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Abstract

In this paper, we propose a new technique for the numerical treat-
ment of external flow problems with oscillatory behavior of the solu-
tion in time. Specifically, we consider the case of unbounded
compressible viscous plane flow past a finite body (airfoil). Oscilla-
tions of the flow in time may be caused by the time-periodic injection of
fluid into the boundary layer, which in accordance with experimental
data, may essentially increase the performance of the airfoil. To con-
duct the actual computations, we have to somehow restrict the original
unbounded domain, that is, to introduce an artificial (external) bound-
ary and to further consider only a finite computational domain. Conse-
guently, we will need to formulate some artificial boundary conditions
(ABC's) at the introduced external boundary. The ABC's we are aim-
ing to obtain must meet a fundamental requirement. One should be
able to uniquely complement the solution calculated inside the finite
computational domain to its infinite exterior so that the original prob-
lem is solved within the desired accuracy. Our construction of such
ABC'’s for oscillating flows is based on an essential assumption: the
Navier-Stokes equations can be linearized in the far field against the
free-stream background. To actually compute the ABC's, we represent
the far-field solution as a Fourier series in time and then apply the Dif-
ference Potentials Method (DPM) of V. S. Ryaben’kii. This paper con-
tains a general theoretical description of the algorithm for setting the
DPM-based ABC's for time-periodic external flows. Based on our
experience in implementing analogous ABC'’s for steady-state prob-
lems (a simpler case), we expect that these boundary conditions will
become an effective tool for constructing robust numerical methods to
calculate oscillatory flows.

1. Introduction

The numerical study of problems originally formulated on unbounded domains requires the imple-
mentation of special techniques for the “treatment of infinity” (which is necessitated by the restricted
facilities of modern computers). One of the corresponding techniques is based on an artificial truncation
of the original infinite domain, which implies that one must set special boundary conditions at the exter-
nal (artificial) boundary of the newly formed finite computational domain. The aim of this paper is to
describe the theoretical foundations for constructing such artificial boundary conditions (ABC’s) for the
computation of certain unsteady external flows.

Before proceeding to the actual description of the problem, let us first define the coneegdttof
ABC’s Namely, exact ABC's are the boundary conditions that enable one to uniquely complement the
solution of the “truncated problem” to the unbounded exterior of the computational domain so that the
original problem is solved. The exact ABC’s usually appear to be nonlocal for steady-state problems in
space and for time-dependent problems in both space and time.

Let us emphasize that our main objective in this paper is to construct special boundary conditions
that would model (and in the ideal case equivalently replace) the exterior part of the problem, i.e., the
part we eliminate by truncation. Many examples of such boundary conditions can be found in compre-
hensive reviews by Givoli. (See refs. 1 and 2.) This formulation differs from another well-known prob-
lem related to setting the boundary conditions for numerical algorithms, namely, to construct such
boundary conditions that would ensure well-posedness of the truncated problem and stability of the



integration process in time. In fact, these two formulations are not completely independent. For exam-
ple, the issue of well-posedness for certain classes of (local) ABC’s was thoroughly investigated by
Gustafsson. (See refs. 3—-5.) On the other hand, a group of very delicate questions related to the issue of
long-time stability is studied by Carpenter, Gottlieb, and Abarbanel in reference 6 (for some specific
boundary-value problems). The issue of connections between the (highly accurate nonlocal) boundary
conditions that “model the infinity” and the boundary conditions that ensure the long-time stability will

be an interesting subject for a future investigation.

In this paper, we consider an unbounded compressible viscous flow past a finite body or configura-
tion of bodies (e.g., single-element or multi-element airfoil). The behavior of the flow in time is
assumed to be oscillatory. We must emphasize that while talking about the oscillatory time behavior we
mean that some alternating (time-periodic) influence is exerted on the flow (e.g., see experimental work
by Seifert, et al. in ref. 7) and expect that those frequencies that are connected to this influence will
dominate in the solution. We expect that this circumstance will enable us to construct the ABC'’s with-
out taking into account any other time-dependent effects. From a mathematical standpoint, this case fills
an intermediate position between the steady-state and true unsteady flows.

The steady-state case is relatively simple compared with time-dependent flows. In reference 8, we
have constructed the ABC's for calculating external viscous compressible steady-state flows. These
boundary conditions were based on the concept of far-field linearization and on the application of the
Difference Potentials Method (DPM) of Ryaben’kii. (See refs. 9 and 10.) The ABC'’s (ref. 8) differ only
slightly from the exact ABC’s (a more rigorous formulation of the latter statement may be found in
ref. 8); therefore, the ABC’s (ref. 8) turn out to be global in space. However, practical implementation
of these boundary conditions is fairly easy. (See refs. 11 and 12.) They were used along with the Navier-
Stokes code by Jameson, Schmidt, Turkel, and Swanson (refs. 13—15) for computing different external
flows. Numerical experiments show that the global DPM-based ABC's (ref. 8) provide high accuracy of
computations, as well as fast convergence of the multigrid iteration procedure to a steady state. (See
refs. 11 and.2.) The computational cost of boundary conditions (refs. 8, 11, and 12) is not high in com-
parison with the total cost of the original procedure. (See refs. 13-15.) Generally, the numerical algo-
rithm we used for integrating the Navier-Stokes equations became more robust (in comparison with the
standard procedure (refs. 13—15)) if supplemented by the DPM-based ABC's. (See ref. 8.)

Additionally, we would like to emphasize that the ABC’s (ref. 8) were constructed specially for the
steady-state problem and on the basis of stationary governing equations, independent of any specific
technique for solving the stationary equations inside the computational domain. In practical computa-
tions, we use multigrid iterations (refs. 13—15) for calculating the steady-state solutions in references 11
and 12. In doing so, we set the ABC'’s (ref. 8) on each iteration on the upper time level. Of course, the
boundary data on the intermediate stage of the iteration procedure (i.e., until we achieve the steady
state) are not necessarily consistent with the formal “stationary” treatment of the far field. However,
treating the “time-intermediate” boundary data as if it were already steady has been found effective in
computational practice. (See refs. 11 and 12.) We are going to use a similar idea for the time-periodic
case studied in this paper.

True unsteady flows are much more complicated in terms of both theoretical analysis and practical
calculations. In general, the exact ABC'’s for unsteady problems will be nonlocal in both space and time.
Therefore, the corresponding computational cost may appear to be rather high. This is also true for the
global DPM-based boundary conditions which can be constructed as close to the exact ones as desired.
The corresponding general theory for unsteady problems is contained in work by Ryaben’kii. (See
ref. 16.)

However, an intermediate case of oscillatory time behavior must be less expensive in terms of
required computer resources since the global character of the ABC'’s in time will obviously be restricted
by the value of one period. Moreover, the theoretical analysis of this case based on the usage of
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the Fourier representation in time also appears to be less complicated than the general one from
reference 16 since in our analysis we actually reduce the time-dependent problem to a family of steady-
state problems.

On the other hand, don’t assume that the oscillating flow is a particular and, therefore, an unimpor-
tant case. For example, experiments (ref. 7) show that the time-periodic injection of fluid into the turbu-
lent boundary layer may increase its resistance to adverse pressure gradients without separation. This
implies an essential improvement of airfoil performance, up to 60 percent for high (post stall) angles of
attack, according to reference 7. The phenomenon was observed on different geometries (original
NACAO0015 airfoil, the same airfoil with the deflected flap, and some others), which leads us to believe
that it may be effectively used in aircraft design. Therefore, an accurate numerical investigation of the
phenomenon becomes an important issue, and an accurate procedure for setting the ABC’s must be one
of the principle elements of any computational algorithm used for such an investigation.

The previous example is probably not a unique one where the time-periodic treatment of flow in the
far field might be relevant. In general, for the oscillatory case we propose the following construction of
ABC's. First, linearize the governing equations in the far field. Then, assuming that the time period is
initially prescribed, apply the Fourier transform in time and obtain a family of steady-state problems
(where the unknowns are amplitudes). The latter problems are then treated by means of the DPM. (See
refs.9 and 10.) The central idea of the DPM-based approach is to equivalently replace the problem for-
mulated on a domain by a certain operator equation formulated on its boundary. For each one of the
foregoing steady-state problems (note, the family of these problems is parameterized by the frequency,
i.e., by the dual Fourier variable), this replacement results in an operator equation formulated at the
artificial boundary of the computational domain (i.e., connecting the boundary values of the solution).
The operator involved (a projection) is somewhat analogous to the boundary pseudodifferential opera-
tors introduced by Calderon. (See ref. 17.) Because of the equivalence to the exterior linear problem, the
previously-mentioned operator equation (more precisely, the entire family of these equations) can be
considered a desirable exact ABC (limited only by the accuracy of far-field linearization) for the prob-
lem solved inside the computational domain. In other words, this operator equation adequately takes
into account the structure of the solution from outside the computational domain, which might also be
calledthe exact transfer of boundary conditions from infin{8ee ref. 16.)

We actually develop the DPM-based ABC's for the already discrete formulation of the problem. In
doing so, the set of the frequencies involved is obviously finite. Therefore, we can actually compute the
corresponding boundary operator for each one of the steady-state problems arising after the Fourier
transform in time. Then, for reasons of numerical convenience, we represent the solution to the linear-
ized exterior problem in the form of generalized potential. (See refs. 9 and 10.) The density of general-
ized potential serves as an unknown function in the previously-mentioned operator equation. By using
the generalized potential to set the ABC’s we gain more generality from a geometric standpoint. More-
over, we can easily match the solutions of the interior nonlinear problem and the exterior linear problem
when conducting practical computations. (We need to actually calculate the generalized potential only
in some neighborhood of the computational domain, to be discussed later.) Finally, applying the inverse
Fourier transform, we obtain ABC’s in a matrix form, which enables easy practical implementation. In
fact, the entire procedure may be thought of as solving the linearized problem outside the computational
domain and then using the obtained solution to close the “truncated system” that is solved inside the
computational domain.

To conclude this introduction, let us point out an analogy to the previously investigated steady-state
case. (See ref. 8.) Namely, we are looking here for a solution to the unsteady problem that is defined on
an initially prescribed time interval (one period) and that meets the periodicity condition in time (at least
in the far field). To develop the ABC'’s for this case, we solve a certain linear problem in the far field (by
means of the DPM). The latter problem is also formulated for the time interval of one period. The
ABC's for the time-periodic case are basically constructed independent of any specific technique for
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integrating the Navier-Stokes equations inside the computational domain (as the ABC'’s (ref. 8) were
constructed irrespective of any specific way for actual computation of the steady state). Based on the
assumption of periodicity in time, these boundary conditions simply close the system that is solved
inside the computational domain; the closure is constructed for the time interval of one period. In prac-
tice, however, achieving the true oscillatory regime may require long-time computational runs that
cover many periods. During this long-time integration, each moment we need to update the external
boundary data using the ABC'’s (i.e., each time step) we treat the flow as it were already time-periodic
(in some generalized sense, see section 3). In so doing, the boundary conditions should guarantee only
the desirable far-field behavior of the solution. This behavior is actually determined by the condition
that all perturbations vanish at infinity (as in refs. 8, 11, and 12 when we were treating the external
boundary data on each iteration as already steady and demanding that the ABC’s ensure the decrease of
the solution to the linearized problem at infinity).

This paper is organized as follows. In section 2, we describe the basic formulations of the problems.
Specifically, in subsection 2.1 we describe a geometric setup typical for the numerical solution of exter-
nal flow problems, i.e., configurations of the finite computational domain and its infinite exterior. In
this subsection, we also introduce the flow equations (parabolized Navier-Stokes) and linearize them in
the far field against the constant free-stream background. In so doing, we obtain a coupled problem,
which is nonlinear inside the finite computational domain and linear outside it. Then, assuming that the
period of oscillating motion is known, we Fourier transform the exterior linear system with respect to
time and obtain an equivalent family of steady-state systems. These steady-state systems must be solved
as a part of the solution to the aforementioned coupled problem. However, we do not solve them
directly since the corresponding domain is still infinite. Instead, we equivalently replace each of the
exterior linear steady-state systems by the generalized Calderon pseudodifferential equation formulated
at the external boundary of the computational domain. To calculate the pseudodifferential operation
(projection) we need a special auxiliary problem that is first formulated on the entire plane for the lin-
earized thin-layer equations (after the Fourier transform in time) with a certain compactly supported
right-hand side. Solvability of this auxiliary problem (in the sense of tempered distributions) is studied
in subsection 2.2. Then, in subsection 2.3, we show how one can replace the original auxiliary problem
formulated on an unbounded domain (entire plane) by a new problem formulated on some rectangle so
that the solutions of the two problems are in a certain sense close to each other.

Section 3 of this paper is devoted to numerics. In subsection 3.1, we introduce a finite-difference
scheme that approximates the linearized thin-layer equations. Since we discretize the equations not only
in space but also in time, we now get a finite (discrete) series instead of the original infinite Fourier
series which implies that the family of steady-state systems to be solved outside the computational
domain becomes finite as well. In subsection 3.2, we construct a difference analogue to the auxiliary
problem on the rectangle, describe the numerical algorithm for its solution (referring to our previous
work for some details) and briefly address our somewhat non-standard concept of convergence for the
solutions of the difference auxiliary problem. Finally, in subsection 3.3 we show how one uses the
recently formulated difference auxiliary problem and obtains difference analogue to the Calderon
boundary pseudodifferential projection. Using this difference boundary projection and also calculating
the generalized difference potential, we actually compute the nonlocal DPM-based ABC’s. The ABC’s
are first obtained in the Fourier variables and then, after implementing the inverse transform, in the
physical variables as well. Finally, section 4 contains some conclusions and possible generalizations.

