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Abstract

Progress has been made toward solving three-
dimensional viscous flow problems with unstructured
grids. Enhancements have been added to an estab-
lished unstructured grid flow solver that upgrade its
formal accuracy to second order, improve the code ef-
ficiency and speed, and accurately solve the Navier-
Stokes equations on tetrahedral cells. Accuracy is in-
creased by a pseudo-Laplacian weighted averaging al-
gorithm which produces more robust convergence, and
permits higher-order boundary conditions to be used,
which is important on highly-stretched cells. An ex-
isting time-implicit Gauss-Seidel algorithm is installed
which results in a six-fold reduction in total computer
time over that of an explicit algorithm for inviscid-flow
calculations. Finally, an unstructured laminar solution
on the ONERA M6 wing has been validated against a
structured-grid solution with encouraging results.

Introduction

Unstructured grid methods provide a viable alter-
native to the structured grid approach for solving the
Euler equations for flows over complex aerodynamics
shapes. With current grid generation technology,’=3
isotropic tetrahedral grids can now be constructed
around complex aircraft configurations in a matter
of days. The construction of a comparable block-
structured grid generally requires much more time. As
a result, unstructured grid methodology has become
widely used throughout industry and government for
rapidly solving complex aerodynamic problems which
are amenable to inviscid assumptions.

While many practical problems of interest can be
addressed with inviscid methodology, the inclusion of
viscous effects is critical for the correct analysis of
many complex configurations. The numerical solu-
tion of the Navier-Stokes equations on tetrahedral ele-
ments presents a formidable challenge. However, con-
siderable progress is being made toward achieving such
solutions,*~® particularly on two-dimensional triangu-
lar elements. The primary obstacle to progress in 3D
viscous unstructured grid methodology been the ab-
sence of a highly stretched unstructured grid generation
capability. Advances are being made in that area which
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may soon produce the much needed capability!®~12

Pirzadeh!? recently demonstrated the generation of a
3-D tetrahedral viscous grid on a multielement wing by
the Advancing-Layer Method. Once this technology is
matured, it will only be a matter of time before viscous
unstructured grid solutions become routine.

This paper reports on recent enhancements made
to the unstructured grid flow solver described in Refs.
13 to 15 toward solving viscous-flow problems, as well
as to provide a general upgrade of the base methodol-
ogy. The accuracy and utility of the base Euler code
has been well documented in Refs. 16 to 21. The
subject enhancements were made to address four is-
sues, 1) to improve some peculiar convergence prop-
erties encountered periodically through extensive ap-
plication of the inviscid method to complex configu-
rations, which may potentially inhibit convergence of
viscous-flow solutions, 2) to increase the formal accu-
racy of the method, and 3) to improve code efficiency
and speedup the overall convergence rate, and 4) to
develop an accurate algorithm for solving the viscous
shear fluxes for the Navier-Stokes equations on tetra-
hedral cells. Toward these goals, a new weighted av-
eraging scheme has been implemented which upgrades
the algorithm for reconstructing cell-averaged data to
the cell vertices to full second-order accuracy from one
that is slightly less accurate. The increased accuracy of
the new scheme permits higher-order boundary condi-
tions to be employed. A face-colored data structure has
also been implemented resulting in significant improve-
ments in code efficiency over the prior cell-based data
structure. The implicit time integration scheme from
Ref. 22 has been installed in the code to increase the
support within the computational domain during time
stepping. The Navier-Stokes terms have been added
and validated against structured grid results for lami-
nar attached flow over an ONERA M6 wing.

Governing Equations

The fluid motion is governed by the time depen-
dent Navier-Stokes equations for an ideal gas which
express mass, momentum, and energy for a compress-
ible Newtonian fluid in the absence of external forces.



The equations are given below in integral form for a
bounded domain ? with a boundary 9Q
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The equations are nondimensionalized with a free-
stream reference values for density po and a speed of
sound ae. Here iz, iy, and 7, are the Cartesian com-
ponents of the exterior surface unit normal fi on the
boundary 9Q. The Cartesian velocity components are
u,v, and w in the z,y, and z directions, respectively.
The term e, is the total energy per unit volume. The
Prandtl number, Pr, is assigned a value of 0.72. Viscos-
ity, 4, is computed by Sutherland’s law. With the ideal
gas assumption, the normalized values for pressure and
temperature can be expressed as

p= (1= 1)(e0 = 3p(u? +v* +u%)

and
T =+p/p

where v is the ratio of specific heats and is prescribed
as 1.4 for air.

Spatial Discretization

A finite-volume discretization is applied to Eq. 1
which results in a consistent approximation to the con-
servation laws where the time rate of change of the
state vector Q within the domain 2 is balanced by the
net fluxes of F and G across the boundary surface 9Q.
The spatial domain is divided into a finite number of
tetrahedral cells, with each element serving as a com-
putational cell. Thus, the discretized solution to Eq. 1
results in a set of volume-averaged state variables Q
which are in balance with the area-averaged fluxes (in-
viscid and viscous) across the cell faces.

