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Abstract

Prediction of aerodynamic loads on bodies in
arbitrary motion is considered from an acoustic
point of view, i.e., in a frame of reference fixed
in the undisturbed medium. An inhomogeneous wave
equation which governs the disturbance pressure is
constructed and solved formally using generalized
function theory. When the observer is located on
the moving body surface there results a singular
linear integral equation for surface pressure. Two
different methods for obtaining such equations are
discussed. Both steady and unsteady aerodynamic
calculations are considered. Two examples are
presented, the more important being an application
to propeller aerodynamics. Of particular interest
for numerical applications is the analytical
behavior of the kernel functions in the wvarious
integral equations.

Introduction

Aerodynamics is a fascinating but somewhat
strange field. It is fascinating because it con-
tinues to offer many interesting practical problems
which must be solved or are in need of better solu-
tions. It is strange compared to other fields of
science because most available analytical methods
of attacking aerodynamic problems are indirect in
the following sense. In aerodynamics one rarely
starts with a differential equation and boundary
conditions and then proceeds to solve a problem.
Of course this state of affairs occurs because no
general analytical method of solution of the Fuler
or Navier-Stokes eguations is known. Even when
linearized theories are used, quite often the
direct method of solution is avoided. Instead, one
starts with doublet or vortex distributions over a
surface and derives an integral equation in terms
of the unknown source strength. These methods,
although correct, are somewhat unsatisfactory be-
cause they require a great deal of physical insight
and knowledge of physics. As a result, engineers
and students often find aerodynamics a much more
difficult subject than need he. It is one of the
purposes of this paper to propose a method to rem-
edy this circumstance through the use of acoustiec
equations. We limit ourselves to linear aevody-
namics only, Our main objective is to obtain re-
sults for prediction of aerodynamic locads on rota-
ting blades. A comprehensive review article on
this subject has been written recently by Johnson
1.
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It has long been known that linear aerody-
namics and acoustics are closely related [2]. This
fact has been exploited before by many researchers
such as Garrick [3) and Kondo [4]. More recently,
Hanson has specialized his acoustic formulations
for rotating blades to apply to aerodynamic predic-
tion [5]. His velocity potential approach is
closely related to that of Kondo (4] and involves
infinite series of special functions which can
cause computational problems. It is also restric-
ted to propeller-like motion and thus cannot be
adapted easily to propellers with non-uniform in-
flow or to helicopter rotors.

Das has made significant contributions to the
application of concepts from acoustics to linear
aerodynamics [6]. His work is closely related to
the first of two methods presented here. His
approach, however, is from the point of view of
singularity distributions which for reasons discus-
sed above is avoided here. The approach presented
here also bypasses much of the lengthy algebraic
manipulation common in singularity distribution
methods.

The approach we propose here is based on the
solution of the wave eguation in the time domain
and in a frame fixed to the undisturbed medium.
Consequently, compressibility effects are automat-
ically included in the analysis. This unconven-
tional approach can cause some difficulty for those
who are accustomed to working in a co-moving frame,
i.e., a frame fixed to the moving body. However,
this difficulty is compensated for by results of
great generality and usefulness, Starting with an
acoustic equation for a body in arbitrary motion,
we can derive an aerodynamic integral egquation by
moving the observer onto the surface of the body .
Both steady and unsteady motion are considered,
Two different methods for deriving an integral
equation are Adiscussed. Surprisingly, the simpler
one applies only to unsteady periodic and steady
camber problems but not to the steady angle of
attack problem. Essentially, the unsteady aerody-
namic problem is an acoustic problem in a sense
that will be explained later.

The origin of this paper is a set of lecture
notes written for a short course on acoustics and
aerodynamics of propellers at the von Karman Insti-
tute [7]. Long has demonstrated the usefulness of
the acoustic approach by deriving an integral equa-
tion and working out several numerical examples



{8]. More recently Milliken has followed a related
approach by deriving the aerodynamic kernel func-
tion for a rectangular panel in steady rectilinear
motion using the acoustic method [9]. This result
will be presented here- as preparation for a more
complicated kernel function for propellers.