2. Basic Formulations

2.1. Governing Equations and Geometric Setup

Let us start with the parabolized Navier-Stokes equations, which are the same as the thin-layer
equations for two dimensions (see ref. 18 by Anderson, Tannehill, and Pletcher):
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Here,x andy denote the Cartesian coordinatesandv denote the Cartesian velocity projectiops,

denotes the densitp,denotes the pressuiedenotes the internal energydenotes the viscosity, and

denotes the ratio of specific heats. To derive the last of equations (1), we assume that the gas is perfect
and that the Prandtl number = pc,/k is constanty is the heat conduction coefficient). We denote the

free-stream parameters, specificalllyy, v, Pg, Po. €9 @ndpg, by the subscript “0.” We additionally
assume thatp = 0 andug > 0, which does not imply any loss of generality. The system (1) is written in
dimensionless form. The following scales were used to obtain dimensionless quagtitias:used for

velocity; pg for density,pouo2 for pressurel,lo2 for internal energyg for viscosity, characteristic site
(typically, airfoil chord) for all distances, ahdug for time. The factor Rethat multiplies the viscous
oYol

terms in equations (1) arises from the nondimensionalization. Here, m
0

is the Reynolds
number.

Note that in our previous work (refs. 8, 11, and 12) we used the full Navier-Stokes equations to con-
struct the ABC’s for steady-state problems. In this paper, we are going to use the thin-layer system
(egs.(1)). This system appears to apply quite well to the description of certain viscous flows (ref. 18), in
particular, the far-field flows that we are studying hereafter. Moreover, for the thin-layer system
(egs.(1)) we can justify some results on the solvability of its linearized counterpzﬁ%,omhich is
important for the general justification of our construction of ABC'’s. Finally, the usage of equations (1)
instead of the full Navier-Stokes equations may save an appreciable amount of computer resources, as
will be seen from further consideration.

Let us now assume that the actual values, of p, p, €, andp in the far field only slightly deviate
from the corresponding free-stream parameters. For dimensionless quantities, this means

p=1+p u=1+0 v=V p=1+{ p=(yM§)1+p
2

Oood

e =[(y-1ym3]t+¢
where

6«1 u«il vl }]«1 f)« (yMCZ))_l
e«[(y-1ymgl
Here,Mg = uo(ypolpo)‘l’2 is the Mach number at infinity, which is always assumed to be less than
unity. By substituting expressmns (2) into equations (1) and retaining only the first-order terms with

respect to small perturbatiofis v, p, p, €, andpi, we obtain the following system of linear partial
differential equations with constant coefficients:
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The system (3) is the linearization of equations (1) against the free-stream background. We omit the
tilde in equations (3) since we are going to deal only with linear equations in perturbations henceforth.

Additionally, we used the equation of state= ilg (more precisely, its linearization

1 1

~ ~|: . . . .
€= —pPp——— to eliminate internal energy from equations (3).
-1 yMgpQ ay q (3)

We have mentioned that equations (3) will be used for the description of fluid motion in the far
field. Let us now define a general geometric setup for the problem under consideration. The original
Navier-Stokes equations are integrated on a grid @-type) generated around the airfoil; this grid
covers the finite computational domain which is denddgdhereafter. (See fig. 1.) We henceforth
assume that the linearization (egs. (3)) is valid outside the computational dymaia., on its com-
plementD,,. (See fig. 1.) This assumption is true for large computational domains, i.e., far enough from
the immersed body. As we approach the airfoil, the possibility of linearizatdg itan always be ver-
ified a posterioriby analyzing the corresponding computational results (as was done in refs. 11 and 12
for the steady-state case).

To integrate the Navier-Stokes equations on the grid ir3jglewe use some finite-dimensional
approximation of these equations. The actual type of the resulting discrete operator (i.e., finite-
difference, finite-element, etc.) is not that important from the standpoint of constructing the ABC's; for
definiteness we assume that the Navier-Stokes equations are integrated by means of a finite-difference
scheme. To begin with, we also suppose that this scheme is fully explicit in time. We may think that we
already know the solution for the time lewebn the entire grid, in particuldr= 0 implies the initial
data. When we advance one time step, i.e., calculate the solution for thefewsi means of the
scheme, we cannot obtain this solution for the whole grid since some nodes located near the external
boundary oD;,, will be missing. The actual location of missing nodes depends on the specific structure
of the scheme stencil. For example, a typical central-difference second-order approximation to the spa-
tial part of the Navier-Stokes operator on a structured grid requires3asgncil. Using such a spatial
approximation combined with an explicit integration procedure in time, we can obtain the solution on
the levelt'*! at all nodes, except for those that belong to the outermost coordinate row of the grid (des-
ignatedl; in fig. 1). To advance the next time ste[f9) we will have to somehow determine these
missing values of the solution on the let/é}. This will be done by means of solving the linearized sys-
tem inDgy (i.€., by representing its solution in the form of the generalized potential for each Fourier
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Figure 1. Configuration of domains.

mode). In other words, using the solution to equations (B)inwe close the system of difference
equations inside the computational domiajq The closure we obtain is actually the desirable ABC's.

Note that in the case of steady-state problems the ABC'’s (ref. 8) were also used to close the subdef-
inite system of difference equations insloig. As previously mentioned, boundary conditions (ref. 8)
were implemented in references 11 and 12 together with the pseudo-time iteration procedure for achiev-
ing the steady state. (See refs. 13—15.) From an algorithmic standpoint, this approach is almost the same
as the true integration in time, so the ABC'’s (ref. 8) were applied on the upper time level for each itera-
tion. However, there is an essential difference between the approach in reference 8 and the technique to
be described in this paper. Namely, the former is intended only for the treatment of steady-state prob-
lems and is based on the linearized stationary equations, and the latter will take into account the previ-
ous evolution of the solution in time.

Additionally, let us note that in the case of implicit schemes we also need ABC's that will complete
the system of difference equations inditjg. Indeed, while integrating the Navier-Stokes equations by
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means of an implicit scheme one has to solve a certain discrete system on the upper timll‘”el)level (
whereas the data from the lower time level(s) play the role of forcing terms. This system will obviously
be subdefinite unless we specify additional relations that connect the values of unknowns in the grid
nodes located near the external boundary. In particular, for the previously-mentioned example of a
structured grid and central differences on the3spatial stencil, these additional relations (i.e., the
ABC's) should connect the values of the solution at the penultimate (thelcimfig. 1) and outermost

rows of grid nodes. (See also refs. 8, 11, and 12.) Including the missing relations provided by the ABC'’s
into the system solved on the upper time level, we close this system and then advance the next time step.

Let us now provide an exact formulation of the problem. First, we select those nodes of the grid
where the solution can no longer be determined by the scheme but must be obtained by means of special
additional relations (i.e., by means of the ABC’s). We designate this set of\nodecond, we select
those nodes of the grid where we need to know the solution in order to obtain itvih the help of
the ABC's. The latter set is designatedBothv andv, will depend on the structure of the specific sten-
cil. In particular, for the ¥ 3 stencil on a structured grid,andv, correspond to the penultimate and
outermost rows of grid nodes, respectively. (Also see refs. 8, 11, and 12.) Without loss of generality, we
assume that the artificial bounddrysee fig. 1) is formed by the penultimate row of nodeso that all
nodesv, that form the curv€; (see fig. 1) already belong iy, (i.e., to the “linear zone”).

Then, we designate the time periodhyClearly, we can further consider our problem for the time
interval [OT] without loss of generality. We will also need the following brief notations:
DJy = Dgyx[0,T], DL = D;; %[0, T], T = T x[0,T], andl{ = I, x[0, T]. The closure of the
finite-difference system irlDiTn, which we are looking for and which should be provided by the ABC's,
is actually a set of relations expressin T in terms of some data specifiédAmpreviously men-
tioned, these relations will be based on the solution to the linearized systenD@) ifhe latter sys-

tem is supplemented (dhgx ) by the periodicity condition in time,
oo =Ulor  ((x¥)ODgy (4)
and the free-stream condition at infinity,
uU- O0asx2+y2 . oo (ta[o, T]) (5)

The choice of the data dii that “drive” the ABC's is closely connected to the conceptiedr trace
delineated in references 9 and 10. The question of the possible proper constructions of clear traces for
equations (3) may require a special thorough investigation in addition to the general analysis from refer-
ences 9 and 10; such an investigation is not a direct subject of this paper. Therefore, we will not com-
ment on this question in our further discussion, we only point out the actual construction we use.
Namely, let us first represent the vector functigry,t) in the form of a Fourier series in time for any

space pointyy),

n=o . 2TT
~ INt—
u(x, y, t) = z u"(x,y)e T (6)
n=—ow
where
T 27
~n _ 1 —1n ? _
u(xy) = i[u(x, y, he dt (n=0,+£1,%2,...) (7)
0



Instead of considering equations (3a), (4), and:XeF;(), we henceforth consid@,, the family of “sta-
tionary” systems,

2~Nn
iw,cu" +Dal+Fau Hau
0x ay ay2

=0 (n=0,%1+2 ..) 8)

parameterized by the frequenay, = 2rm/T, n=0,+1,%2, ..., and supplemented at infinity by the
boundary conditions

U"(x,y) > Oasx2+y2 . (n=0,%1 %2, ...) 9)

which directly follow from formula (5). The matric€s D, F, andH in the system (8) are the same as in
formula (3b).

(specifiedigras the data that

For each frequenay,, we consider the pair of functlor% aur C
CC

“drive” the ABC'’s; here( is the normal td". (Note that if the |nter|or solution is already computed by

- N QUL :
means of the scheme insi@  , thegh ag? can be easily calculated.)

L] onC
Our ultimate goal will be to provide a full classification of those and only those fun%}@ng‘;’%[
' L

(defined o) that generate a solutiar'(x, y) to system (8) (with boundary conditions (9) defined on
Deyx and such that its trace éncoincides with the “source” function itself, i.e.,

O ou
n 10
Eﬂ a 9“ az D (10)

: . . . I
As will be seen from further consideration, the corresponding set of funqg;ﬁh%v_r[ can be
described as an image of a certain boundary projection operator. In other words, the functions
5/” avr[ will satisfy some boundary operator equation with projection. (The equation of this type was

mentloned in the introduction as the one equivalent to the linearized exterior problem.) Let us designate
the corresponding projection operator By (we actually construct this operator in section 3). Then,

0 nnL
specifying any functiong‘,P,aaLZrE (from inside D;,), we apply P! and consider the projection

aunD An[
n bl |
Prg‘r’ 57 D g’r, 5 [as the right-hand side in equality (10) for the problem (egs. (8)—(10)).

After solving the problem (egs. (8)—(10)) b, we find the trace of its solution dny (i.e., onvy),
which in turn enables us to obtain the missing boundary relations that close the system of difference

equations insideDiTn. These relations (i.e., the ABC’s) are derived using the inverse Fourier transform.
They can be symbolically written as



O

Uy, = [PQXoPnOR@V, =t % (tofo.T]) (1)

1

where the operatd represents some (smooth) interpolation of the discrete functions along th€ curve
and the operatorP], involves the calculation of the generalized potential to solve the problem
(egs.(8)—(10)). The specific structure of all operators from formula (11) will be delineated in section 3,
where we actually construct their discrete counterparts.

Let us make a few important remarks. First, to formally close the system solixdd, iwe have to

obtain additional relations between the values of the unknowh$ and onFI . Such relations would
provide ABC's that are completely independent of any specific numerical procedure employed inside
D/l.. However, to simplify our task and at the same time only slightly compromise the previously-

mentioned independence, we take into account that we almost always integrate the Navier-Stokes equa-
tions step-by-step in time (explicitly or implicitly). Therefore, we do not have to construct such ABC'’s
that would connect the values of the solution ahd aw for all time moments O[O, T]. It suffices to
determineu, v, p, andp atv, only fort =T (i.e., at the upper time level) since for all previous moments
these values have been determined when calculating previous time steps. Moreover, the formulation of
the problem (egs. (8)10)), where the right-hand side from equality (10) belongs to the projection
,\nD
image, Qr, aavz ED Im PP, assumes that these data are a result of operatiR®§ lmn the Fourier trans-

A~ nl:
form S}r, I L of some time-periodic function. However, in conducting the step-by-step integration in

ou E
time, the actual dat%,![—, E may not be periodic until we achieve a true oscillatory regime. There-

fore, as mentioned in the mtroduction, any time we use the ABC’s we implement a certain generalized
treatment of the external flow as being already time-periodic. Namely, instead of the true boundary data

%J[—, OZFE atl'T, we use the best approximation of this data by periodic functions in the sense of least

squares. This approach will be delineated in section 3, which is devoted to numerics.

Second, we are unable to directly solve the problem (egs. (8)—(1D)),smce the domain is infi-
nite. Handling of this problem will require the additional truncation. Recall that we have already trun-
cated the original infinite domain and have obtaiDggl now we also truncat@ey in order to get a new
linear problem formulated on a finite domain, and therefore, available for solution on the computer.
This issue is addressed in subsection 2.3.

Third, we certainly will not solve the problem (egs. (8)—(10)) every time we need to obtain a closed
system insid®;, (i.e., each time step). Instead, using the linearity of the problem, we will specify some
basis in the space of boundary data and solve the problem (egs. (8)-(10)) one time for each basis func-
tion. This approach will enable us to obtain the ABC’s in matrix form, which is very convenient for
practical computing. (Also see refs. 8, 11, and 12.)

Ultimately we will deal only with the finite-difference formulations and, consequently, with the
finite Fourier series (instead of the infinite series (6), see section 3). In so doing, the discretization in
time for the linearized exterior problem, should not necessarily coincide with the one used for the
Navier-Stokes scheme insidBiTn. A more convenient method may be to use interpolation in time,
which was previously proposed in reference 16.

10



Finally, let us mention that since we need to know the solutioh &r the whole periodr to
restore the solution owy, the first few time steps (until the total time reachgsvill require some spe-
cial treatment. It might be based on the usage of either a larger grid or some other external boundary
conditions for the initial stage of integration in time.

We now proceed to the actual construction of the operators involved in formula (11). This construc-
tion will be essentially the same for all wavenumbrefisis contained as a parameter in the correspond-
ing expressions hereafter).