Inviscid Fluxes

The inviscid flux quantities are computed across
each cell face using Roe’s?® flux-difference-splitting
(FDS). The implementation of this methodology in the
present approach is described in Refs. 13 to 15. Roe’s
FDS technique reconstructs the fluxes by determining
an approximate solution to an underlying set of Rie-
mann problems which still describe the important non-
linear behavior of the interacting waves. For that, dis-
continuous states are assumed to exist on either side of
a cell interface. The accuracy with which these states
are determined directly impacts the accuracy of the flux
computation.

The following two subsections describe the present
reconstruction approach that is based on a Taylor series
expansion of the cell-averaged solution. A key compo-
nent of the scheme is the reconstruction of surrounding
cell-averaged data to a common vertex by a weighted



averaging procedure. The prior averaging procedure of
Ref. 13 has proven to be robust and accurate, but is
known to be less than second-order accurate!® and has
periodically exhibited some convergence difficulties. A
new averaging procedure is presented below which re-
solves these issues.

Higher-Order Cell Reconstruction
A simple, universal formula for reconstructing data
on tetrahedral cells was introduced in Ref. 14

Qa5 = e+ 1/4[1/3('1"1 + qn, + qns) - q"u] (2)

where T
qa=[p,u,v,w,p|

and as illustrated in Fig. 1, the subscripts ny,ns,ns
denote the nodes comprising face fy 33 of cell ¢ and
n4 corresponds to the opposite node. The derivation
of this formula has only appeared in Ref. 15 which re-
ceived limited distribution, and is thus included in the
Appendix of this paper. This formula represents the
analytical solution to a Taylor series expansion of the
primitive variables from the centroid of a tetrahedral
cell to the centroids of its triangular faces. The state
at the nodes is assumed to be known and is determined
by the reconstruction process described in the next sub-
section.

Weighted Averaging Procedure

Estimates of the solution are determined at each
node by a weighted average of the surrounding cell-
centered solution quantities:

N N
qn = (ch,ch,i)/(ch,i)~ (3)
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The subscripts n and c,{ refer to the node and sur-
rounding cell-centered values, respectively. The
method of Ref. 13 employs an inverse-distance weight-
ing factor, i.e.
1
We,i = iy (4)

where

Ty = [(-’cc.i - 3n)2 + (yc,t' - yn)2 + (Zc,s‘ - zn)zl%'

This weighting has been used quite successfully for com-
puting the flow over a number of complex configura-
tions. However, its accuracy is known to be less than
second-order,

A fully second-order accurate averaging procedure
was presented by Rausch, et. al.?¢ for two-dimensional
triangular cells which was an extension of work by

Holmes®.  That approach is extended for three-
dimensional tetrahedral cells in the following. The
method is based on deriving weight factors in Eq. (3)
which satisfy the Laplacians

N
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This is a desirable property since the Laplacian of a
linear function is exactly zero. The weights are deter-
mined by defining

WC,.' = 1 + AWc"' (6)
where
N
C=) (Aw.)? (7
=1

is a cost function. The cost function is minimized by
solving an optimization problem subject to the con-
straints of Eqgs. (5). This optimization problem is solved
by the method of Lagrange multipliers were Aw.; is
given by

ch,i = /\z(zc,i"zn)'l"\y (yc,s'-yn)""'Az (zcﬁ'—zﬂ)' (8)

The solution to the constrained optimization problem
yields the Lagrange multipliers
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These weights are constructed entirely from geomet-
ric information. For some severely distorted grids even
these ‘optimum’ weights can differ significantly from
unity. Holmes® proposed clipping all weights to the
range (0,2). The weights were only modified in the
present work for the viscous solutions.

Boundary points are treated in the same manner as
interior points through the use of ghost cells, described
in a subsequent section. In contrast, the scheme of
Ref. 13, which employed the inverse-distance weighting
of Eq. (4), constructs the state at boundary nodes from
the surrounding face-centered boundary conditions and
respective distances.

The weighting factor of Eqs. 6 and 8 produces
an exact interpolation of the nodal quantity q, for
a linear variation of q.; on an arbitrary tetrahedral
grid. The entire procedure of 1) averaging to nodes
via. Egs. 3, 6, and 8, and 2) interpolating to cell face
via Eq. (2) has been tested for a linear function on
an arbitrary grid. The linear solution is reconstructed
to within machine accuracy, both at the vertices and
at the cell faces. Thus, for a nonlinear variation of
the cell-averaged state, this pseudo-Laplacian weight-
ing procedure is second-order accurate in space.

Viscous Fluxes

The viscous fluxes G(Q) are approximated at
the cell-face centroids by first computing the viscous
stresses at the cell vertices, then averaging each compo-
nent from the three vertices comprising the face. This
approach alleviates the need to store the set of nine
stress terms for each tetrahedral face.