Following a discussion of the governing equa-
tion of acoustics and its relevence to aerody-
namics, application to aerodynamic problems will be
considered. Two examples will be given, the second
being an application to propeller aerodynamics.
For the case of the propeller, an analytical treat-
ment of the singularities appearing in the integral
equation is given. As a result, only non-singular
integrals are reguired for numerical work.

The Governing Eguation

Let ¢ (x,t) and p (x,t) bhe the velocity . poten-
tial and the pressure, respectively. Here the x-
frame is fixed to the undisturbed fluid medium in
which the speed of sound is c. The velocity poten-

tial in the 1linearized form satisfies the wave
equation
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The fluid perturbation velocity is u=V$ , and the
relation bhetween p an ¢ is described by
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where pois the density of undisturbed medium.

Consider a 1lifting thin body in arbitrary
motion. In the following we will omit consider-
ation of the thickness effect. Within linearized
theory, boundary conditions on the body are re-
ferred to an infinitesimally thin mean chord sur-
face whose velocity is everywhere tangent to it~
self. Assume that f(x ,t)=0 describes this surface
in motion such that Vf points toward the suction
side of the lifting body. Let k(; ,t)=0 describe
the wake of the body, also assumed infinitesimally
thin. Across the surface f=0, the jump in surface
pressure, Ap=p lower ~P upperx’ is related to the

velocity potential by Bqg. (2) as follows

Ap-poA¢t=0 (3)
where ¢ =3¢/3t. Across th~ wake, since Ap=0, one
gets

44 =0 (4)
Note that Ao ¢t upper wt)lower in Bgs. (3) and

(4).

Following reasoning used in classical aerody-~-
namics, ¢ has a jump across £f=0 and k=0. We wish
to obtain a wave equation in which this discontinu-
ity is included explicitly in an inhomogeneous
source term., To do this we replace the derivatives
in Eg. (1) by generalized derivatives([7, 10-12]},
The result is :

) 26=-T 184 VES(E)1-F [Ap 6(K)] ()

where the bar over the operations denotes general-
ized differentiation and &(s+) is the Dirac delta

function. Here again Ak%pper ~ $1owers Taking

the time derivative of both sides of Eq. (5) and
using Egqs. (2) to (4), we obtain

8 =% (aph|ve|6(£)] (6)

Here 3=Vf/lVf| is the unit normal to £=0 pointing
toward the suction side. Equation (6) is a special
case of the Ffowcs Williams-Hawkings (FW-H) equa-
tion {7, 10, 13]. It is the governing equation for
all acceleration potential (doublet lattice) meth-
ods. To relate the above results to those of clas-
sical aerodynamics, consult reference 7. The math-
ematics of this section is discussed in references
10 to 12,

The Acoustic Approach To Aerodynamics

We consider two different methods in this
section. The first leads to a rather conventional
integral equation. We begin with the formal solu-
tion of Eq. (6), which is,

am (X, t)=7 [ L Aph|ve| 6(£) 8(g)adar ()

where g=1 =~t+r/c, r—l l ,x-—y' and (x t) and

(y,r) are the observer and source space-time vari-
ables, respectively. For aerodynamic application
we use one special form of the various equivalent
interpretations of Eq. (7) [14]. Taking the diver-
gence term in Eq. (7) inside the integral and using
the relation

3 [G(g) ) _la_[rid(q)] ) rié(g) )
3x, r = ¢ at r 2
i r
where £i=ri/r ,we get
amp(x,t)= - E—[Apcose'Vflé(f)G(q)dydr

(9)
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The interpretation of the integrals in BEg. (9)
is given elsewhere [14]. Let I be the surface
generated by the intersection of f=0 and the col-
lapsing sphere g=t-t+r/c=0. Since £=0 is assumed
to move tangent to itself, M =0 on the I- surface
(therefore A in reference 14 J.S equal to 1) and we
can write Egq. (9) as follows:

4mp(x,t)= - 13 —[Apcosel AL
c 3t
F=0" (10)