As was mentioned before, the computation of the ABC’s (eq. (11)) consists of two stages. First we
apply the projectionPf to provide the proper boundary data (right-hand side of equality (10) for the
problem (egs. (8)—(10)). Then we find the solution to the problem (egs. (8)-(10)) in the form of the gen-
eralized potential (operatd?], ). Both of these stages will require the application of the DPM. (See
refs. 9 and 10.) In partlcular |t appears that the computatiétfof P@nd requires the solution of the
sameauxiliary problem (AP)escribed in sections 2.2 and 2.3 for the continuous formulaiahin
section 3.2 for the difference formulation. This AP is actually the main element of thebBfdd-
approach. The Green operator of the AP plays in the theory of generalized potentials approximately the
same role as the Green function (or the fundamental solution) plays in classical potential theory. (See
refs. 9 and 10.) The AP is formulated on the entire playg for the mhamogeneous counterpart of
system (8) with a certain compactly supported right-hand Side (f1, f1) (to be specified
later on). Namely, we will need to solve the following system,

20n -
i, Ca"+ D2 4 PO, 020 _ (12)
ox ay ay?2

onR?, suprj (x, y) 0 D;,,, and we will require that the solution be unique in the class of functions van-
ishing at infinity. In other words, system (12) is supplemented by the following boundary condition,

U"(x,y) - 0 as x2+y2 _, oo (13)

which is the same as boundary conditions (9).

Once we are able to solve the AP (egs. (12) and (13)), we can construct the boundary Bperator
properly formulate the problem (egs. (8)—(10)), and finally obtain its solution in the form of a general-
ized potential. This is actually a very brief description of our DPM-based approach; it will be delineated
in section 3 for the discrete formulation of the problem. Now we will investigate the solvability of the
AP (egs. (12) and (13)).

2.2. Solvability of Linearized Problem on Entire Plane

We will look for the solution to the AP (egs. (12) and (13)) in the space of tempered distributions
G’ (see ref. 19 by Hormander or ref. 20 by Vladimirov), which is a conjugate space to thé spadte
infinitely smooth functions defined dR? that decrease at infinity with all their derivatives faster than
any power ofX2 + y?) ™2 Take the Fourier transform

”(E n) = 2T[I J’u”(x y)e~1€X=Inydxdy (14a)
&) = 55 [ [ y)e & Mvaay (14b)
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of both sides of system (12) and represent the result in the form of a matrix equation,

Qu=f (15)

Note that in system (15) and henceforth in this subsection we drop the suparscsionplify the nota-
tions. Then, the symb@ (eq. (15)) is given by

Q = iwC+i&D +inF-n?H

BT in 0 i(0+8) |
i(w+E)+g—e i 0
- 0 |(w+z)+;‘gfe in 0
yn?
0 0 i(w+&)+ RePr ( W+ )_RePrMCZ) (16)

We first show that system (15) is solvablésin For the time being, we do not need any restrictive
assumptions in regard fo as previously mentionedi,is compactly supportegsupdf 0D, ), and with-
out loss of generality we may think thiat s absolutely integrabl@zc(rﬁ 0 LL(R2)). Then, its Fourier
transform? is bounded and continuous BA; consequently, if we formally write down the solution to
system (15) as
U= Q—ﬁ (17)
then the properties of the right-hand side in equality (17) are fully determined by the inverse symbol

Q7L Indeed, it is well known (ref. 20) that if the right-hand side of equality (17) is locally absolutely
integrable oriR? then it defines the tempered distribution, i.e., the generalized functiorfrorhe lat-

ter will coincide (in the sense of distributions) with the classical funeiok&, r])? (&, n) everywhere
on R?, except for the set of singularities QF1(&, n)?(E, n) (if any). Since in our case the function

?(E n) is continuous and bounded BA, then it suffices to determine whether the func@ri(, n)
belongs toL}.(R?) .

To do this, we have to find all singularities @f1(&, ). Calculating the determinant (&, n),
we obtain

_ 4, (W+E)2 5 o (W+E)2n4H +lyo 4 gn*  nf
Ql&.n) = [(m+£) * M w2 ST B 3 P 3 M3PrR& M3ZPrRe

(00+E)3 2[7 vy (w+8&)E&n 2[4 1 (w+&n* +d0 4 (w+&)ns 18
Re (B prd MZRe 3" PO MZRe ThiO 3 PrRe (18)

Hereg and n are the variables and, Mg, Re Pr, andy are parameters. We emphasize that both vari-
ables¢ andn are supposed to be real (see formulas (14)); however, the coeffici€(ts Qj are, gen-
erally speaking, complex. Thus, to find singular points of the sy@b@lg. (16)), one has to find the
real roots ofQ(&, n) (eq. (18)), which actually implies to find common real roots of two polynomials,
OQ(E, n) anddQ(E, n). First, the pointd = —w, n = 0) is clearly one of such common roots. Then, we

12



note thatdQ(E, n) turns into zero on the two entire straight linés; —w and n =0. Moreover,
OQ(E, n) has no other roots on the lige= —w, except fom = 0. Further, substituting = 0 into the
equationdQ(E, n) = 0 (see formula (18)) and assuming tha&t—w, we find the following two roots of

wM
0Q(E, n) =0 that belong to the ling=0: §; = andg, = —1—0. We also observe that if

— 0
1-M, + Mg

JwM O
w=0 (which corresponds to the steady-state flows), then all three reatsD)( %0, 00, and
-Mo O

oMy -
—_, , merge Into one.
T+my = e

|
E
0

In an attempt to find other real roots (if any) @&, n) (eq. (18)), we divide the equation

0QE,n)=0by @+ E)r]lee (This is possible since we have already proven that no other zeros exist
on the two line€ = —w andn = 0, except for those already found.) The resulting equation,

o7,y0 8,10 n%g, 1o 4,.n?
(0+ &)+ 5 MZEB pri- MZ% Pri- 3yere2 (19)
is of fourth order, and taking into account that the equaifiQ¥{¢, n) = 0 (see formula (18)) is of sixth
order, we conclude that the polynom@(, n) may have not more than a finite number of isolated real
roots in total (three of which have already been found). We emphasize here that this property (finite
number of isolated real roots) presents an essential difference between the problem under investigation
and classical acoustics problems in which the viscous terms in the governing equations are usually
neglected. Namely, for the acoustics equations (i.e., linearized Euler equations) the singular points of
the symbol are no longer isolated. They usually form a curve on theRameich may cause notice-
able difficulties with justification of the uniqueness of solution. These difficulties are similar to those
that arise in studying the Helmholtz equation, which may be referred to as describing acoustics in the
stationary medium. We do not deal with Helmholtz-like equations in this paper; we only note that con-
trary to the acoustics case, system (12) is presumably easier from this standpoint since the proof of
uniqueness appears to be elementary. (See proposition 4.)

Since equation (19) is of second order with respeétwe can resolve it for eaal and obtain
explicit function(s)¢; = ;(n). Because we are interested only in real solutions, we have to consider a
few different cases.

First, assume thab # 0. Then, rewrite equation (19) as

(20)

A7, Y 1. 10,500, YO, 20, YO N 1 4, n?
E[?»err M% pril T 298G Bt O B MZ% pri 3yPrRe2

1
and observe that, iM3 = %’+ E%+%g , then equation (20) degenerates and therefore has a

unique real solutior{(DO) = (0)(n) for anyn. If M2>Eg Pi % Pl , then we can easily make

sure that the discriminant
D=ad+ YO 47,y L0, 1ol o7, vE ”_%+1D4y n’ (21)
3 prO 3 Pr MZQB Pr W T e M2 Prl 3'prre?
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is always positive, which means that equation (19) has two different real solﬁ@ns,z(ml)(n) and

2) _ 2 ...
£ = £D(n) for anyn. If M§<%’ i % e D , then the conditioD = 0 (see formulg21))

imposes certain restrictions gnNamely, we have

PrRe 1 Prrez) 1 1 /2
%‘ér[ =S p%f} <n S?‘@‘{‘@E’r*ﬁ%ﬁ}g (22)

where
oy = LA+ if 16 ye? (g, yod, 17,y L, -
17 m4 prO ereZMZQ prig 3 Pr MZQ Pr
Therefore, in this case the real solutions to equation EQQ),: E(Dl)(n) andE(DZ) = (2)(r]) exist only

for n within the above range. (See inequality (22)).

Now consider the cage= 0 (which corresponds to the steady-state problem). From equation (19),
we easily derive

o7,y 103, 104 n*
& 37 Pr MZQ Pr MZ% prO SVPrReZ (23)

Equation (23) has real squtions,E(Dl)— (1)(n) and El(jz)— (2)(r]) only for

Mg %+ Pigg . Otherwise, we conclude that the equatid@(§, n) =0 for w=0 has no

other real roots except fo& € 0,n = 0) and therefore, the same is true for the equ&(gnn) = 0.

In practice, we have calculated explicit symbolic expressions for the func&@ns E(DO)(n),

E(Dl) = E(Dl)(n), andE(DZ) = (2)(n) usingMathematica (See ref. 21 by Wolfram.) (These expressions

are not presented here because they are fairly cumbersome.) Then, substituting the functions
E(DO) = (O)(f]) E(l) = E(Dl)(n), andE(DZ) = (2)(r]) into the second equatiol,Q(&, n) = 0, we obtain

the algebraic equations with respect to only one varigh®@early the above equations (which are dif-
ferent for the different solutioni(Do) = (0)(r]) Z(l) = (1)(r]) andE(z) = (2)(n)) may have real

root(s) if and only if the original equatid@(§, n) =0 has other real zero(s) besides those that have

DwM 0 wM,
already been found;-, 0), OD and %}—1 M OE Therefore, we finally have reduced the
qguestion about the real zeros of the equafi{iy n) = 0 to the question about the real root(s) of certain
algebraic equations of one variable.

Regrettably the resulting equations (after the substltutlot](joéf E(O)(n) Z(l) = (1)(r]) and
E( ) = E(D (n) into JQ(E, n) = 0) appear to be too complicated for obtalnmg general expressions for
thelr real root(s). However, we may implement the following semi-numerical approach which provides
fairly convincing results.

First, note that the case= 0 seems to be the simplest one. This case actually admits rigorous anal-
ysis without doing any simplifying assumptions. As previously mentioned, equation (23) has no real
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1
solutions forM2 % Pi% %g (which implies that the determinant (eq. (18)) has no real roots);
yt

for Mg = %’ Pr% brl equation (23) degenerates and any gain) of the kindg is arbitrary,

n =0 is its root. Substituting this root infdQ(&, n) = 0 (see eq. (18)), we obta&i‘(l/MZ—l) =0,

1oy,
which yieldsg = 0. Therefore, we did not find any new real zero. Mﬁ> +ﬁDE§ PrD ,equa—
tion (23) has two different real solutions for any moreover,é® = ¢M(n) = @ = £@ ).

Since all powers of in OQ(E, n) are even, we do not need to separately conﬁi@érz E(Dl)(r]) and
E(DZ) = El(]z)(n). SubstitutingE(Dl’ 2) = E(Dl' 2)(n) into JQ(¢, n) =0, we obtain the following eighth-

order equation with respect tp an® + bn® + cn* = 0, where the coefficients, b, andc are obviously

real. The explicit expressions fayb, andc were obtained by means fathematica(see ref. 21); we

do not present them here because they are cumbersome. However, using these expressions we can prove
thata>0,b >0, andc > 0. Then, it becomes clear that there are no other real roots except for the one

we have already found) =0 (which also yield< = 0). Indeed, the equatioan® + br]2 +c=0 for
a>0,b>0, andc>0 may have only essentially complex roqtsTherefore, we conclude that for
w = 0 the symbol (eqg. (16)) has only one singular poi&it0,n = 0).

Recall that all equations under study generally depend on five real parameMgsRe Pr, andy.

To simplify our task, we fix the values of some of these parameters. Letyws $et (twoatom gas)

andPr =0.72 (air). This choice of values for the ratio of specific heats and for the Prandtl number,
respectively, is most frequently used since it is closely related to numerous practical problems; we will
not consider any other numerical values for these two parameters. We now investigate another simple

casewz 0, M3 = %+%% F\!g Then, we have

4

2
&) = _%J'm_g% Plr% gyereZ}[@ Pr%w]

Substituting this expression infoQ(E, n), we obtain a sixteenth-order polynomial with respeaj.to

This polynomial contains only even degrees, namely, 0, 2, 4, 6, 8, 10, 12, 14, and 16. It is possible to
make sure (we always ustathematicaref. 21) to perform cumbersome transformations) that the coef-
ficients of the above polynomial are positive fora@l(w # 0) and for allRe consequently, the corre-
spondingsixteenth-order equation has no real roots. Therefore, the determinant (eq. (18)) has no other
real zeros in this case as well.

We have finally come to the most complicated case, which so far allows us only approximate inves-

tigation. Let Mg < Eg+ %% Br D . Then, we have to clarify whether the functir@(z(ul)(n), n)

and/orQd Q(E(DZ)(r]), n) turninto zero fay within the range given in inequality (22). Both functions are

actually of a general algebraic type (they contain non-integer powers), which means we have only a
remote possibility of accurately (analytically) showing that they have no real roots, particularly because
these functions depend on many parameters. At least at this point we are unable to construct the corre-
sponding rigorous proof; therefore, we use the following graphical approach.
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To start, we select some representative discrete set of the parameters involved. The range for the
Mach number is known, so we simply choose a few points within this range. As for the Reynolds
number, the representative values for the graphical tests we are conducting may be chosen to be about a
few thousand. Indeed, we are not studying Stokes’ flows that correspond to vétg lagfor typical
laminar solutions for the flows around an airfoil, they apparently cease to exist starting with Reynolds
numbers at around a few thousand. Moreover, for turbulent flows with true molecular Reynolds num-
bers of a few million, one can successfully model turbulence in the far field by introducing a new effec-
tive value of the Reynolds number, which also appears to be around a few thousand. (2ee ref.
Finally, recall that the periodicity of flow in time is caused by some external influence, and reference 7
reports that the maximum effect (i.e., response) of such an influence corresponds to nondimensional fre-
guencies of about 1. Therefore, we will not consider frequencies much less than unity or much greater
than unity. The upper bound for the band of frequencies originates from the numerics since we are
going to pass from series (6) to the finite Fourier series while actually solving the problem on the com-
puter. (See section 3.)

