergence.

Asynchronous iteration has been tested on a four-processor CRAY 2 and an eight-processor

CRAY Y-MP in reference 18. In these tests, the
ow domains were subdivided into partitions

with a single task assigned to each partition. Partition boundaries are dynamically adjusted

to concentrate relaxation sweeps in the regions that are slowest to converge. Because no syn-

chronization is required, all tasks (processors) can execute throughout the computation without

interruption. A comparison of convergence histories for the solution of hypersonic
ow in ther-

mochemical nonequilibrium over an axisymmetric body is shown for a single task and a six-task,

adaptive partition test in �gure O.2. The symbols show the error norm for each individual task

of the six-task run. The solid line shows the total error norm for the six-task run, and the dashed

line shows the error norm for the single task run. Adaptive partitioning has allowed the six-task

case to converge to a lower error norm than the single task case for the same amount of CPU

time. Furthermore, the actual elapsed time for the six-task case would be a factor of 6 smaller

than for the single task case on a dedicated machine.

201

0 100 200 300 400 500 600
10-6

10-5

10-4

10-3

10-2

10-1

100

Residual

CPU time, s

Single task

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Sum of six tasks

Figure O.2. Convergence histories for single-task and six-task, adaptive partitioned algorithms

applied to problem of nonequilibrium, hypersonic
ow over blunt, axisymmetric body.

202

Appendix P

FORTRAN Variables Discussed in This

Manual

The following FORTRAN variables are discussed in this document:

attack angle of attack, deg

axfac axial stretching factor for grid (konic = 1)

b axial shape parameter for conic geometry

betagrd control parameter for grid alignment

bgas perfect gas �, where � =
 � 1

epsa coe�cient for eigenvalue limiter (�o)

ept wall temperature relaxation factor

ep0 control parameter for grid alignment (section 11.1.1)

errd error criteria for doubling grid density in

body-normal direction

fctrjmp factor for property jump that identi�es shock location

(section 11.1.1)

fsh fraction of grid within shock layer (section 11.1.1)

fstr fraction of cells to be used in grid stretching region

(section 11.1.1)

hrs time limit for present laura run, hr

iabseig
ag for eigenvalue limiter scaling options

iafe
ag for aerobrake geometry options

iaq, jaq, kaq number of cells in i-, j-, and k-directions, respectively, for

Block A

iaqf, jaqf dimensions for cross terms of full Navier-Stokes equations;

required for igovern = 2 only

iblk, jblk, kblk number of cells in i-, j-, and k-directions, respectively, for a

given block

ic number of cells used in axial direction for cap of

blunted-cone or wedge.

icharge toggle for electron continuity equation

icrv
ag for equilibrium air curve-�t options

ifrozen toggle for chemical and thermal source term

igovern
ag for governing equation options

imptemp toggle for temperature dependence of reaction rates

203

isjs working array size (equal to maximum number of cell

walls in planes perpendicular to sweep direction)

de�ned as maximum of all blocks

isrf maximum value for �rst index of any active wall

boundary

issd toggle for solid-state device (SSD) on CRAY architectures

iterg maximum number of iterations for this run

itherm
ag for thermal state of nonequilibrium air

itype boundary type of given side of given block

iunit
ag for geometry unit options

iupwind
ag for total variation diminishing (TVD) limiter options

ivis, jvis, kvis i-, j-, and k-direction toggles for thin-layer viscous terms

(0 = o�, 1 = on)

jsrf maximum value for second index of any active wall

boundary

jtype
ag for wall catalysis options

jump
ag
ag for property used to determine shock location

kmodel
ag for kinetic model options

konic
ag for conic geometry options

kstr number of cells to be used in grid stretching region

(section 11.1.1)

lstrt starting index (in sweep direction) of given partition

(1 � lstrt � lstop)

lstop stopping index (in sweep direction) of given partition

(lstrt � lstop � LMAX)