1
- f —2[Apcosel T,‘dl‘.
F=0

=f(;,t-r/c) and t*is the
emission time. One more step is needed to get the
required result. Using Bg. (2) on the left side of
Eq. (10) and then integrating both sides with re-
spect to the observer time from - » to t, we obtain

where F (;;;, t)=[f(;, 1))

amoy 9%, t)= < [ LlApcosel ,az
F=0 (1)

t
] -
+ [/ -r—z[Apcoselt,*dEdt
-m =0
Wheri T°*% is the emission time corresponding
to (x,t”),t” being the integration variable wi'th



Upon calculating the
(11),

respect to observer time.
normal derivative 3/3n of both sides of Eq.
we get the aerodynamic integral equation
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(12)
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-0  F=0

1
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r

is the local normal velocity of the sur-
e right side of ®. (12) must be inter-
limit for x approaching the surface

where v
face.
preted as a
£=0,

Bquation (12) is a linear singular integral
equation, It 1is the basis of the acceleration
potential or doublet lattice method. We note,
however, that there is no restriction made in Eq.
(12) to uniform rectilinear motion of the surface
£=0. The aerodynamic kernel is derived from this
result and will be discussed later. We mention
here that the second integral on the right of Eg.
(12) is an improper integral. Thus the normal
derivative cannot be taken inside without careful
analysis since it leads to a sinqular integral.

A second method of using acoustic equations in
aerodynamics is to treat Bg. (10) itself as an
integral equation on the unknown surface pressure
as suggested by Long [15] and Farassat {16]. For
reasons which will be explained in the next sec-
tion, this method fails for the steady angle of
attack problem. One is thus obliged to use the

first method. However, in the case of periodic
motion the second method appears to lead to a
useful integral equation whose solution is

considerably simpler than that of Eq. (12).

Further Analysis and Applicability to
Steady and Unsteady Motion

Bguation (12) can be used for numerical calcu-
lations by dividing the wing or blade surface into

panels and approximating the inteqrals assuming
that Ap is uniform on each panel:
anp v (w er=pap, & 2 [ Licose) ,ar
Povn ’ i'c 3n r ™
Fi=0
3 " 1 (13)
+5= ] — lcose] . azat”}
n_: N
F.=0
i
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Here F =Fy (y,x ,t)=0 is the surface generated by
the lntersectlorq of the i-th panel with the col-
lapsing sphere g= Tt -t+r/c=0. The function Ky is
the aerodynamic kernel function. Physically, 11: is
the normal velocity induced at the j~th panel by
the i-th panel.

Under some conditions, the inteqrals in the
kernel function can be evaluated analytically. We
present an example in the next section. Quite
often, however, one has to resort to numerical
integration but treat the sinqularities in the
integrals analytically. In preparation for this
step, we carry the analysis of the Previous section
further. First we note that Fy is a function of n
so that essentially Leibniz rule for differention
of an inteqgral must be used on the integrals in the

kernel function, This can be achieved most effi-
ciently using some elémentary generalized function
theory.

Let us define the following integral in which
q (y,x t) is an arbitrary function and F has the
same meaning as defined above:

I= <.

Ty (14)

f gdZ
F.=0
i

Note the surface integration is with respect to the
variable y and the normal derivative is with re-
spect to x + On the surfacg £=0, let the ith panel
be specified by f, 1=0, 2(y, t)>0 where fi=0' L =0
specifies the edge of the panel. Then using L
(y;xj,t)=£(y,t- E),r=|xj-y' + EJ. (14) can be

written as

3
I= Ejn(r.)qdz (15)

where H(L) is the Heaviside function. The limits
of the integrals in Eg. (15) can be considered
constants now and the normal derivative can be

taken inside as follows:

_rdL 3q
= %qd(L)dZH»]H(L)ﬁdZ

We also have, from the definition of L,

(186)

aL _ 1 g-3%

- = - — COS
an c T

in which 07 is

(17)

the angle between r';’(at the j-th

panel) and the unit radiation vector r (from the i~
th panel to the j-th panel).