We also note that the Ilimits forn (see inequality (22)) do not depend on

the sign of w Moreover, since §P(n, My Re Pry,lwl) = <P, My, Re Pry,Hul),

£2(n. My Re Pry, o) = £5(n, My, Re Pry,—lwl) (eq. (20)), and all powers &fand ¢ + £) in

0Q(&, n) are even, it suffices to investigate the behavior of only one of the above functions for both
positive and negative values @f We do this by plotting the corresponding graphs for ¢tlewing

specific values of the parameters involvexk +0.5, £1, 10, and+50; My = 0.4 and 0.7Re= 1000,

2000, and 5000; angandPr are still 1.4 and 0.72, respectively. The graphs drawn with the help of
Mathematica(ref. 21) in different scales show that neither of the above curves intersects the real axis.
(We do not present these plots here because they are not of interest except to show that the correspond-
ing curve has no zeros). Relying on this approximate graphical investigation, we may expect that at least
within some range of the parameters involved the syi@o@q. (16)) has no other real singular points,

except for those that have already been found.

1
We use an analogous graphical approach for the mgse% + %% + %g . We have no pre-

scribed range fom in this case. However, it is clear that the asymptotics of the functions
O0Q(E(D(n),n) for largen isn® so it suffices to study the behavior of the above functions only on

some finite interval of). We usedMathematicaref. 21) to plot the corresponding graphs for the same
values ofw, Re y, andPr as mentioned before and fdg = 0.8 and 0.9. The graphs (drawn in different

scales for different-intervals, up to-10° < n < 10°) show that neither of the curves has real zeros in
this case as well.

Summarizing, we conclude that at least for a certain reasonable range of the parameters involved,
Mo, Re Pr, y, andw, we have justified the following proposition.

Proposition 1: The symboR(§, n) (eq. (16)) has only three real singular points on l&gen)-plane:

(-w, 0) LMo OE andE}— “Mo OE Forw = 0O, these three points merge into one
el VI FEY VIR | |
To determine whether the inverse sym@oi(Z, n) belongs toLlloc(RZ), it suffices to investigate
the behavior (integrability) of this matrix function near the three singularities. This investigation actu-
ally means that we have to check integrability of each of the 16 elemedt$(&f ). These elements
are given b),(Q—l)j’i =9 i/Q 1< i,j<4 ,wherg ;are the corresponding cofactors.
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Figure 2. Powers involved in the denominaf® (black circles) and Newton’s diagram (dashed [@®@) for
€=-w,n=0),wz0.

Let us first concentrate on the singulari&y=-w, n = 0) for w# 0. We replace the above expres-
sions for the elements of inverse symbol by their eqU|vedee('1)rsl)J i Q)/(QQ) (Q means
complex conjugate), to make the denominator purely real. Since both tl!1e denor@iQatnd the
numeratord, :Q are the sums of monomials of the tyjast- (w + E)kr]'Em (hereconstdepends oM,

Re Pr, vy, andw andk, I, m are nonnegative integers), then it would be sufficient to make sure that any
expression of the sort

const (w+ &)*n'eM
QQ

that originates fron{s, 1Q)/(QQ) , %i,j <4, is integrable neak & -w, n = 0). Sincew # 0, then the
factorsE™ do not contribute to the asymptotlc behavior of expression (24)&eard, n = 0), which is
an essential difference in comparison with the case. (See the following discussion.) Therefore, we
may investigate this asymptotic behavior by constructing Newton’s diagram (see ref. 22 by Walker)
with respect to only two variables,+ & andr]I Namely, we show in figure 2 the set of poirkd) that
correspond to all monomiatonst: (w + E) n'€Minvolved in QQ. The Newton diagraniref. 22) is a
lower part of the convex hull of the above set. The diagram is shown by the dashed line in figure 2.
Those pointsk; 1) which belong to the Newton diagram determine the asymptotic beha@up of near
(£=-w,n=0).

More precisely, the asymptotic behavior@® near the singularity is determined not only by the
lowest degree monomials (see Newton’s diagram in fig. 2) but may also depend on some higher order
terms if the form

(24)
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d_ef 16 g4 g4 1f 8 5
Agn) (w+E)4 9 Re4Pr2M4n Re2M4[EB prO 3Pr}(w+z) (25)

(which corresponds just to the previously mentioned lowest degree terms that constitute the Newton
diagram) degenerates under some conditions. However, in this specific case th%‘*?bl(leq. (25)) is

positive definite becaus{% Br ~ 3%} is positive for anyr. Therefore, after some natural change

of variables (see the following text) the asymptotic behavior of the denomip@tdrecomes uniform

with respect to the polar angle, which implies that while investigating the integrabi@y(#, n) one
may simply neglect all the higher-order terms (black circles above the dashed line on fig. 2) and con-
sider the expression

lconst (w+ &)kn'em
AS*’)

instead of equation (24). Furthermore, we may only increase the ratio (eq. (26)) by neglecting the third
term (~o + £)°n%) in equation (25). Indeed, it is easy to see that in doing so we only decrease the
denominator but still preserve its positive definiteness. Finally, eliminafadtasé™, for simplicity.

We have already mentioned ti8tdo not contribute to asymptotics ne&ér(-w, n = 0), w # 0. There-

fore, to estimate the integrals, we may replace these factors by appropriate constants, e.g.,

(26)

|const (o + &)kn'em| const (w+ &)kn'lg| M.,
(EY/ M) (w+&)*+(16/9) (24/Re4Pr2M4)n8 (EA /MO (w+E)*+(16/9) (E2,/RePr2ME)nd

min min

where minimum (min) and maximum (max) are found on a sufficiently small neighborhood of
(€=-w,n=0).

Thus, we have reduced the original question of mtegrablh(;éon)/(QQ) to checking the inte-
grability of the following function:

[const (w+ &) n
a(w+§g)*+bn®

(a>0; b>0; k, | are nonnegative integérs (27)

on some neighborhood ot € —w, n =0). Because of the symmetry, it suffices to integrate func-
tion (27) only on one quadrant, for examplet ¢ = 0 andn = 0. Moreover, since we are studying local
integrability, we also introduce some upper limitsdof & and forn, e.g.,w+¢& <1 andn < 1. Let us
now change the variableg(w+&)2 = 7  aghn® = x and then proceed to the following integral:

Z(k 1)/2X(| 3)/4

dgax (28)

cons]’I

Further, make another change of variables, from Cartegjg) {o polar p, 6) coordinates, and for
simplicity, truncate our rectangular domafQ<Z<1,0<sx<1} - {Z2+x2< 1}, which obviously
does not influence the result (integrable or not integrable). Finally, we obtain, instead of integral (28),

1 w2
1+(k=1)/2+(1-3)/4
consTp : [ (cos8)(k=1)/2(sin@)( ~3)/4dadp (29)
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Figure 3. Black circles represent powers of the monomials in cofactoi&=oeru§, n = 0), w# 0. Gray area corresponds to
integrability conditions (30).

From formula (29) one can easily derive the conditions sufficient for the integral to exist. Namely, they
are

k%1+I_T?'>.s (30a)

k=1.¢1 (30D)
2

5)'>s—1 (30¢)

whereg is an arbitrarily small positive number.

We now have to make sure that all conditions (30) are satisfied for all cofacjots<i, j < 4.
First, we note that sindeand| are always nonnegative integers, then two conditions (@@js) and
(30c)) are met automatically. Then, to check the fulfillment of the third conditioif3@a)) one has to
accurately calculate all monomials involved in all cofacdrs 1<i, j < 4 and analyze the poweis ()
for (w+ &)*n'. This step was done with the help\tdthematica (See ref. 21.) In figure 3, we have col-
lected all the relevant powers () for all cofactorsy; j, 1<i,j < 4. We also show in figur& the range
of powers K, ) which satisfies conditions (30) (gray area). Using figure 3, one can easily conclude that
all monomials involved satisfy all conditions (30). Therefore, the inverse sy@id¢t, n) is abso-
lutely integrable near the singular poigtH-w, n = 0) forw # 0.
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Figure 4. Powers involved in the denominaf® (black circles) and Newton’s diagram (dashed Iineﬁ&r; €=0,n=0),
w#z0.

The integrability ofQ (€, n) for w = 0 near the singular poink € 0,n = 0) is investigated by the
same method. We only note that sidandw + & are now the same, both of them do contribute to the
asymptotic behavior c@_l(E,_r]) near £ = 0,n = 0). Therefore, the sets of monomials involved, as well
as the Newton diagram, f@Q  will differ noticeably from those relevant to theucase Indeed, the
asymptotic behavior of the denomina®Q near £ = 0,n =0) is now determined by the following
form (compare with expression (25)):

el Bl

(31)
which corresponds to the Newton diagram presented in figure 4.

As in the casen # 0, the forma®) (eq. (31)) also appears to be positive definite since all five coef-
ficients in expression (31) are positive forRé Pr, andMg < 1. However, the Newton diagram shown
in figure 4 consists of two straight intervals, whereas the one in figure 2 contains only one interval. This
difference is essential because now each of the aforementioned two intervals (see the two-component
dashed polygonal line in fig. 4) will determine its own domain of integrability for the expressions

|const(-0)Ekr]'|
AQ

(32)
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on the k, I)-plane. Herék andl are the powers in the numerator of expression (32). Since theﬁig}m

is not simply positive definite, but all powers involved are even, and each coefficient in formula (31) is
positive, we can find the corresponding domain of integrability onkHhé-glane independently for

each of the two parts of the Newton diagram. (See fig. 4.) To do this for either part of the diagram,
neglect those terms in the denominator which correspond to another part (in so doing, the denominator
may only decrease). Then, formally divide both the numerator and the denominator by the common fac-

tor &4, Using the changes of variables analogous to those previously implemented, we come to the fol-
lowing set of conditions sufficient for the integrability of function (32) néar Q,n = 0):

k;21+|_T7>s (33a)
k=1.:1 (33b)
2
I_T7>e—1 (33c)
and
k-5,1-1
-—-2-—+-—2——>E (34a.)
K=5, e 1 (34b)
2
-1
T>E—1 (34c)

Note that three conditions (egs. (33)) correspond to the upper part of the Newton diagram and three con-
ditions (egs. (34)) correspond to its lower part. (See fig. 4.)

In figure 5, we show (with black circles) all powekslf involved in all cofactors, ;, 1<i,j<4
for the caseo=0. Gray areas on this figure correspond to the range of those coeffldndmlwr(lch
satisfy integrability conditions (33) and (34). Note that conditions (33c) and (34b) impose some addi-
tional restrictions oh andk for the upper and lower components respectively of the Newton diagram in
figure 5. We did not have such restrictions in the cage. (See inequalitie€30).) One can easily see
from figure 5 that all elements dp'l, (< jQ)/(QQ), 1<i,j<4, are absolutely integrable near
(£=0,n=0) in the case>= 0 as well. ’

Finally, we only have to show th@ (&, n) is absolutely integrable on some neighborhood of each
ODwMy [0

wMg
,00and EI—

of the singular point OD for w# 0. If we simply ensure thd©-1(&, n)| is

integrable on the same neighborhood, then the integrabil® g, n) follows. To do this, first note
that gradQ(, n) # 0 at either of these two points. Indeed, it is quite easy to see from equation (18) that

0Q O
0 at both
08 —Mo O ol+

<1. Then, refer to reference 23, wherein

Vainberg proves exactly the same statement we need, namely, the integraldity(&fn)| on some
neighborhood of an isolated real zero of the polyno®@{&) n) when gradl(&, n) # 0 at this point.
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0 1 k

Figure 5. Black circles represent powers of the monomials in cofacto&=d), ( = 0), w# 0. Light-gray area corresponds
to integrability conditiong33). Middle-gray area corresponds to integrability conditions (34). Dark-gray area is common to
both conditions (33) and (34).

Thus, we can finally formulate the following proposition.

Proposition 2: The inverse symb@‘l(z, n) (eq. (16)) is absolutely integrable on any finite domain of
R, i.e.,Q7Y(E n) DL (R?) .

loc
In accordance with reference 20, proposition 2 immediately implies proposition 3.
Proposition 3 (existence)The system (15) is solvable@n for any compactly supportefd] LY(R2);
? in equation (15) is a Fourier transform of (eq. (14Db)).

The solution to the AP (egs. (12) and (13)) that we are looking for may generally be found by
means of the inverse Fourier transform (again, the supemdsigimitted below),

00 00

Q% y) = o [ [ 0(& e+ nvdean (35)

—00 —00

Using the brief notation, we may rewrite formula (35)Gas (G)D= (Q—lf)D. However, in doing so
we still do not know whether the functiar(x, y) (eq. (35)) satisfies boundary condition (13). Let us
first prove the following proposition.

Proposition 4 (uniqueness)Iif the solutionu of system (12) satisfies the boundary condition (13), then
it is unique in the class of distributions vanishing at infinity.
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Indeed, any functiom that solves system (12) is actually an inverse Fourier transform of some solution
to system (15)p = (G) 5in turn, any distribution:] OG' that solves system (15) (see formula (17))
should coincide with the regular functi@ri(g, n)?(é, n) everywhere o2 except at the three singu-

lar points ofQ(&, n) (since?(z, n) has no singular points). Therefore, any other solution to system (15)

may differ from u only by a distribution with the support belonging to the three-point set

OwMg 00 oM, [ N . .
g—w 0), %L OD E T+ My , OCO. Such a distribution may be only a finite sumddiinctions and
Mo OO [0

their derivatives. (See ref. 20.) Thereforey i (G) H vanishes at infinity, then any other solution to

system (12) will differ fromu by an inverse Fourier transform of a finite sumddtinctions and their
derivatives, and, consequently, it will not vanish at infinity since Fourier transfordaunttions and
their derivatives are polynomials. (See ref. 20.) Thus, proposition 4 is justified.