LMAX number of cells in sweep direction for given block

machine
ag for machine architecture options

mapcpu task number to which partition is assigned

(1 � mapcpu � maxcpu)

maxcpu maximum number of processors available

(hard-coded to maxcpu = 16 in �le btask comm.inc)

maxi, maxj, maxk maximum of iblkn, jblkn, and kblkn, respectively (n = 1; nblocks);

used only for nturb > 0

maxmoves maximum number of grid adjustments for this run

mbk sweep direction for given partition

movegrd number of iterations between grid adjustments

mtaska toggle for multitasking with adaptive partitioning

nbk; nblk computational block containing given partition

nblocks number of computational blocks

ndim
ag for
ow dimensionality options

ndimb
ag for body dimensionality options

neq number of governing equations being solved

newjob
ag for initialization options

ngas
ag for gas model options

njcobian number of iterations between Jacobian updates

nord
ag for governing equation spatial accuracy options

nordbc
ag for boundary condition spatial accuracy options

nprocmx number of processors available on given machine

204

nprocs number of processors available for this LAURA run

nrz maximum number of reactions de�ned by any kinetic model in

LAURA; currently, nrz = 26

ns total number of active species (Ns) (1 � ns � 11);

ns = 1 for ngas 6= 2

nsp total number of species groups that serve as collision partners

in LAURA; currently, nsp = 16

nsrf total number of solid surfaces in all computational blocks

nsz total number of species de�ned in LAURA;

currently, nsz = 11

ntrnsprt number of iterations between transport property updates

nturb
ag for turbulence options

prandtl Prandtl number

recell cell Reynolds number (section 11.1.1)

refarea reference area for evaluation of aerodynamic coe�cients, in

units speci�ed via iunit

re
en reference length for evaluation of aerodynamic coe�cients, in

units speci�ed via iunit

r�nv inviscid relaxation factor (rf i)

rfvis viscous relaxation factor (rf v)

r
ngth conversion factor, from units speci�ed via iunit to meters

ri species densities, nondimensionalized by �1
rinfb free-stream density, kg/m3

rnose body nose radius of curvature (RN), in units speci�ed via iunit

rxz body nose radius of curvature in symmetry plane (Rxz), in units

speci�ed via iunit

str surface distance from nose to onset of transition (nturb 6= 0), in

units speci�ed via iunit

temp translational-rotational temperature, K

tempbc
ag for wall temperature boundary condition options

tempv vibrational-electron-electronic excitation temperature, K

thc body half angle (konic = 1), deg

tinf free-stream temperature, K

twall wall temperature, K

u, v, w velocity components in x-, y-, and z-directions, respectively,

nondimensionalized by V1
uinf, vinf, winf u-, v-, and w-components of free-stream velocity

vinfb free-stream velocity, m/s

v1gas, v2gas coe�cients for Sutherland's law

wgas molecular weight of air, kg/kg-mol

xcg, ycg, zcg x-, y-, and z-location of reference center for aerodynamic

moments, in units speci�ed via iunit

yaw yaw angle, deg

zmax body length (konic = 1), in units speci�ed via iunit

205

206

Appendix Q

FORTRAN Flags Changed Through data

Note that the default values are indicated for those parameters that are automatically de�ned

by LAURA as follows:

Eigenvalue limiter scaling options:

iabseig =

(
0 (normal limiter)

1 (scaled limiter fdefaultg)

Toggle for chemical and thermal source term (ngas = 2):

ifrozen =

(
0 (chemically and thermally frozen
ow)

1 (nonequilibrium
ow fdefaultg)

Options for spatial accuracy of governing equations:

nord =

(
1 (�rst-order accuracy)

2 (second-order accuracy)

207

208

Appendix R

FORTRAN Flags Changed Through stArt

The following FORTRAN
ags are changed through stArt:

Aerobrake (newjob = 2) geometry options:

iafe =

8><
>:

0 (Aeroassist Flight Experiment (AFE) aerobrake (ref. 26))

1 (hemisphere)

2 (customized aerobrake)