The first integral in Bg. (16) is a line inte-
gral over the edge of the I- surface generated by
the i-th panel., It can be written in a compact
form by first writing Bg. (17) as follows:

L
n

where M =M~ o is the local Mach number in the direc-

=M 'V!,|cose‘ (18)

tion of the inward geodesic normal v to the edge of
the panel f_=2=0. The geodesic normal 3 is defined
as the unl% vector which is perpendicular to the
edge and tangent to the panel f =2=0 . Then, let

(u u) be an arbitrary curv111neat coordinate
system on I and q(z) be the determinant of the

coefficients of the first fundamental form. We
have dz= vg du du2 « Using the coordinate trans-

formation u1->L , we have

A T
|| /5 au'au?- du“dL =dydL (19-a)
(2) 1

|8L/au |
[vef=|vea, (19-b)

2 2 2 > 2 2
A 0=Mpcos M(1-MP' rps:.nw) (19-c)
Here M_ is the projection of the local Mach number
vector’ on the plane normal to the edge curve,

M_= 'ﬁ ' and r, is the unit vector along the pro-
P p > P
jection of £ on the plane. Also § is the angle

>
between the radiation vector ¢ and the edge é&urve



of the I- surface. Figure 1 illustrates these
geometric quantities. In Bg. (19-a), dy is the
element of length of the edge curve of the I- sur-
face. Substituting Eg.. (18) into the first term of
Bg. (16), using By. (19) and finally integrating
with respect to L gives

1= f qu cos 8

FO=0

L'=0

ay+ funiddaz (20)

. 0 > >
where we define Fi-[Fi(y’x't)]n=0 .

In general the second term in By. (20) is
singular for aerodynamic problems. This would
happen for Bg. (14) if we assume that the integral
in Eg. (14) is an improper integral. Mathemati-
cally, 3/3n could not be taken under the integral
in the classical sense., However, we can interpret
3/9n as a generalized derivative. Taking the
finite part of a divergent integqral in many prob-
lems of aerodynamics is equivalent to
assuming 3/3n is a generalized derivative. We can
avoid this route and the associated algebra and
computational difficulties by taking 3/3n out of
the integral as follows:

a3 ag= fraw)) _aaze 2 [ qaz (21)
(o]
F =0
L30

We thus write Eq. (20) in the form

cosf” 9

1= ({ aM 5 dy + o= é qdf (22)
Fi=0 F. =0
L0 Lo

Note that L=[L] _, also but we do not have to use a

new symbol. In practice, the second integral is
evaluated analytically in the region near where
singularities exist and the normal derivative is
then taken analytically. In the other regions, we
simply evaluate faq/ on dI numerically.

Going back to the kernel function Kij defined

in Eg. (13), we note that both integrals in K., are

13
of the type in BEg. (14). However, the first inte-
gral is proper (or convergent) while the second is
improper. Keeping the comments of the above para-
graphs in mind, we use the analysis of Eg. (14) to

write the kernel function as

Mvcos 8°cos @

1 1
4!90Kij— = ({ 7 { Ao {,,dY
=
(23)
1 3 1
+z c{ = & [cosB]T.}dZ
F. =0
L0
+ 1 Mvcos 87cos @
+ 7] = l——— ] _..ayat”
= 0 r2 Ao T
F. =0
1'=0
+ 2 ft f L [cos 8] __ dzat”
) - 0 rz T

Note that the index j is’implicit on the right side
of Eg. (23) by taking x=x\<j in every term of the

integrands. An example of the use of the above
equation to find the kernel function for propeller-
like motion is given in the next section.

Since our procedure is equivalent to what is
usually done in acceleration potential methods {16,
17} it is obvious that it is applicable to both
steady and unsteady motion. We mention here that
the time integrations in Ea. (23) must, in general,
be carried out numerically, which would require
excessive computation time. It would be highly
desirable if somehow this could be avoided. We
study the possibility of removing the time integra-
tion next.