Let us now select a finite bd where

OwM 00 wMg
BORZB- £D[( —®, 0), ° ougr 0 o (¢ >0)
D1+M QN

and construct a partition of unity, = gg + 95 where the functiongg and g are infinitely smooth
and bounded oR?. The functiongg is identically zero outside the ball+ ¢, therefore,gB is identi-

cally zero inside the baB — ¢. Note that such functions always exist. (See, e.g., ref. 20.) Obviously,

- 20 20 20
u=(Q) = (Qlggf) + (Q—lgEf) . We will separately analyze each term on the right-hand side
of the above sum. First, it is clear thatlng 0LY(R2) because is bounded an®—10 Lt (R?).

2 0 ] 2 U
Therefore,(Q1ggf) - 0 while 4/x?+y? — . For the second terr(Q—lgEf) we cannot yet con-

struct a general proof of its decay at infinity. The difficulties here arise from the fact that
Q1OLL.(R?) butQ-1OLY(R?), i.e., itis not absolutely integrable near infinity. Therefore, a general

proof may require an appropriate regularization of the corresponding oscillatory integral. However, we
retain this question for a future investigation. For the time being, we can formulate the following two
statements. Each will address the vanishing of the solution at infinity for some particular case (or in a
weaker formulation).

First, assume thdtO L2(R?), which is actually not restrictive for our purposes. Thied,L2(R?)
(we may treat the Fourier transform here in the sense of Plancherel, ref. 24). As mentioned before,

Q1lOLYR?; however,Q—lgE can be shown to be bounded Rh Therefore,Q—lgEf OL2(R?),

2 0 -
which immediately yieIdiQ—lgEf) 0L2(R2) . Thus, in this case the solution to system (12) is rep-

resented as a sum of two term§Y +u® | whefd - 0 Wit + y2 _ o (true vanishing in the
sense of boundary conditions (13) arfd O L2(R2), which may be treated as a “generalized decay”.
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We also note here that the statement on uniqueness proven in proposition 4 also applies to the functions
from L2(R2) since the polynomials obviously do not belong #0R?)

Second, if we impose some additional restriction%,ormamely, if we require thdt be sufficiently

smooth onR? so that f O L1(R?), then we obtain a true decay for the second term as well,

2 0
(Q—lgéf) ~ 0 while ¥x2+y2 _, ». Therefore, for a more particular class of the right-hand sides we

may affirm that the problem (egs. (12) and (13)) is uniquely solval@lé We note that for some other

cases (see ref. 9) such a restriction of the class of admissible right-hand sides does not influence the con-
struction of a DPM-based numerical algorithm. We will not rigorously formulate and prove this state-
ment for the specific case currently under study. However, we expect that this property does take place.
These expectations are based on the numerical experience. (See refs. 8, 11, and 12.)

2.3. Truncation of Linearized Problem

As mentioned in section 2.1, we are not going to directly solve the problem (egs. (8)—(10)). Instead,
we will implement some additional truncation and further solve only a new finite substitute for the lin-
earized problem. Since the problem (egs. (8)—(10)) will be solved by means of the DPM, we must con-
struct an equivalent finite substitute for the auxiliary problem (egs. (12) and (13)). Moreover, the same
finite substitute for the AP (egs. (12) and (13)) will be used for calculating the opefatatich pro-
vides boundary data for the problem (egs. (8)—(10)). (See section 2.1.) In this section, we construct the
finite substitute for the AP introducing some additional assumptions in regard to both the smoothness of
the solution we are looking for as well as the rate of its decrease at infinity. This is done in order to sim-
plify the presentation and to avoid unnecessary complications that are not essential for the purpose of
constructing the numerical algorithm. We hope to provide a more rigorous analysis of the approach
described here in a forthcoming paper.

For reasons of numerical convenience and effectiveness, we will use a different method for calcu-
lating the solution of the AP, rather than the one from section 2.2. Using this new solution technique, we
will equivalently reformulate the AP on a new finite domain. Namely, let us again take the Fourier
transform of both sides of system (12); however, now we do so only in one Cartesian diyéctiom,
pare with egs. (14)),

(o]

d(xn) = 7;—71 [ 0x ey (36a)
?wﬂ):j%jﬂxwemwy (36b)

(Again, we drop the subscripthereafter in this section to simplify the notation. Moreover, we retain

here the same notatioa, a?nd as in section 2.2; however, the left-hand sides of expressions (14) and
(36) are obviously not the same.) Then, we obtain the following family of systems of ordinary differen-
tial equations (ODE’s):

d“‘x ) 4 Q(n)a(xn) = f(xn) (37)
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where

0 in 0 Iey)
n? 0
|OJ+R—e
Q(n) = D™ .. 4n2 .
0 Iw+§R_e n 0
2 i 2

0 0 iw+gnp oo

i err Mg RePrMO_

and

f(xn) = D%(x n)

(the matrixD is defined in formula (36)). The family (eq. (37)) is parameterized by the continuous vari-
ablen, —w <n <, andx is an independent variable. Recall that the solutibg y) we are going to
calculate should vanish at infinity. (See boundary conditions (13).) Consequently, we will generally
impose the following boundary condition on the solution of system (37):

ux, nNn-0as|x - (38a)

However, in particular cases (see the following discussion and ref. 8 for details) the condition
(eq.(38a)) may appear too restrictive—namely, the cases W@fgh has purely imaginary (or zero)
eigenvalues. Therefore, for some selected valuesawidn we will only require

|ﬂx, r]| <constas |x - o (38h)

Note that we do not consider solutions that grow polynomially, the latter solutions correspond to the
case wherQ(n) has multiple purely imaginary eigenvalues and does not have a basis composed of
eigenvectors.

Once we are able to find (for every a solution to system (37) that would satisfy boundary condi-
tion (38) at infinity, then the solution to the AP (egs. (12) and (13)) can be restored by means of a one-
dimensional inverse Fourier transform,

00

G(xy) = %T jﬁ<x,n)eiﬂydn (39)

Let us designate the inverse operator for the one-dimensional problem (egs. (37) and G@)).by
That is, the solutiorﬂ(x, n) to this problem is given by

(% 1) = G (n)F(x,n) (40)

The operatoG,(n) is obviously linear. Combining formulas (36), (39), and (40), we obtain the follow-
ing formula for the solution of the AP (egs. (12) and (13)):

(o) [ee]

u(x, y) = %TIGX(H)If(X. s)e'(5=Y)Ndsdn (41a)
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Now, we will show how one can pass from the AP (egs. (12) and (13)) to the new AP formulated on
the strip { —o <X <0} x E’_lz( Sy< g% and periodic in the direction, withY being the value of the
0 O

period. In doing so, we expect that when the peYiagdows,Y - «, the solution to the new periodic
AP will uniformly converge to the solution of the original AP (egs. (12) and (13)) on any strip
{-o <x<w} x{-y<y<V{} wherey is fixedand always less thaff2. We note that the same approach
was used in reference 8 for the steady-state problems.

Hereafter, we assume that all functions involved are defined on the infinite strip

{—c0 <x< 00} x E—g<y< 50 . The width of the stripy is initially supposed to be greater than the

0 D
diameter ofsupyf . (Later we will consider the limi¥ — «.) We assume periodicity of the solution to
the new AP in the direction. Then the solution that vanishes$xas, o is given by
~ - 271 D1 —I@((s y) b
uy(x,y) = Z 7 v I (41b)
= —o -Y/

In formula (41b), we use the Fourier series of a periodic function instead of the Fourier integral used in
formula (41a). Our aim is to estime{te(x, y) —uvy(X, y)| from above on a finite (fixed) intervéhy, y),

¥y <Y/2, uniformly with respect ta. Let us introduce a uniform meshrin whereh, = 2/Y is the

mesh size, and designatﬁ(zkhq, k=0,%1,£2,.... Let us then fix some intervat-g, A); we will

always choosé, (and consequently) so thatA =h,(K + 1/2),K being an integer. Then,

00 00 k = Y/2
0(x, y) = Uy(x y)| = IGX(r])If(x s)e-i (5= YNdsdn — Z G, () [ f(x, e s y’ds‘

o k= —oo /2
LA kK 1 1 1
<=If..- |+ = — | = =1+ =)
21 Z T NZ ‘ 2 'l 2m 2
—IA k = —-K |J;A | >K

Let us separately estimate each of the two terms (the first one corresponds to the finite interval, and the
second one corresponds to the complementary infinite interval).

K=K |(K+1/2)h, © v/
e f —i(s—=y)n _ ] —in,(s—y)
<o > I Gx(n)If(x, S dsdn —h, G, (n,) I f(x, 9)e d

k=-K|(K-1/2)h, o {2

k=K [|(K+1/2h, © .

= f —i(s—y)n - F: -in(s—y)
<= Y I Gx(n)If(x, se dsdn hnGX(nk)If(x, ge d
k=—K||(K-1/2)h, Zoo -

Gx(nk) I f(X, S)e_ink(s_ y)d#

195 Y/2
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Clearly, the right-hand side of this inequality is actually the sum of errors of the quadrature formula of
rectangles for the function(x, n)eny = GX(r])J'oo f(x, e N(s-Yds (see formuld40)) on elemen-

tary segments of the kind[{ 1/2)hr], (k+ 1/2)hr]], k=-K, ..., K. Indeed, for eack, k=K, ..., K, the
third term that corresponds to the integration dger Y/ 2 turns into zero for sufficiently larg€s

sincef(x, s) is compactly supported. Therefore, one can obtain the following estimate:

a—Z[L:J(x, r])ei”y}

1
=], <
anll_constDrﬁA max o’

X[
no(-AA)

2:
sconstDIﬁA max H‘M

X [T R 5|+ 2l
noEAA) Lon

au(xn)
an

+y2lu(x, n)q
= (cy+colyl + cgy?h2A (¢, ¢y €3>0)

Note that if we initially assume that the solutifn(x, y) decreases at infinity sufficiently fast, then the

differentiability of its Fourier transform(x, n) (see the right-hand side of the previous inequality) fol-
lows directly.

For the second expression, we obtain

o)

GX(I'])If(X, sen(s- st{dq +I Z hy
—00 k[> K

Y/2
Let us replace the integration Iimitﬂ’ in the second term on the right-hand side of this inequality by
o -Y/2
J’ , as was done when estimating . Then,

1o Al laeemldn+ S haexny)
2n||2_2n{m;>A 3 ety

Additionally we assume that the solution we are looking for has two absolutely integrable derivatives.

1 1

211H2S§1—T _[

In>A

Y/2
G,(ny) I f(x, s)eirl(Sy)dg{
-Y/2

—00

Then its Fourier transform decreases faster thas and the previous inequality straightly implies
1 Cq
—|],< = >
2T[| |2— A (c,>0)

Combining the two obtained estimates, one easily gets

Ca

[utx ) =ty (x y)| s cgh2 A +

where cg def Drrzax o)(c1+ c,lyl + c3¥%) ,co> 0. Clearly, all constants involved in the foregoing esti-
yo-vy

mates depend, generally speaking, on the specific nonperiodic fuﬁctdpyb that we approximate by
the periodic functionsiy(x, y)
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Now lete be an arbitrary positive number. We will choose sufficiently lafgé.e., sufficiently
small hn ) so that the following inequality

c

CohZA+ 2 <t (42)

is satisfied for ally > Y. In other words, we require that for a prescribeahd for anyh, <hp ine-
€

quality (42) has real positive solutioAsof the special kindd = (K + 1/2)h, (K being an integer). The
latter requirement is always met if, e.g., the distance between the real roots of the quadratic equation
cOhrZIAZ—sA+ c, = 0 is greater tham,. This, in turn, yields the inequalil§/2—4coc4h2 —coh6 >0

for hy,. This inequality is obviously satisfied for agy hn < hn , Wherehn OR is a unique positive

root of the equatiom2—4coc4hr2] —C(Z)hﬁ = 0. Since the fulfillment of inequality (42) is sufficient for
the estimate

<t (43)

to be true, then we have shown that foreaH0 one can always find a sufficiently large perigdso
that for anyY >Y; the absolute value of the discrepancy between the nonperiodic salitpy)
and its perlodlc approxmatloruy(x y), |u(x y) —uy(X, y)| does not exceesd for all x and for all

-y<y<y.
Thus, we have reduced the original AP (egs. (12) and (13)) to the new AP formulated on the strip

0 l . . .
{—c0 <X <0} x D—lz( <y< 12(5. In section 3, we show that we will only need to know the solution of the
O O

AP in some neighborhood eﬂpﬁ‘, therefore, the approximation of the nonperiodic funcfj(m y) by
a periodic onefiy(x, y), only on a finite intervaky <y < is sufficient for our purposes. Let us now

gy Y[

show how to pass from the domdifc < x < w0} x G5 <y< E , Which is still infinite, to a truly finite
0
domain for the new AP.
gy Y [ . .
Instead of {—w <x<o} x 05 <y<— 5L let us now consider a rectangular domain
O E

DY = (0, X) x(-Y/2,Y/2). (See fig. 1.) This new domald? should completely contaif andr ;.