Equilibrium air (ngas = 1) curve-�t options:

icrv =

(
1 (Vinokur in Liu and Vinokur (ref. 19))

2 (Tannehill in Srinivasan et al. (ref. 20))

Options for governing equations:

igovern =

8><
>:

0 (Euler)

1 (thin-layer Navier-Stokes (TL N-S))

2 (full Navier-Stokes (N-S))

Thermal state of nonequilibrium air (ngas = 2):

itherm =

(
1 (thermal equilibrium (1-T))

2 (thermal nonequilibrium (2-T))

Options for geometry units:

iunit =

8>>>>><
>>>>>:

0 (meters)

1 (centimeters)

2 (feet)

3 (inches)

4 (other units)

Options for wall catalysis:

jtype =

8>>>>>>>>>><
>>>>>>>>>>:

0 (non-catalytic)

1 (\super-catalytic")

2

3

4

5

6

9>>>>>=
>>>>>;

(catalytic to ions)

8>>>>><
>>>>>:

(non-catalytic to neutrals)

(Stewart et al. (ref. 21))

(Zoby et al. (ref. 22))

(Scott et al. (ref. 23))

9>=
>;�nite catalysis

(recombination of atoms)

209

Conic options (for axisymmetric body):

konic =

8>>><
>>>:

1 (hyperboloid)

2 (paraboloid)

3 (ellipsoidally-blunted cone)

4 (spherically-blunted cone)

Conic options (for two-dimensional body):

konic =

8><
>:

1 (hyperbola)

2 (parabola)

3 (blunted wedge)

Conic options (for three-dimensional body):

konic =

8><
>:

1 (hyperboloid)

2 (paraboloid)

3 (blunted cone)

Flow dimensionality options:

ndim =

8><
>:

1 (axisymmetric)

2 (two dimensional)

3 (three dimensional)

Body dimensionality options:

ndimb =

8><
>:

1 (axisymmetric)

2 (two dimensional)

3 (three dimensional)

Initialization options:

newjob =

8><
>:

0 (externally generated RESTART.in �le)

1 (
ow about conic (cone/wedge, paraboloid))

2 (
ow about generic aerobrake)

Gas model options:

ngas =

8><
>:

0 (perfect gas (PG))

1 (equilibrium air (EQ))

2 (chemical nonequilibrium (NONEQ))

Turbulence options (for ngas 6= 2):

nturb =

8><
>:

0 (none (laminar
ow))

1 (Cebeci-Smith (in ref. 24) model)

2 (Baldwin-Lomax (in ref. 25) model)

Options for wall temperature (Tw) boundary condition:

tempbc =

8><
>:

0 (constant Tw)

1 (speci�ed Tw variation)

2 (radiative equilibrium Tw)

210

Appendix S

FORTRAN Flags Changed Through File Edits

Note that the �le of residence for each parameter is provided. Default values are indicated

for those parameters that are automatically de�ned by LAURA as follows:

Toggle for electron continuity equation (ngas = 2), located in source vars.strt:

icharge =

8<
:

0 (solution of electron continuity equation)

1 (~ne =
X

s=ions

~ns fdefaultg)

Toggle for temperature dependence of reaction rates (ngas = 2), located in source vars.strt:

imptemp =

(
0 (explicit treatment of dependence)

1 (implicit treatment of dependence fdefaultg)

Toggle for solid-state device (SSD) on CRAY architectures, located in issd assn.strt:

issd =

(
0 (no SSD fdefaultg)
1 (SSD)

Options for TVD limiter, located in iupwind assn.strt:

iupwind =

8><
>:

0 (symmetric limiter (eq. (3.8(c)), ref. 2) fdefaultg)
1 (upwind-biased limiter (ref. 39))

2 (symmetric limiter (eq. (3.8(b)), ref. 2))

Options for property used to determine shock location in algnshk.F (section 11.1.1), located in

algnshk vars.strt:

jump
ag =

8>>><
>>>:

0 (�xed outer boundary)

1 (pressure (p) fdefaultg)
2 (density (�))