As mentioned in the previous section, one may
treat Eg. (10) as an integral eguation on p. Since
we are interested only in the lifting problem, we

can assume Pyooer “Plowers 1e€es 8P=2pP1 ey

Now, it would appear that use of Eg. (10) would be
an attractive method because it seems to say that,
except for information at the emission time t*, the
past history of the motion of the body is irrele-~
vant to the determination of the surface pressure.
However, Ap(T*) in turn depends on Ap at earlier
times, and in fact the entire history is required
for one to apply Bg. (10). For arbitrary motions
of the body, one infers that only the first method
leads to a proper integral equation unless it hap-
pens that Ap has some sort of symmetry property in
time. The most common situations in which this
kind of behavior exists are for steady and periodic
surface pressure. Below we will show that the
second method also breaks down for the case of
steady surface pressure due to angle of attack but
not for the camber and the unsteady (periodic)
cases.

Long [8] and Farassat [15] have taken two
different but equivalent expressions of Eq. (10) in
which 3/3t is taken inside the first integral ana-
lytically, and then have treated the result as an
integral equation on p. These integral equations
are quite complicated. Here we derive by a direct
method from Egq. (10) the thin body approximation of
the results of Long and Farassat. First, however,
we apply Eq. (22) to the two integrals of Eg. (10)
which results in

Avacos 8°cos 8

Ao

1
?[ ] _,dy

[

+ 1
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+—= [ 2= {=lApcos8] LJ4E
c 0=Oan r T (24)
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where now FO=[F(;;§,t)]n and L={l(y,t-§)]

=0 n=0 '
2(;, 1)=0 describing the blade planform. Again we
have kept 3/3n outside the 1last integral since
this integral is improper.

We now take 9/3t of both sides of BEg. (24).

We can write 3v_/3t in the frame attached to the
body as follows:

2 v=2 (25)

where ‘.Jn is the rate of change of Vi for an observ-

er fixed on the body, V is the local forward speed

(of relative wind) and 3/30 is the directional
derivative in the direction of forward speed.
Equation (20) then gives
v APM _cos8°cos9 ‘
1.3 1 v
A S Fabl S 2 1 a0y
0=0 0
-5
13 3 1
+ = =— [ —{=[4pcosH) L
c 3t O_OQn r T (26)
>0
ApM cos8“cos @
1 v
+ f — -] _ 4y
2 A ™
O__or 0
£-5
* 3 1
“qu —2[Apcose]1_*d£
0 r
Es3
Considering the steady state case

first (x'rn=0) , We note that 3vn/30'=0 for the angle

of attack problem so that the left side of Eq. (26)
is zero. We are led to the conclusion that the Ap
distribution for this case is an eigenfunction of
the integral operator on the right side of Eq. (26)
corresponding to the eigenvalue zero., This fact is
of little help in finding the pressure distribu-
tion. However, the integral equation for the cam-
ber problem is well defined and appears useful
since Vavn/ac # 0. This fact must be explored
further.

For the case of the unsteady periodic loading
problem, we can assume both \'rn and Ap are propor-

tional to exp (iwt), where w is the frequency of
oscillation, and once again we have an inteqral
equation which is nondegenerate since x'/ﬂ#O . This

integral equation is in terms of the unknown com-
plex amplitude of Ap . - To the authors' knowledge,
this equation has not been used before.

The chief advantage of using Eg. (26) instead
of Bq. (12) is that no time integral appears in the
former. As a result, Eg. (26) requires much less
computer time than Eg. (12) in the case of the
camber and unsteady periodic loading problems. We
can define a new aerodynamic kernel function based
on Eq. (26). This is done by using a unit ampli-
tude oscillation of Ap and finding the induced
\'rn at a given point. The calculation of the inte-

arals in Bg. (26) is very similar to conventional
acoustic calculations for rotating blades [14]
which are at present in the advanced stage of de-
velopment., These acoustic codes

modified to obtain the aerodynamic kernel. It
appears, therefore, that, from a computational
viewpoint, the steady angle of attack problem for a
thin wing is more difficult than the camber or the
unsteady loading problem. For the angle of attack
problem, one is obliged to use Eq. (12); no alter-
native exists.