We will reformulate the new AP so that its solution will be determined only on this finite dd@§ain
and will coincide there with the corresponding fragment of the solution found on

g O . . .
{—00 < x <00} x [1—12( <y< lsz before the reformulation. As previously mentioned, we only need to cal-
g O

culate the solution to the AP in some neighborhood;gf Therefore, we are always able to choose an

appropriateX andY so that this neighborhood beIongsDQ, and consequently we only need to con-
struct special boundary conditions at the lires0 andx = X so that the reformulated new AP being

[l L .
solved onD$ is equivalent to the periodic AP on the dtrip < x <o} x D—X < y< X described ear-
02 [

lier in this section. These boundary conditionsxat0 andx =X will be set separately for each
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wavenumbek, k=0,£1, 2, ..., (see formula (41b)) involved in the Fourier representation of the func-
tion ﬂy(x, y). Namely, for eaclk, k=0,+1,£2, ..., we require that the corresponding Fourier mode,

ﬂ(x, M) = ﬂ(x, 21ik/Y), meets boundary condition (38) at infinity. To exactly transfer condition (38)

from infinity to the finite boundariex = 0 andx = X, we use the following consideration. Since sys-
tem (37) consists of ODE’s with constant coefficients and since it is homogeneous outg)des@sll

thatsuppf(x, y) 0 D;,,and consequentlyupp?(x, n) 0d(0, X) for &), then it obviously has four lin-

early independent eigensolutions (in the region of homogeneity). Depending on the structure of the set
of eigenvalues of the matriQ(n), these eigensolutions may either increase or decrease (eq. (38a))
exponentially, or they may oscillate (eq. (38b)) while. » and whilex - —. As previously men-

tioned, we do not consider the last possible case W}{{gh has multiple purely imaginary (or zero)
eigenvalues and does not have a basis composed of eigenvectors, which leads to polynomially growing
solutions. Sometimes one can analytically make sure that this case really does not take place. For exam-
ple, we do this in section 3 in the discrete formulation for some particular valuesnaly. In other sit-

uations, this question may require some additional numerical investigation as in reference 8. At any rate,
to satisfy boundary condition (38), we must prohibi at0 all solutions that do not decrease to the left

(i.e., asx - —), and prohibit ak = X all solutions that increase to the right (i.e.xas ). The rea-

son for this asymmetry was mentioned before: once we have purely imaginary (or zero) eigenvalues of
Q(n) and, consequently, oscillating or constant-in-space solutions (see formula (38b)), then we cannot
always prohibit at both ends of the interval X0,all modes that do not decrease in the corresponding

direction. However, it should not affect the result since the final solution we are Iooki(ﬁgﬁoy))
decreases at infinity. (See subsection 2.2.) Moreover, we have proven in reference 8 that once we have a
selected nondecreasing mode in Fourier representation of the solution, then after the inverse Fourier
transform the entire solution will nevertheless decrease. Therefore, we can take into account selected
nondecreasing modes (if any) by simply admitting them at one of the two boundar&srx = X. (In

case we do not do this, the problem may appear overdetermined.) It seems more natural to admit the
nondecreasing Fourier modes (if any) at the downstream bouxdaty(See ref. 8.)

Now, we calculate the eigenvaluggn,), r = 1, ..., 4, for the matrixQ(n,). Those eigensolutions
that increase to the right correspond to eigenvaliigs< 0, and those eigensolutions that do not
decrease to the left correspond to eigenvallgs> 0. Therefore, the following boundary conditions at
x =0 andx = X may be considered to provide an exact transfer of boundary condition (38) from infinity:

s‘(nk)ﬁ(o,nk) =0 (k=012 ..) (44a)

S‘ YUK N =0 (k=0+12,..) (44b)

Here S (n,) andS'(n,) are the special rank-deficienx# matrices that depend @(n,), with their
ranks equal to the numbers of eigenval€sg,) with nonnegative and negative real parts, respectively.
These matrices are given by

S (ny = !'| QMY -A, () (45a)
OA,(n) <0

s'(ny) = !‘| (Q(MY -A, () (45b)
OA,(n =0
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Herel is an identity matrix and products in formulas (45) are calculated in accordance with the multi-
plicities of the eigenvalues. Analogous conditions will be used in section 3 while dealing with the finite-
difference formulation of the AP.

Thus, the formulation of the new finite AP is now complete. Namely, we have to solve equa-
tions(12) for the compactly supported right-hand sidésupg O D;,,) on the domairD$ (see fig. 1)
with the periodicity boundary conditions in thedirection {Y being the value of the period) and with
boundary conditions (44a) and (45axat0 and (44b) and (45b) &t= X. In the next section, we pro-
ceed to the finite-difference formulation of the problem and describe the numerical algorithm for setting
the global DPM-based ABC's.

3. Numerical Method

3.1. Finite-Difference Scheme

Let us introduce a uniform Cartesian grldD@ x [0, T], with hX, hy, andt being the sizes of the
grid inx, y, andt directions, respectively. We designate this gyi@’ :

T { Xy yj,tl)z(mhx, jhy—Y/2, |T)|hx, hy, 1>0;
m=01..,MM=X/h; j=01..,2+1,2)+1=Y/h,;
1=0,1,...,2L+1,2L+1=T/1} (46)

We will construct a second-order finite-difference approximation of the system (eq. (3a)) on the
grid N 9" (see formula (46)) using the stencil shown in figure 6.

(Mj+1I+1) @~ ==~ ==~~~ - (M+1,j+11+1)

(m+1,j,1+1)

(mj-11+1) ¢~ - - - (ML=t g g (m+1j+1)

(m,j—l,l ) ———————————— (m+ 1!j_1’| )

Figure 6. Stencil.
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Namely, we use the first-order differences inxtendt directions and second-order central differ-
ences in theg direction, and we center the scheme with respect to the poni(2,j, | + 1/2), which
yields

I+1 I l+1 | l+1 I+1 I I
1Cd" —Uny um+1j Umn+1, in, lDE“m+l,j_um,j +um+1j Up, jd
>0 i - — h &
T T 0 X X 0
I I I I I+1 I+1 I+1 l+1
+1.F%Jm,j+l_um,j—l+um+1,j+1_um+1,j—1+umJ+l Um j-1 , YUm+1j+1~ um+l,j—15
4 0 2hy 2h 2hy 2hy 0
| | |
+1H%‘mj+1 2u +umJ 1, Un+1,j+1~ 2um+1] um+1,j—1
4 0 h2 h2
[+1 I+1 l+1 | + I+1
umj+l_2u +umj u +lj+1 2um+1j um+1j— D_ 47
+ > > l9=0 (47)
hy hy O

The finite-difference scheme (47) is written for the noaesj(), m=0,1,....,M-1,j=0, 1,..., 2],
I=0,1,..., 2L with the assumption that we later impose periodicity boundary conditions in time as well
as in they direction. Note that the stability of the scheme of type (47) was examined for the model scalar
equation

du,du du_ 1 92

ot 0x 0y Re 9y?
It turns out that the corresponding finite-difference scheme for equation (48) is unconditionally stable in
the von Neumann sense.

(48)

Then, using the periodicity conditions (compare with formula (4))

ud . = uy2l+l (m=0,1,..,M;j=0,1,...,2J+ 1) (49)

m, | m |

we implement a discrete Fourier transform in time (compare with formulas (7) and (6)),

21
—in |T— )
mj= 2L+1Z ul (m=0,1,..,M;j=0,1,....,2J+1;n=-L, ..., L) (50)
L . 2T
~ inlt= .
ul hj = Z um je | (m=0,1,..,M;j=0,1,...,2J+1;1=0,1,..., 2L) (51)
n=-L

and instead of system (47) obtain

~

Sy~ - u al i Ch R -0l U sq is1—UDsq i 4C
n n n ) m+1j m, j n m, j+1 mj—1 m+1,j+1 m+1j-1
2 n hy 2 0 2hy 2hy C
+&1HHJH”|J+1—2UmJ+UmJ—1 Uqu+1j+1 2Uum+1,jtUm+1, j— A= 0 (52)
2.0 hZ h2

_ oiain 210, _ L 2T _ . _ .
Here Sy = 2|S|n@nr %/r C, = cos@nTT [» N= -L,...,.L; m=01..,M=-1; and
j=01..2J.
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The finite-difference system (52) is a discrete analogue of the continuous system (8) on the two-
dimensional grid\ ©,
NO = {(x,,y;) =(mh, jhy=Y/2)[h, hy>0;
m=0,1..,MM=X/h;j=01..,2]+1,2)+1=Y/h} (53)

In formula (53)hy andhy are the same as in formula (46).
We also note that onae—~ 0, then- i2mn/T = iw,  (see section 2)cand1

3.2. Difference Auxiliary Problem

Let us construct another Cartesian gricDi$1 ,
MO = {(X,1,2Y)=((m+1/2)h, jhy=Y/2)|h,, hy>0;

m=01.. M=-1,M= X/hx; j=0,1,..,2J+1,2)+1 :Y/hy} (54)
The grid size$, andh, are the same as before. The difference AP is formulated for the inhomogeneous
counterpart of system (52) with a certain compactly supported right-hand side. The unknowns for the
difference AP are defined on the ngO (see formula (53)), and the right-hand side is defined on the
grid M 0 (See formula (54).) In doing so, we obviously have the second order of approximation. We
will define the specific right-hand side for the AF,%’,Jr 12, m=0,1,...,M-1,j=0,1,...,2], in
section 3.3. As for now, assuming that this right-hand side is already I(rwmnim+ 1/2,j0 Dm) ,we

provide an exact formulation of the difference AP and describe an effective algorithm for its numerical
solution.

In accordance with the results of section 2.3, we impose the periodicity boundary conditions in the
y direction,

Uho = UM 2341 (m=0,1,..., M) (55a)
UM, -1 = Ufh 23 (M=0,1,..., M) (55b)

Then, we implement a discrete Fourier transform (compare with formulas (36)),

2]

N |k]h
um k = 2J+1 Z m je N (m=0,1....M; k=-J,...,J) (56a)
<o
2J
fn - fn -ikin, 0,1 .. M-1k=-J .3 56
m+1/2,k_2J+1z m+1/2]e (m_ [ B ] -4 = TV ey ) ( )

J =
and obtain, instead of the inhomogeneous counterpart to system (52),

ARUM+ 1k +BRUM k = The 12k (m=0,1..,M=-1;k=-J,...,J) (57)

where the 4« 4 matricesA! and@ are given by

Cnt
All'(‘l = §C+h—D+TF +TkH (58a)
X
S c.r t
Bf = 5C-D —%—kF+—Z—|—(H (58b)



Here r, = isin%hyzvn%hy b = —4sin2%khy27n hi, andC, D, F, andH are defined in for-

mula(3b). For each wavenumblkerk =-J, ... J, system (57) is composed of ordinary difference equa-
tions, and it is a discrete analogue of system (37). To find a solution to the difference AP, we will have
to solve system (57) for &l k=-J, ... J. However, the formulation of the difference AP is still incom-
plete. To complete it, we have to set some boundary conditians=& andm=M (as was done at

x =0 andx = X for the continuous case in section 2.3). These boundary conditions should guarantee the
desirable far-field behavior of the solution (i.e., decay at infinity). They will be formulated separately
for each wavenumbég k=-J, ... J, i.e., the system (eq. (57)) will be supplemented for &dighsome
boundary conditions ah=0 andm= M. The idea for constructing these boundary conditions in the
discrete case is analogous to the one implemented in constructing boundary conditions (44) and (45) for
continuous system (37). Namely, when formally considered on an infinite one-dimensional mesh,
—00 <M< o0, system (57) obviously becomes homogeneous at least=fdvl andm< 0. The homoge-

neous system has four linearly independent eigletions: those that correspond |l}a>r“(k)|<1
decrease to the right (i.e., as- «); those that correspond tpr“(k)| >1 decrease to the left (i.e., as

m - —o); and those that correspond|p¢‘(k)| = 1 have either constant or oscillatory behavior. Here,

k), r=1,... .4, are the eigenvalues of the matQy dgf(AQ)—lBQ. Let us note that while calculat-

ing the eigenvalueg, (k) for the stationary Navier-Stokes equations (ref. 8) (the eigenvalues are calcu-

lated numerically using standard NAG subroutines), we have found that for all specific sets of the
parameters involved (i.e., grid sizgsandh, and hydrodynamic parametéutg, Re Pr, andy) the abso-

lute values of eigenvalues were never equal to unity except for the case of zero wavekar@bEgr

k=0, we have obtained a multiple eigenvalu€0)| = 1. (See ref. 8.) However, even in this case the
system matrix still has a basis composed of eigenvectors, which provides us with the reason for not con-
sidering the polynomially growing solutions in reference 8. For system (57), we also have a particular
case when the eigenvalues of the system matrix become equal to unity in absolute value. Namely, it is

easy to see from formula (58) tf@f = (AJ)~B§ = —I (identity matrix). ObviouslyQ has four lin-

early independent eigenvectors; therefore, we do not have polynomially growing solutions in this case
as well. As for other values &fandn, a numerical check (as was done in ref. 8) will always be neces-

sary to determine whether the eigenvalpqt(k)| = 1 exist. If such eigenvalues do exist, a check is

also necessary to determine what their multiplicities are and if there is a basis composed of eigen-
vectors. Relying on our previous experience (ref. 8), we assume that while solving (&yQtene can

restrict ourselves by considering only these two cdg@gk)| #1  |ued)| = 1 with the full system
of eigenvectors. Nontrivial Jordan blocks (of order more than ]lwmk)| = 1 are excluded from con-
sideration. Note, if the basis composed of eigenvectors does e#igr(lbj = 1, then system (57) will

be treated exactly in the same way as in the |¢E|[$E)| # 1 (the only difference is that the stability con-
stant becomes proportional\g).

Returning to the question of setting the boundary conditions for system (A @&andm= M, we
require that, analogous to the continuous case (see section 2.3), boundary condiierts stiould
prohibit all modes that do not decrease to the left (i.emy as—») and boundary conditions at=M
should prohibit all modes that increase to the right (i.emas »). Therefore, we may represent the
desirable boundary conditions in the form of matrix relations (compare with formulas (44)),
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s”(mﬁak=o (k=-J,....J) (59a)
STk =0 (k=-J,...J) (59b)
where
S (k) = |" (QR—HP(K)I) (60a)
un(k)[>1
s™(k) = |" (QR-u"(k)1) (60b)
[up(k)] <1

(compare with formulas (45)).

Thus, the final formulation of the difference AP is the following. One should solve the inhomoge-
neous counterpart to system (52)D|$ on the gridN © (see formula (53)), where the right-hand side
fm+ 172, (supdih + 1/2,j O D;,) is specified on the grid/ 0 (see formula (54)), with periodicity
boundary conditions (55) in thedirection and boundary conditions (59a) and (60a) at therliin®
and (59b) and (60b) at the line= M.