3 (temperature (T))

Kinetic model options (for ngas = 2), located in gas model vars.strt:

kmodel =

8>>>>><
>>>>>:

1 (Dunn and Kang (ref. 46) model)

2 (Park (ref. 6) model)

3 (Park (ref. 40) forward rates; Keq from reference 34 fdefaultg)
4 (Kang and Dunn (ref. 46) forward rates; Gupta Keq (ref. 47))

5 (Park (ref. 40) forward rates; Gupta et al. Keq (ref. 47))

211

Toggle for multitasking with adaptive partitioning, located in mtaska assn.strt:

mtaska =

(
0 (no adaptive partitioning fdefaultg)
1 (adaptive partitioning)

Options for spatial accuracy of surface and out
ow boundary conditions, located in nordbc assn.strt:

nordbc =

(
1 (�rst-order accuracy fdefaultg)
2 (second-order accuracy)

212

References

1. Walberg, Gerald D.: A Survey of Aeroassisted Orbit Transfer. J. Spacecr. & Rockets, vol. 22, no. 1,

Jan.{Feb. 1985, pp. 3{18.

2. Gno�o, Peter A.: An Upwind-Biased, Point-Implicit Relaxation Algorithm for Viscous, Compressible

Perfect-Gas Flows. NASA TP-2953, 1990.

3. Gno�o, Peter A.: Upwind-Biased, Point-Implicit Relaxation Strategies for Viscous, Hypersonic Flows.

AIAA-89-1972, June 1989.

4. Gno�o, Peter A.; Gupta, Roop N.; and Shinn, Judy L.: Conservation Equations and Physical Models for

Hypersonic Air Flows in Thermal and Chemical Nonequilibrium. NASA TP-2867, 1989.

5. Park, Chul: Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehi-

cles. Thermal Design of Aeroassisted Orbital Transfer Vehicles, H. F. Nelson, ed., Volume 96 Progress in

Astronautics and Aeronautics, AIAA, 1985, pp. 511{537.

6. Park, Chul: Assessment of Two Temperature Kinetic Model for Ionizing Air. AIAA-87-1574, June 1987.

7. Lee, Jong-Hun: Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Ve-

hicles. Thermal Design of Aeroassisted Orbital Transfer Vehicles, H. F. Nelson, ed., Vol. 96, Progress in

Astronautics and Aeronautics, 1984, pp. 3{53.

8. Gno�o, Peter A.: Code Calibration Program in Support of the Aeroassist Flight Experiment. J. Spacecr.

& Rockets, vol. 27, no. 2, Mar.{Apr. 1990, pp. 131{142.

9. Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; and Halt, David: Characteristic-Based Algorithms

for Flows in Thermochemical Nonequilibrium, AIAA J., vol. 30, no. 5, May 1992, pp. 1304{1313.

10. McGrory, William D.; Huebner, L. D.; Slack, David C.; and Walters, William D.: Development and

Application of GASP 2.0. AIAA-92-5067, 1992.

11. McGrory, William D.; Slack, David C.; Applebaum, Michael P.; and Walters, Robert W.: GASP Version

2.2|The General Aerodynamics Simulation Program. AeroSoft Inc., 1993.

12. Candler, Graham: On the Computation of Shock Shapes in Nonequilibrium Hypersonic Flows. AIAA-89-

0312, Jan. 1989.

13. Candler, Graham V.; and MacCormack, Robert W.: The Computation of Hypersonic Ionized Flows in

Chemical and Thermal Nonequilibrium. AIAA-88-0511, Jan. 1988.

14. Park, Chul; and Yoon, Seokkwan: A Fully-Coupled Implicit Method for Thermo-Chemical Nonequilibrium

Air at Sub-Orbital Flight Speeds. AIAA-89-1974, June 1989.

15. Netter�eld, M. P.: Hypersonic Aerothermodynamic Computations Using a Point-Implicit TVD Method.

Aerothermodynamics for Space Vehicles, ESA-SP-318, pp. 259{266.