Examples of Application

We present two examples here for the steady
state case., The first is the determination of the
aerodynamic kernel function of a lifting surface in
uniform rectilinear motion. This function can be
found analytically for a rectangular panel. The
second example is for a propeller in uniform axial

motion. For this case we treat only the more dif-
ficult question of singularities of the kernel
function.

A Wing in Uniform Rectilinear Motion

can be easily

Consider a thin wing which is divided into
rectangular panels and is moving parallel to the
%y-axis in uniform rectilinear motion in the X Xy~
plane. Assume that the dimensions of the panel are
2a and 2b in the chordwise and spanwise directions,
respectively, Assume also that in the Cartesian
frame fixed to the medium, the center of the panel
is at (y1c, y2c,0). We want to find the velocity
induced at the observer position (x1, X5, x3) by a
unit pressure distribution on the panel. Both
integrals of the kernel function in Bg. (13) can be
evaluated analytically since t* and T°* are explic-
itly known. Note that 3/3n=3/3x, here. The normal
derivatives of both integrals cdn be obtained eas-
ily. 1In this example, no special treatment of the
singularity of the second integral is needed since
the integral is found in closed form. The alge-
braic manipulations of this example have been car-
ried out by Milliken [9].

We present the kernel function here., We first
define the following symbols:

By Ky (27-a)

Ey=Y 7% 2 (27-b)

MYy %yt (27-c)

Ng=Y2c7%X27P (27-d)

B = 1-M2 (27-e)

where M=V/c and V is the forward speed of the wing.
The i-th panel is specified by (y,c, y2c,0) and the

control point j is specified by (xI, X5, 0). Then
the kernel function is found to be
_ 1 4ab
13 41'90‘1 n,My
1 2 .2
+ L/e28%0? - Jelugled)
u (28)

1 2,22 2,22
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where log stands for natural logarithm.

It can be shown that Egq. (28) satisfies the
Prandtl-Glauert rule [9]. Figure 2, shows the
distribution of the induced velocity in the vicin-
ity of a panel. It is very interesting to note
that the induced velocity downstream of the panel
is similar to that of a horseshoe vortex, as shown
in figure 3., The pressure on a retangular wing of
aspect ratio 10 moving at forward Mach number of
0.2 is shown in figure 4. The Galerkin method was
used to find this distribution. The mid-span
chordwise pressure distribution is compared with
the two dimensional incompressible analytic result
in this figure. The agreement with the calculated
pressure distribution is excellent.

A Propeller in Uniform Axial Motion

The kernel function for a propeller in uniform
_axial motion can be found from By. (23) by an ana-
lytic-numerical method. We assume that the ob-
server position (control point) x, never 1lies on
the edge of the I-surface of a panel. This means
that the control point is never on the edge of a
panel, which is a common practice in panel methods.
Therefore, the line integrals in Bg. (23) are not
sinqular. We thus concentrate on the question of
singularities of the surface integrals only. We
mention here that the I-surface of a panel can be
constructed relatively easily by a numerical method
even at transonic and supersonic speeds. This is
done routinely in acoustic codes using time domain
analysis [18].

To study the behavior of singularities of the
surface integrals in Eq. (23) we must first set up
a coordinate system and write the surface integrals
more explicity. We assume that the propeller blade
surface lies on the helicoidal surface generated by
the blade pitch change axis {(PCA). The propeller
is moving forward at uniform speed V along the
propeller axis and rotating at constant angular
velocity w . The f-surface of any panel on the
blade surface lies on this helicoidal surface.
Essentially, one can forget about the J-surface and
ask the following question: What is the nature of
singularities of the surface integrals of By. (23)
when we integrate over the helicoidal surface, and
how do we evaluate these integrals? We will answer
this guestion next.