To solve the difference AP, we implement the following numerical procedure. First, apply discrete
Fourier transform (56) to both sides of the finite-difference system, then solve the systedimafy
difference equations (57) with boundary conditions (59) for each wavenlmberJ, ... J, and
finally restore the solution by means of the inverse Fourier transform,

Y (m=0,1..,M;j=01..,2J) (61)

The type of boundary conditions (59) (which are imposed separately for each wavekumdezs the

choice of numerical method most relevant. An effective algorithm for solvingliomeasional prob-

lems (egs. (57) and (59)) is delineated in our work (ref. 25). We do not reproduce the corresponding
results here, we only note that this algorithm may be thought of as a version of the well-known succes-
sive substitution technique but without its “inverse” or “resolving” part. The computational cost of the
numerical procedure in reference 25 as applied to solving the problem (egs. (339)anslO (M)
operations (for eack k=-J, ... J).

Let us now briefly describe the concept of convergence for the solutions of the difference AP.
According to section 2.3, we approximate the nonperiodic solution by a periodic one on a finite interval
-y <y<y when the period grows,Y - . In its own turn, an approximate solution to the periodic
problem is found by a finite-difference method on the grid with dizesidh,. Therefore, we will con-
sider (uniform) convergence of the periodic difference solution (i.e., solution of the difference AP) to
the nonperiodic continuous solution (i.e., to the solution of the original continuous AP) onfinita a
rectangle(0, X) x (-y, ¥) (this rectangle should be large enough to contain atllgpsather than on the
whole domain of the difference AP. Moreover, we will consider this convergence notivaely the
grid size vanishes but also when the peioglynchronously increases, i.e., (s, hy, Y) - (0, 0, ).

Of course, the rate of decrease for the grid dizesmidh, and the rate of increase for the periodre

not independent; some estimates connecting these rates can be found in reference 8. Furthermore, some
numerical experiments from reference 8 show that the presented construction of the difference AP does
ensure the convergence of its solution to the solution of the continuous AP in the sense just described.
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3.3. Computation of ABC'’s

0 guiC
In accordance with section 2.1, to set the ABC’s we need to know the foIIowngﬂ&taa—E

Here, ( is the normal td". When integrating the Navier-Stokes equations step-by-step in time, we

. gulC -
assume thaﬂj\,, 6ZV[ is provided from insidg,; then we use these data to resm:{}g , which enables
us to advance the next time step. However, as we carry out our analysis in the Fourier space, we cannot
“nC . n[

ouy
conS|derEJV,

ol

—'[ as the actual values obtained inside the computational domain. 'Iih\r,geg——E

[
we first have to calculate the Fourier transform of the fundﬂq,n Wlthout loss of generality, we

may always think that the latter is specified at the following pomts.
vx{tl|l =0,..,2L+1,t(2L+1) = T} (62)

Of course, actual discretization in time for the Navier-Stokes equations mﬁid}hould not necessar-

ily coincide with the one used for the solution of the exterior linearized problem. (See formula (46)).
However, we may always use some interpolation in time to obtain the boundary data on a uniform mesh
with respect td (eq. (62)), which is convenient for further consideration. Hereafter, we simply assume
that this interpolation (which is one-dimensional in time and of sufficiently high order) has already been
implemented for each node if necessary.

U odu,L
Another important issue related to the step-by-step integration in time is that the fllghgti%?‘—’ E

which provides the boundary data, is not necessarily time-periodic until we achieve a true oscillatory
regime. However, for the purpose of constructing the ABC'’s, we will propose some generalized treat-
ment of the boundary data as being already periodic. Namely, let us formally calculate the Fourier coef-

ou, L
ficients of |1IV, 57 - —L,
o 6uv 2t |n|r
m“’ e 2|_+1 Z o az% (n=-L,...,L) (63)

Then, it is well-known (see ref. 24 by Kolmogorov and Fomin) that the time-periodic function

L 21
HN
1, == z Hj\r;_a‘i_ T (1=0,1,...,2L +1) (64)




av, L
(I, is a usual Euclidean norm) on the class of periodic functlonsgr\g E from formula (64) is

ou, L
the best periodic least squares approxmatloﬁjgf Y[, Relying on this property, we will further use

¢ L
Fourier coefficients (63) as the boundary data that “drive” the ABC'’s (which may be referred to as the
generalized treatment of the boundary data as being time-periodic). Clearly, as we integrate the Navier-

g du,L
Stokes equations in time and approach the true oscillatory regime, the “source” f%hgti%l?—vE and

ov
its Fourier serleﬂlv, aZVD (eq. (64)) also approach each other.
We now implement the DPM (refs. 9 and 10) to actually calculate the ABC’s. We note that the
O gunt
boundary datdftuv, dive are specified on the cur¥e which is positioned arbitrarily with respect to

ol L

coordinate lines of the grid 0 (See formula (53).) Moreover, we do not impose any restrictions on the
shape of itself. In our opinion, the DPM (refs. 9 and 10) provides an ideal tool for treating such geo-
metrically complicated problems.

Let us introduce the following discrete sets. We consider a six-node two-dimensional stencil
S 1/2,j = { (X yj'): Xy Yi+ 1)r Ky Y _1) (Xpys 10 yJ')- (X4 10 Yi+ D Ky s 1o Y _U}

This stencil is actually a projection of the one from figure 6 onto the plnenst Obviously, the dis-
cretization (52) was obtained usis§, . 1> ;. Then, we define

M, = M%nD;; M =MAM;; N = [ Sthr1/2j Nin = Hl Sth+12j Y= NNy,

in
(Xm+1/2Y)) OM (Xm+ 172 Y)) O Mj,

Clearly, the set of grid nodegsis located near the artificial bounddry We will call this sethe grid
boundary(by analogy). The setd;,, M, N j,, N, andy are shown in figure 7.

Further, we will need to interpolate grid functions frdhd to the pointsv, OT,. Let us select all
those nodeg O N O that should be taken into account once constructing local interpolation formulas of
sufficiently high (e.g., second) order. All the nodesire located not far frorh;. Without loss of
generality, we always may assume tkal N. We denote the operation of local interpolation from the
Cartesian gridN tov, by Ry -

Let us also introduce the set of collocation poiatS ' and the space of eight-component vector

functionsVV{} DWQ defined on the set The elements df\/{} will be used as unknowns for the bound-
ary operator equation, which will replace the exterior linear difference problem. Henceforth, we will

~ nn
treatwg as vectors containing the valuesi®f ¥", p", andp" and the values of the derivativ%%,

N falll n -
%\—/Z— 6;2 andaaZ at the points; here  is the (outward) normal t6. Note that the function&g  are
. o Oaupt :
the discrete approximations \’}, WE from section 2.1.

Generally, the sizes, andh,, of the gridN 0 and the sizl; of the one-dimensional collocation grid
on the curvd are not independent; they should be correlated to each other in a certain way. This
requirement is a consequence of convergence conditions for the DPM algorithm. (See ref. 9.) The
theoretical questions concerning the correlation between the sizes df\lélr'mis;do are delineated in
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Figure 7. Grid sets. Gritil 0—continuous thin vertical IinesMo—continuous thin horizontal lines & dashed thin vertical
lines; continuous boundafy—thick dark line;M;,—gray boxesM—agray circles;N ;,—white boxes;N—white circles;
y = N n N,;,—big white circles & boxes.

reference 9. As concerns practical applications, the final choice of grids is always done taking into
account some previous computational results. In particular, it seems useful to conduct the computations
(see refs. 11 and 12) for the set of collocation points, which is more concentrated at the outflow part of
the external boundary in the wake region and uniformly spaced at the inflow part of the external bound-
ary. Moreover, sometimes the relatin O|y|1/2 appears to be proper. At any rate, for each specific
class of problems (determined both by the geometry of computational domain and by the parameters of
fluid at infinity) one always can make an appropriate choice of the Nrftiando relying on general

theory (ref. 9) and on the numerical experience.

Let us now specify some? OWJ) and implement the following procedure. First, we smoothly
interpolatewg alond (i.e., along the smooth componentd dfand get the functioRwg . Here,R is
an interpolation operator. Then, we drop the normals from the ydimfs and find the values dwg
at the foots of these normals. Sineg (and consequentligwg ) contains the values of boft#, 91, p",
andp" and their normal derivatives and since the distance between any and¢he curvé is small
(of orderh), we may approximately find", ¥", p", andp" at the nodey using the two first terms of
the Taylor expansion. We will designate the entire operation of continuation of the boundary data from

37



o toyasTig, 0\7v3 = G{,‘. Note that the preceding algorithm of continuation generally applies to the

smooth parts df (where the normal exists). In practice, however, the duigaisually not smooth (see

fig. 1), and it is impossible to construct an appropriate normal when the/ molibeated in some neigh-
borhood of the breaking point of the curve. The construction of the opeygtiorthis case is based on

the existence of two linearly independent directions along the curve, which enables us to obtain the
desirable continuation anyway.

Now, using the calculated continuation of the boundary a[&ﬁa= T%vAv(’}, we construct the fol-
lowing grid function:

mi T Kmy) Oy

‘ (65)

0 if (XypYy)ON O\y

which is defined already on the entire gﬂ@. (See formula (53).) Then, we substitute the funoﬁiﬁn

from formula (65) into the left-hand side of system (52). Generally speakjngioes not satisfy equa-

tions (52). Therefore, we generate some nonzero right-hand side, which we desgglﬂaieHere,Lg

is the linear operator defined by the left-hand side of system (52). This operator takes the functions
defined on the gridN © (eq. (53)) as an input and generates the functions defined on thi Grid

(eq. (54)) as a result. Finally, we truncate the fundtiQn,r\‘, 0 to thieligetvhich yields

L

~

n

u,r\',o‘
fMO

if (Xm+1/2’ yj) O l\/Iin

oS

m+1/2j
0 it (Xm+1/2Y)) DMy

66
‘m+1/2,j ( )

o o

We will use the functioﬁ},o = fr’}H 1/2,j from formula (66) as the right-hand side for the difference AP
by definition, supg i+ 1,2, j 0 D;,. Once we solve the difference AP with the right-hand &jge(eq.
(66)), we get the functioﬁgf,(‘,lo. Here,Gj is the Green (i.e., inverse) operator of the difference AP.
The functionGJf o is defined on the gritl . As it is considered only on the sub-ghNdON 9, it is

calledthe difference potentialith the densityiy P, uy = Ggf,'\}o‘N . (See ref. 9.) Clearly, the differ-

ence potential satisfies equations (52) siﬁ@;@ = 0 on M; moreover, it satisfies the boundary condi-

tions of the difference AP. The difference potenﬁﬁlyﬂ{,‘ is a discrete realization of the generalized

potential mentioned in the introduction. Later, we will find an approximate (i.e., difference) solution to
the problem (egs. (8)—(10)) in the form of a difference potential and then use this solution to construct

the ABC’s, i.e., to obtain the missing relations between the unknowns &t and atv, O T',. There-

fore, we will need to know the difference potential only on the two subséislotated closely té
andlfl;onyON andork ON , respectively.

Indeed, once we calculate the difference potentigl, eve can then construct the operam/‘r as

the trace of the potential?{,‘ﬂ{,‘ d—’*’fP,Q,yﬂ{,“y. This operator will be the key element of the boundary

operator equation of the DPM. Actuall?{,‘ is a difference boundary projection operator (ref. 9), which

substitutes?? (see section 2.1, eq. (11)) in practical computations.
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Once we calculate the difference potentiakpwe can interpolate it and find the trace of the solu-
tion to the linear problem ow, uj, = PJ U} = R, \ PR, uy. Thereby, we obtain the desirable rela-

tions between the unknownslaandl™; through the solution of the linearized exterior problem. Let us
now recall that we have replaced the original infinite-in-space problem by the periodic problem formu-

. g g o . .
lated on the strif—c < x <o} x [1—12( <y< %D, claiming that we will need to know the solution only on
g a

some neighborhood d@;,,, and therefore the convergence on a fixed interdak y <y, is sufficient

for our purposes (see subsection 2.3). Since we do not need to calculate the difference potential any-
where except atandk, the previous statement is now justified.

We now formulate the main result of the DPM theory. (See ref. 9.) Consider the entire space of grid
functlonsuy defined of. Those and only those elements of this space which satisfy the equation

PRUy = uy (67)
can be complemented M so that the complement solves system (52) (with boundary conditions (55)
and (59)). As previously mentioned, the operm@r is a projection; it is a discrete analogue of the Cal-
deron boundary pseudodifferential operators. (See ref. 17.) Fofl{,’anﬂ]e resuItP{/‘ﬂ{,‘ (as well as

Pn ﬂ{,‘) can be explicitly calculated in accordance with the aforementioned procedure,

D UNOD L UNOD fMOD anMOD PNVUVD Pnuy, PV yuv

: . O avfC
In section 2.1, we have declared our goal as to characterize those and onlglfheé%E that

would solve equations (8) with boundary conditions (9)p@pand coincide with the trace of the solu-

tion onl. Instead, we have provided an analogous classification (see eq. (67)) for the discrete rather
than for the continuous formulation of the problem. Therefore, we have equivalently replaced linear
system (52) oN , along with the boundary conditions (55) and (59), by the boundary equation with

projection (eq. (67)). Consequently, we can now specify the proper boundary data (see equality (10)) for

. gunhC
the discrete counterpart of the problem (egs. (8)—(10)). Namely, let us ta@&%é—"% (provided

- L
from insideD;,) and interpolate it alon§ to the set of collocation points, wg = Rovgh{,‘, —

Then, continuen using the operatam,, and finally appIyP{/‘ (which requires solving the AP). In
accordance with the previously formulated main result, the grid function

aG”D
Vy = PnTryO_RO.V'],IV,—Ez—D (68)
admits the complement t that solves the problem (egs. (52), (55), and (59)).

Thus, we have completed the first stage of constructing the ABC’s (section 2.1) and now proceed to
the second one. Instead of the problem (egs. (8)—(10)), we will consider its discrete counterpart: to solve
system (52) omN with external boundary conditions (55) and (59), and with boundary condition
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uy = vy (69)

aty; \7{,‘ in equality (69) comes from formula (68). The solvability of the problem (B@k. (55), (59),
and (69)) is guaranteed by the special type of boundary data provided in formula (68).