16. Coquel, F.; Joly, V.; Marmignon, C.; and Flament, C.: Numerical Simulation of Thermochemical Non-

Equilibrium Viscous Flows Around Reentry Bodies. Aerothermodynamics for Space Vehicles, ESA-SP-318,

1991, pp. 447{452.

17. Gno�o, Peter A.; Hartung, Lin C.; and Greendyke, Robert B.: Heating Analysis for a Lunar Transfer

Vehicle at Near-Equilibrium Flow Conditions. AIAA-93-0270, Jan. 1993.

18. Gno�o, Peter A.: Asynchronous, Macrotasked Relaxation Strategies for the Solution of Viscous, Hypersonic

Flows. AIAA-91-1579, June 1991.

19. Liu, Yen; and Vinokur, Marcel: Equilibrium Gas Flow Computations. I. Accurate and E�cient Calculation

of Equilibrium Gas Properties. AIAA-89-1736, June 1989.

20. Srinivasan, S.; Tannehill, J. C.; and Weilmuenster, K. J.: Simpli�ed Curve Fits for the Thermodynamic

Properties of Equilibrium Air. NASA RP-1181, 1987.

21. Stewart, D. A.; Leiser, D. B.; Smith, M.; and Kolodziej, P.: Thermal Response of Integral, Multicomponent

Composite Thermal Protection Systems, AIAA-85-1056, June 1985.

213

22. Zoby, E. V.; Gupta, R. N.; and Simmonds, A. L.: Temperature-Dependent Reaction Rate Expressions

for Oxygen Recombination. Thermal Design of Aeroassisted Orbital Transfer Vehicles, H. F. Nelson, ed.,

AIAA, 1985, pp. 445{464.

23. Scott, Carl D.: Catalytic Recombination of Nitrogen and Oxygen on High-Temperature Reusable Surface

Insulation. Aerothermodynamics and Planetary Entry, A. L. Crosbie, ed., Vol. 77, Progress in Astronautics

and Aeronautics, 1980, pp. 192{212.

24. Cebeci, Tuncer: Behavior of Turbulent Flow Near a Porous Wall With Pressure Gradient. AIAA J., vol.

8, no. 12, Dec. 1970, pp. 2152{2156.

25. Baldwin, Barret; and Lomax, Harvard: Thin-Layer Approximation and Algebraic Model for Separated

Turbulent Flows. AIAA-78-257, Jan. 1978.

26. Cheatwood, F. McNeil; DeJarnette, Fred R.; and Hamilton, H. Harris, II: Geometrical Description for a

Proposed Aeroassist Flight Experiment Vehicle. NASA TM-87714, 1986.

27. TecplotTM|Version 6 User's Manual. Amteck Engineering Inc., 1993.

28. Gno�o, Peter A.; Weilmuenster, K. J.; and Alter, Stephen J.: A Multiblock Analysis for Shuttle Orbiter

Re-entry Heating From Mach 24 to Mach 12. AIAA-93-2813, July 1993.

29. Hartung, Lin C.: Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled

Flow�eld Solutions. J. Thermophys. & Heat Transf., vol. 6, no. 4, Oct.{Dec. 1992, pp. 618{625.

30. Chambers, Lin Hartung: Predicting Radiative Heat Transfer in Thermochemical Nonequilibrium Flow

Fields|Theory and User's Manual for the LORAN Code. NASA TM-4564, 1994.

31. Hartung, Lin C.; Mitcheltree, Robert A.; and Gno�o, Peter A.: Coupled Radiation E�ects in Thermo-

chemical Nonequilibrium Shock-Capturing Flow�eld Calculations. AIAA-92-2868, July 1992.

32. Gno�o, Peter A.: Point-Implicit Relaxation Strategies for Viscous, Hypersonic Flows. Computational

Methods in Hypersonic Aerodynamics,Mech. Publ./Kluwer Acad. Publ., 1992, pp. 115{151.