Define an ﬁ—frame such that the n_-axis is
along the propeller axis and the n -axis” is along
the PCA at time t=0. The origin of this frame is,
therefore, at the intersection of the PCA and the
propeller axis; The n,-axis is defined in such a
way that the n-frame is right handed. We first
find the equation for t?e helicoidal surface. lLet

s = -n, and n = é:fm:)/z.
the PCA. Since e propeller travels a distance s
in s/V seconds, the blade rotates ws/V radians in
this period. The helicoidal surface is, therefore,
described by

i.e., distance along

E=(n cosa s, nsina s,-s) (29)
where a=w/V.
meters (n, s) .
in Fig. 5.

This surface is defined by para-
Portions of this surface are shown

We next define some other geometric quantities
on the helicoidal surface. The following vector is
normal to the surface

am .
n x5 = (-sina s,cosa s, an) (30)

Its length is

| = 14020 = 1 — (31)

B(n)

Q’IQ)
3 {3+
Qi Qr
Q|3+

The unit normal 1 to the helicoidal surface is,
therefore,

A=8(n)(-sina s,cosa s, an) (32)
We also have
> +
_19n _ 3n _ dnds
ak = |35 * =19Ms = g0y (33)

Let Wy, be the local helical speed of the blade.
Then Vh and V are related by the relation

’ \4
Vh = ET;T (34)
Therefore, the 1local angle that the thelical
velocity makes with the n1n2—plane is given by
o= tan”'8(n) (35)

Asgpme now that the observer (or the control
peint) x. is at the distance n from the helicoidal

surface with the surface variables (no,so) « From
the above results we have
> »> >
xj = n(no,so) + nn(no,s)
= (n.cosa s, - nB sina s
0 0 0]
0 ! (36)
n051na 80 + nBocosa 50,

= 8 * angBy,)

where B =B8(n ) . Assuming that the source point ;
on the %-sur ace of the i-th panel has coordinates
(n,s) on the helicoidal surface, we have

£=x ; = x E(n s)
J b !
= (nocosa so- nBos1na so- ncosa s,
(37-a)
nosxna so+ nsocosa so- nsina s,
8 - sq+ nanoBO)
2 2 2 2 2
r = no+ n+n+u-~ 2nnocosau
(37-b)
+ 2nn8051nau - 2a80n0nu
u = 8y~ 8 (37-c)
Ref _ B(m)
cosd = —;5 = —;D—[nosinu u - anu
2 (37-4d)
+ nBO(cosa u+ a nno)] [

)"
The two surface integrals of concern here in
the kernel function Kij of Bg. (23) are



3  cosf
= 38~
I, fan[ laz (38-a)
9 rcosf
= 38-b
I2 T r2 4t . ( )
where 3/3n stands for lim ,3/3n . We remind

readers that integrations are over portions of the
helicoidal surface. The upper and lower limits of
these integrals in the variables (n,s) are indepen-
dent of n since the influence of this latter vari-
able is included in the line integrals of Eq. (23).
In the following discussions, we use Egs. (33),
(37-b) and (37-d) for 4T , r and cos8 ,
respectively.

Because we have cosf in the numerator of I1,
we can tolerate r“ in the denominator of the second
term on the right of the following eguation:

3 cos? 1 2cos?d cos 9 Jr
— == - = 39
an[ r r on r2 an (39)

In fact the second term yields an improper {(conver-
gent) integral. A well-known result of potential
theory tells us that, if, x, is in the region of
inteqratiion, then we must isolate a small region
around xj and integrate analytically the second

small region. The result is
Inteqration over other regions then

term over this
21r[3r/3n];. .

must be carried out separately. It is interesting
to note that the inteqgration with respect to n can
be performed analytically, and only the integration
over s must be evaluated numerically. Qur work
with I, is thus finished.

For 12 we must proceed more cautiously. We
note that r+0 as (n,s)+(n.,s.) . We first inte-
grate the integral with reéspect to n analyti-
cally. Then we take 3/3n inside the integral and
study the convergence of the resulting integrals
We find that inteq_r):als are convergent except near
the control point xj . For this small reqgion, we

again keep 3/3n outside the integrals which involve
now only integration with respect to the variable
s. Using Taylor series expansion of the integrands
in u=s-sq,, the inteqrals are evaluated analytically
and then 3/3n is calculated. The result is no
longer singular as n»0. The algebraic manipula-
tions are very lengthly and tedious but straight-
forward. Here we have given the important equa-
tions and the crucial steps for finding the kernel
function for a propeller.