To actually find the solution to the problem (egs. (52), (55), (59), and (69)), we calculate the differ-
ence potentiaPQ, vy  with the density} from formula (68). Then, we interpolate the potential fiém
to v4, which yields

ahd uhC
i Ouy ydef ain Ouy (70)

onoo— N
Wy = Ry PRy PYoRavit: 5770 = TN 57

Equality (70) provides the missing relations between the unknownarat atv, in theFourier space;

these relations are based on the solution to the linearized exterior problem. Therefore, equality (70) is
almost the desirable ABC, and the only remaining step is the inverse Fourier transform in time. Before
implementing the inverse transform, let us note that the entire algorithm becomes most convenient from

a practical standpoint if we calculate the matrix representation of the op'é?almnn formula (70). To

do that, we choose some basisf\'ng, e.g., the simplest one, composed of the vectors like. (@, 1, O,
...,0), and implement the entire proceeding procedure. More precisely, we calculate

"n _ n n "n . "n . . .
uy, = R, nPRyPyT,cWo, for each basis vectowg. In so doing, we obtain the matrix of

vaN P,f\‘,yP{/‘nyG (each column will be the response to a specific basic fun&i}o)nand then, multiply-
ing the above matrix from the right by the interpolation magy, we finally obtain the matrix repre-

. ~ _ O gulC _
sentation off" . (Note that we do not start from basis funct%]ﬁs—éz—g since the number ofnodes
is usually much less than the number of nodgén fact, it is possible to show (see ref. 9) that for any
wg, PR, PIToW5 = PR, T,wg and therefore we need to calculate the magjx, PR, T, - Clearly,

the computation of each column of the magi \ P, s requires one solution of the difference AP,

which, in turn, involves the direct (eq. (56b)) and inverse (eq. (61)) Fourier transforms and the solution
of the problem (egs. (57) and (59)) for each wavenurlder -J, ..., J. Either Fourier transform will

require onlyO(M D) rather tharO(M [2) operations. (For definitions &ff andJ, see formuld46).)
Indeed, the support of the right-hand sf@@ is actually concentrated nelarsincel],r\‘, o differs from
zero only ony and the operatok § is local. Therefore, while calculating direct Fourier transform (56b)
foreachm,m=0, 1,..., M1, only a few valueﬁQH 1/2,j differ from zero, and consequently the total
cost of this computation i®(M [J) operations. Analogously, while calculating the inverse Fourier

transform (61) for eaclmn, m=0, 1,..., M, we need to knovﬁ,’ﬁj only for a few selected values jof

since all other Xy, yj) do not belong t. Therefore, the total cost of this computatior0{gv [D)

operations as well. Finally, the solution of the problem (egs. (57) and (59)) for each wavekumber
k=-J, ...,J costsO (M) operations. (See ref. 24.) Adding all these quantities, we obtain a total of

O(M (D) operations for the computation of each column of the mappy, Py, . We see that

although the entire algorithm requires repeated solution of the difference AP, the solution may be
obtained by means of an efficient procedure, which should make the total expense for calculating the

40



ABC's quite acceptable. Note that in our previous work (see refs. 8, 11, and 12) we have used a differ-
ent version of the algorithm. We expect that the total cost per one Fourier mode in time will decrease for
the current version because of using the thin-layer rather than the full Navier-Stokes equations. (Indeed,

the matricesA an@} in system (57) are 44 and the matrices for the full Navier-Stokes equations
are 8x 8.) (See ref. 8.)

Recall, our final goal is to express the values of physical variablgs laa\;l = (uvl, vvl, pvl, pvl),

ou, L
in terms of |]JV, FIdls ——L. Choosing the same discretization in time as in the formula (eq. (62)) and imple-
menting inverse Fourier transform (64), we obtain from formula (70),
n=1>L ~ . 2T
~ O gubinit&
ul = T, =k T 1=0,1,..,2L+1 71
n_Z_L A 57 ( ) (71)

Then, substituting expression (63) into formula (71) and changing the summation order, we get,

= 2L+1 21T
“ = D S _jnst &
al = Z 2ng |n|r 1 z au&msr_l_
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Finally, designating

0 ~ - ing-9)tet. O
Ths = L1+l Z e (-9 T (1=0,1,...,2L+1)
n=-L :
we obtain
2L+1 D SD
Z T SD s (1=0,1,...,2L+1) (72)

Equality (72), which is a specification of equality (11), provides the missing boundary relations between
the values of the unknownsfat and atrI (in the discrete formulation). Therefore, equality (72) pro-
vides the ABC’s we were aiming to obtain. Additionally, we note that the ABC’s (eq. (72)) can be sim-
plified for the case of integrating the Navier-Stokes equations step-by-step in timeDpsibtedoing

so, we only need to know,,  on the upper time level, i.et, $0F, which corresponds to= 2L + 1 or

tol =0 because of the perlod|C|ty Substituting0 into equality (72), we obtain

2L+1 D SI:
\

z TO. sy . —[ (73)
‘ DV’ s

Equality (73) is a desirable global ABC for implementation together with the step-bivstgpation
procedure in time. Indeed, formula (73) expresses the valuesvop, andp (perturbations) at the
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d odu,L
outermost coordinate row; on the upper time levek T as a function of the prescribed d%q,, —O_ZVE

through the time-periodic solution of the linearized thin-layer equations with the free-stream boundary

condition at infinity. We note that the matrices of operaT&@ are calculated explicitly and therefore,

the practical implementation of the ABC's (eq. (73)) is reduced to a few mvattter multiplications.

We also note that this practical implementation may preliminarily require some interpolation in time at
the nodes), which may be represented in a matrix form as well. If we use an explicit scheme for inte-
grating the Navier-Stokes equations insi?lg, then we directly implement formula (73) at each time

step for determining the missing values of the unknowns at the outermost coordinate row of the grid on
the upper time level. If the scheme insidjg is implicit, then we include the relations (eq. (73)) into the
SC

u
—VE fors< 2L + 1 as forcing

0
system of equations we solve on the upper time level treatiﬂ'@é%ﬁ, P

terms.

4. Concluding Remarks

We have constructed the DPM-based nonlocal artificial boundary conditions for computation of
oscillating external flows, specifically, compressible viscous fluid flows past finite bodies. To develop
the ABC’s, we used linearization of the governing equations against the constant free-stream back-
ground in the far field. To justify the constructions of difference potentials used for computation of the
ABC'’s, we provided some results on solvability of the linearized thin-layer equations. The nonlocal
nature of the proposed ABC's arises from their closeness to the exact boundary conditions. In spite of
this nonlocal nature, our ABC’s apply to artificial boundaries of irregular shape with equal ease, which
is very important for applications. We expect that these boundary conditions may become an effective
numerical tool in practical computing. The numerical results on the implementation of the described
ABC'’s will be presented in future work.

Note that we describe the algorithm for calculating the ABC'’s only for a particular class of methods
used for integrating the Navier-Stokes equations inBjgenamely, for such methods that the knowl-
edge of missing relations between only two external coordinate rows of the grid\(;) is sufficient
for closing the discrete system inside the computational domain. Obviously, once the method used
insideD;, is of higher (than the second) order, the consideration of only two cliraesl[ ;, might be
insufficient. However, we always can assume that the “linear reGigptontains more than one curve,
e.g.,l'; andl, instead of only™ 1, and can treat this case in the same way as described in this paper.
Moreover, one can use higher order schemes for solving the linearized exterior problem as well. Such
modifications may extend the possible range of applications for the described technique by including,
for example, some computational problems of aeroacoustics.

NASA Langley Research Center

Hampton, VA 23681-0001

April 11, 1996

References
1. Givoli, Dan: Non-Reflecting Boundary ConditiodsComput. Physvol. 94, May 1991, pp. 1-29.
2. Givoli, Dan:Numerical Methods for Problems in Infinite DomaiB&sevier, 1992.

3. Gustafsson, Bertil: & Field Boundary Conditions foiifie-Dependent Hyperbolic Systen®AM J Sci. Stat. Comput.,
vol. 9, no. 5, Sept. 1988, pp. 812—-828.

4. Gustafsson, B.: The Choice of Numerical Boundary Conditions for Hyperbolic Sysle@smput. Phys.vol. 48,
Nov. 1982, pp. 270-283.

42



10.
11.

12.

13.

14.

15.

16.
17.

18.

19.
20.
21.

22.
23.

24.

25.

. Gustafsson, Bertil: Inhomogeneous Conditions at Open Boundariesaf@ RYopagation Problem&ppl. Numer. Math

vol. 4, Mar. 1988, pp. 3-19.

. Carpenter Mark H.; Gottlieb, Dwid; and Abarbanel, Saul:ifie-Stable Boundary Conditions for Finite-feifence

Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Sché&oewput. Phys.
vol. 111, no. 2, Apr. 1994, pp. 220-236.

. Seifert, A.; DarabyA.; Nishri, B.; and Wgnanski, |.: The Bécts of Forced Oscillations on the Performance of Airfoils.

AlAA-93-3264, July 1993.

. Ryaben’kii, V. S.; and Tsynkov, S.:\Artificial Boundary Conditions for the Numerical Solution of Externiacdus Flow

ProblemsSIAM J. Numer. Analyol. 32, no. 5, 1995, pp. 1355-1389.

. Ryaben’kii, Mktor Solomonvich: The Diference Potential Method for Some Problems in Continuum Mechanics.

Izdatel'stvo Nauka(Moscow), 1987.
Ryaben’kii, V. S.: Boundary Equations With ProjectidRgssian Math. Surwpl. 40, no. 2, 1985, p. 121-183.

Tsynkov, S. V.: An Application of Nonlocal External Conditions to Viscous Flow Computalicd@emp. Physyol. 116,
no. 2, 1995, p. 212-225.

Tsynkoy S. V; Turkel, E.; and Abarbanel, S.: External Wi@€omputations Using Global Boundary ConditioARAA J,
vol. 34, no. 4, Apr. 1996, pp. 700-706.

Jameson, A.; Schmidt, Wgang; and Trkel, Eli: Numerical Solution of the Euler Equations by Finitduvhe Methods
Using Runge Kutta Time Stepping Schemes. AIAA-81-1259, June 1981.

Swanson, R. C.; andufkel, Eli: A Multistage Tme-Stepping Scheme for the Wer-Stoles Equations. AIAA-85-0035,
Jan. 1985.

Swanson, R. C.; andufkel, Eli: Artificial Dissipation and Central Ddrence Schemes for the Euler andridaStokes
Equations. AIAA-87-1107, June 1987.

Ryaben’kii, V. S.: Exact Transfer of Boundary Conditid®smp. Mech. Solid¢ssue 1, 1990, pp. 129-145.

Calderon, A. P.: Boundary-Value Problems for Elliptic Equat®reeedings of the Joint Soviet-American Symposium on
Partial Differential EquationsNovosibirsk, Aug. 1963, p. 303-304.

Anderson, Dale A.; @nnehill, John C.; and Pletché&ichard H.:Computational Fluid Mdranics and Heat ransfer
Hemisphere Publ. Corp., 1984.

Hoérmander, L .Linear Partial Differential OperatorsSpringer, 1963.
Vladimirov, V. S.Equations of Mathematical Physidd. Dekker, 1971.

Wblfram, StephenMathematicAM—A System for Doing Mathematics by Compuetdison-Vésley Publ. Co., Inc.,
1991.

Walker, Robert Johmilgebraic CurvesPrinceton Univ. Press, 1950.

Vainbeg, B. R.: Some Problems for Hypo-Elliptic Equations Which aef-Rbsed in the Entire Plangat. Sb,vol. 62,
no. 104, 1963, p. 186-248.

Kolmogoroy A. N.; and Bmin, S. V: Elements of the Theory of Functions and Functional Analisiska (Moscaw),
1981.

Ryaben’kii, V S.; and Tsyntv, S. \: An Effective Numerical €chnique for Solving a Special Class of Ordinaryfddif
ence Equation®#ppl. Numer. Math vol. 18, no. 4, Oct. 1995, pp. 489-501.

43



Form Approved

REPORT DOCUMENTATION PAGE o 168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1996 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Artificial Boundary Conditions for Computation of Oscillating Exte[nal
Flows WU 505-59-53-01
6. AUTHOR(S)
S. V. Tsynkov
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
NASA Langley Research Center L-17513
Hampton, VA 23681-0001
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration NASA TM-4714

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES
Tsynkov: NRC-NASA Resident Research Associate, Langley Research Center, Hampton, VA.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified—Unlimited
Subject Category 02
Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words) ) ) . .
In this paperwe propose a metechnique for the numerical treatment wfeenal flav problems with oscillator]

past a finite body (airfoil). Oscillations of thevfldn time may be caused by the time-periodic injection of fluid
the boundary layemwhich in accordance withxperimental data, may essentially increase the performance
airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain,
introduce an artificial ¢g¢ernal) boundary and to further consider only a finite computational domain.
quently we will need to formulate some artificial boundary conditions (AB@t the introducedxeernal bound

y

behaior of the solution in time. Specificallywe consider the case of unbounded compressible viscous plape flo

into

of the
that is, to
Conse-

ary. The ABCS we are aiming to obtain must meet a fundamental requirement. One should be able to
complement the solution calculated inside the finite computational domain to its indiaiiereso that the origin

apply the Diference Potentials Method (DPM) of 8. Ryaben’kii. This paper contains a general theors
description of the algorithm for setting the DPM-based ABiG! time-periodic external flows. Based on our €
rience in implementing analogous ABGor steady-state problems (a simpler case) xpea that these bounda

uniquely

problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is basgd on an
essential assumption: the \Nier-Stoles equations can be linearized in theffeld aginst the free-stream bagk-
ground. D actually compute the ABE, we represent tharffield solution as a ¢urier series in time and then

ptical
pe-
ry
flows.

conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory
14. SUBJECT TERMS . . . 15. NUMBER OF PAGES
Time-periodic flavs; Artificial boundary conditions; Boundary projection operafors: 44
Difference potentials method 16 PRICE CODE
A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