33. Thareja, Rajiv R.; Stewart, James R.; Hassan, Obey; Morgan, Ken; and Peraire, Jaime: A Point Implicit

Unstructured Grid Solver for the Euler and Navier-Stokes Equations. AIAA-88-0036, Jan. 1988.

34. Park, Chul: Nonequilibrium Hypersonic Aerothermodynamics. John Wiley & Sons, Inc., 1990.

35. Harten, Ami: High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys., vol. 49, no.

2, Feb. 1983, pp. 357{393.

36. Yee, H. C.; Klopfer, G. H.; and Montagn�e, J.-L.: High-Resolution Shock-Capturing Schemes for Inviscid

and Viscous Hypersonic Flows. NASA TM-100097, 1988.

37. Yee, H. C.: On Symmetric and Upwind TVD Schemes. NASA TM-86842, 1985.

38. Yee, H. C.: Construction of Explicit and Implicit Symmetric TVD Schemes and Their Applications. J.

Comput. Phys., vol. 68, no. 1, Jan. 1987, pp. 151{179.

39. Wang, Z.; and Richards, B. E.: High Resolution Schemes for Steady Flow Computation. J. Comput. Phys.,

vol. 97, Nov. 1991, pp. 53{72.

40. Park, Chul: Review of Chemical-Kinetic Problems of Future NASA Missions. I|Earth Entries. J. Ther-

mophys. & Heat Transf., vol. 7, no. 3, July{Sept. 1993, pp. 385{398.

41. Millikan, Roger C.; and White, Donald R.: Systematics of Vibrational Relaxation, J. Chem. Phys., vol.

39, no. 12, Dec. 15, 1963, pp. 3209{3213.

42. Vinokur, Marcel: Flux JacobianMatrices and Generalized Roe Average for an Equilibrium Real Gas. NASA

CR-177512, 1988.

43. Liu, Yen; and Vinokur, Marcel: Upwind Algorithms for General Thermo-Chemical Nonequilibrium Flows.

AIAA-89-0201, Jan. 1989.

44. Grossman, B.; and Cinnella, P.: The Development of Flux-Split Algorithms for Flows With Non-Equilibrium

Thermodynamics and Chemical Reactions. AIAA-88-3596, July 1988.

45. Gno�o, Peter A.; McCandless, Ronald S.; and Yee, H. C.: Enhancements to Program LAURA for Compu-

tation of Three-Dimensional Hypersonic Flow, AIAA-87-0280, Jan. 1987.

46. Dunn, Michael G.; and Kang, Sang-Wook: Theoretical and Experimental Studies of Reentry Plasmas.

NASA CR-2232, 1973.

47. Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; and Lee, Kam-Pui: A Review of Reaction Rates

and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal

Nonequilibrium Calculations to 30 000 K. NASA RP-1232, 1990.

214

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

REPORT DOCUMENTATION PAGE

April 1996 Technical Memorandum

User’s Manual for the Langley Aerothermodynamic Upwind Relaxation
Algorithm (LAURA) WU 232-01-04-04

F. McNeil Cheatwood and Peter A. Gnoffo

L-17419

NASA TM-4674

Cheatwood: ViGYAN, Inc., Hampton, VA; Gnoffo: Langley Research Center, Hampton, VA.
Research (in part) was supported by the National Aeronautics and Space Administration under
Contract NAS1-19237.

This user’s manual provides detailed instructions for the installation and the application of version 4.1 of the
Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) (refs. 2 and 3), which is a program for
obtaining the simulations discussed above. Earlier versions of LAURA were predominantly research codes, and
they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for
special applications that also minimize system resource requirements. The algorithm is reviewed, and the various
program options are related to specific equations and variables in the theoretical development.

Computational fluid dynamics; Hypersonic flow; Thermal nonequilibrium; Chemical
nonequilibrium; Upwind schemes; Total variation diminishing

223

A10

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified–Unlimited
Subject Category 34
Availability: NASA CASI (301) 621-0390

Unclassified Unclassified Unclassified