Now we summarize the procedures for obtaining
the kernel function X; The first two integrals

14
in By. (23) are evaluaged only once for each ’?j at

the time t. We take this time as t=0 since Ap is
independent of time. The steps for the first two
integrals are as follows:

i) Construct the I-surface of the i-th panel
numerically for t=0.

ii) Perform the line integral over the edge
of the I-surface numerically.

iii) With the surface integral written as in
Eg. (38-a), check to see if )'Fj is on the g-surface.

If so, isolate ij by a small region and integrate

analytically. This gives a single finite term.
For the remainder of the I-surface, integrate the
surface integral analytically with respect to n and
numerically with respect to s. If xj is not on the

I-surface, repeat the above analytic (wrt n) -
numerical (wrt s) integration for the surface inte-
gral.

For the last two integrals of BEg. (23), we
have a time integration over t* from -» to 0. We
discretize the time integration. For each t” <0 ,

: k
we perform the following steps:
first two

i) and above for the

integrals.

(ii) as

iii) write the surface integral as in Eq.
(38-b). _}Integrate analytically with respect to
Ne If x, is on the I-surface,

isolate xj by a

small region and integrate analytically with re-
spect to s. Take 3/3n analytically. For the
remainder of the I-surface, take 3/9n inside+ and
integrate numerically with respect to s. If %, is

not on the I-surface, take 3/3n inside the integral
and integrate numerically with respect to s.

iv) Repeat the above three steps for the next
t” and finally integrate numerically both the
line and surface integrals with respect to t”“., We
mention here that when t“<<0 , we can simplify the
integrands considerably and thus evaluate the line
and surface integrals more efficiently.

Concluding Remarks

In this paper, we have developed the theoret-
ical foundations necessary to solve for the aerody-
namic loading on thin lifting bodies in arbitrary
motion. We treat the problem from an acoustic
viewpoint in a frame of reference fixed in the
undisturbed medium, and we exploit the fact that
the pressure satisfies the wave equation in this
reference frame. Generalized function theory is
applied to obtain an inhomogeneous wave equation in
which the boundary conditions on the moving body
are explicitly included as source terms. This
equation is then solved formally using the free
space Green's function for the wave operator. We
use the formal solution for the observer located on
the body surface to derive two linear singular
integral equations which are satisfied by the sur-
face pressure. One of these is completely general,
but we find that the second (simpler) one is a
proper integral equation only in certain special
cases. Among these are the steady problem for
loading due to camber and the unsteady periodic
loading problen.

Two examples of the use of the theory as the
basis of a numerical panel method are discussed.
The first is a wing in steady rectilinear motion.
In this case, detailed numerical results obtained
elsewhere (9] are found to compare well with the
predictions of alternate analyses. The second
example involves a propeller in uniform axial
motion. Here we concentrate on an analytical dis-
cussion of the behavior of the aerodynamic kernel.
We find that it is possible to eliminate all singu-
lar integrals which occur, so that the current
method promises to lead to an extremely efficient
numerical scheme, Actual numerical implementation
of the theory to the propeller problem is currently
in progress.

The theory presented here has several advan-
tages in comparison to more conventional discus-
sions of aerodynamics. First, of course, is the



fact that it is applicable to arbitrary unsteady
motions of the body so long as they are within the
realm of linearized theory. Because it is carried
out completely in the. time domain, there is no
necessity for a Fourier Transform approach with its
attendant complications of infinite series of spe-
cial functions. Even in the case of steady recti-
linear motion, however, the current approach yields
results in a manner which many will find easier to
understand than the usual development of aerody-
namic theory. In particular, the acoustic approach
involves the direct solution of a well-defined
boundary value problem with no a priori modeling of
the flow field by distributions of singularities.
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Figure 2. Induced velocity near panel.
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Figure 5. Geometry of helicoidal surface.