As is evident in Eq. 1, the viscous stress and heat
flux terms are constructed from the Cartesian deriva-
tives of u, v, w, and T'. These derivatives are computed
directly at the nodes by applying the midpoint trape-
zoidal rule to the gradient theorem:

1
= — nds. 10
Voo =y f, #ads (10)

where {2 is the volume of the domain. A compact sten-
cil is formed by prescribing for 2 an interior subset
of the tetrahedra surrounding a node as illustrated in
Fig. 2 for a 2D simplification. The domain is defined
by scaling down the tetrahedra from f to f’, where the
new face centroid coincides with the centroid of cell ¢c.
Because of the invariant distances noted in Fig. 1, the
face areas scale in 3D as Sy = (3/4)%S;. Similarly, the
reduced volume is defined by V. = (3/4)3V.. Apply-
ing the midpoint rule to Eq. 10 for the scaled domain

results in
1 {n)
Vo= 7 g i0Sprs
n' =1
41 A (11)
= §'Vn‘z=;¢c,insf,i
where V,, denotes the accumulated volume of the un-
scaled tetrahedra V; ; surrounding node n, 1Sy ; is the
directed area of face ¢ on the unscaled tetrahedra, and
k(n) are the outer faces f of cells surrounding node n..
The parameter ¢.; = ¢y ; is the cell-averaged value for
¢ in tetrahedral cell ¢, i.

Figure 3 illustrates for a 2D example how bound-
ary faces provide the final closure of the domain sur-
rounding a boundary node n,. For boundary faces en-
countered in Eq. 11, define Sy = Sy and

S5 = Yady + Yadn

where ¢, is the face-centered boundary-condition state
value of face b and ¢, is the value of ¢ at node n as
determined from the weighted averaging of Eq. 3.

Improved Data Structure

The FORTRAN computer code reported in Refs.
13 to 15 utilized a cell-based data structure. The flux
calculation and residual accumulation were performed



in two steps. The fluxes were first computed and stored
by cycling over the cell faces. Then the residuals were
accumulated by cycling through the tetrahedra and
summing the stored fluxes from the four faces. This
process required an additional connectivity array to
scatter the information. One advantage of this ap-
proach was the ease with which it vectorized on current
supercomputers without further special treatment.

A face-based data structure?® was explored in an
attempt to eliminate the need to store the fluxes for
each face, and thereby reduce storage requirements.
The code was modified to sum the residuals by scatter-
ing the fluxes to the two adjacent cells during the flux
calculation. This code modification not only eliminated
the need to store the face fluxes, but also eliminated an
unnecessary connectivity array.

A similar strategy was used to reconstruct the
cell-averaged state quantities at the nodes. The pre-
vious approach cycled through the nodes and per-
formed a weighted summation of the surrounding cell-
centered quantities. The routine was modified to cycle
through the faces and scatter the adjacent weighted
cell-averaged quantities to the appropriate nodes.

In order for this scheme to vectorize properly, the
faces must be reordered into groups or ”colors” such
that no two faces share the same cell and opposing
node. The result of this modification is a 30-percent re-
duction in memory from 64 words/cell to 45 words/cell
and a 16-percent speedup from 21 us/cell/cycle to 17.5
ps/cell/cycle on a CRAY Y-MP supercomputer for the
explicit Euler code.

Time Integration

Explicit

The explicit scheme advances the solution in time
using a 3-stage Runge-Kutta time stepping scheme with
implicit residual smoothing and local time stepping.
Pertinant details are reported in Refs. 13 through 15.

Implicit

Details of the implicit algorithm are described in
Ref. 22. The scheme uses the linearized, backward Eu-
ler time differencing approach to update the solution at
each time step for the set of equations

[A]"{AQ}" = {R}". (12)
where
A = 1+

The linear system of equations are solved at each time
step with a subiterative procedure where the tetrahe-
dral cells are grouped into “colors” (different from face-
coloring) such that no two cells share a common face.

Thus, the solution is computed by solving for all the
unknowns in a particular color by a point-Jacobi subit-
eration step before proceeding to the next color. Since
the solution of the unknowns for each group can depend
on those from previously computed groups, a Gauss-
Seidel-like effect is realized. The method has the ad-
vantage of being completely vectorizable.

Because of the number of operations required to
invert a matrix depends on the matrix bandwidth, the
left-hand side of the system of linear equations is eval-
uated with first-order differencing to reduce both re-
quired storage and computer time. Convergence of the
subiterations is further accelerated by using Van Leer’s
Flux Vector Splitting (FVS) on the left-hand side. Thus
in the present study, first-order differencing and FVS
are applied to the left-hand side, and higher order dif-
ferencing and FDS to the right-hand side. The viscous
terms are not included in the left-hand side of the equa-
tion at this time.

It is necessary to store [A]", which is a 5 x 5 ma-
trix for each cell. Thus, storage requirements are in-
creased from 45 words/cell for the explicit code to 180
words/cell for the implicit code. The code requires 64
us/cell/cycle on a CRAY Y-MP with 20 subiterations
and higher-order differencing. The viscous terms in the
right-hand side are absorbed within workspace in the
code and do not require additional memory.

Boundary Conditions
The application of the pseudo-Laplacian averag-
ing to boundary nodes requires the implementation of
ghost cells. Ghost cells are produced by constructing an
image cell across the exterior boundary of an adjacent
interior cell. The geometric information is supplied by
vector relations

xgh = (.‘ch.‘ - znb) - 2X"z
Ygh = (yc,i - ynb) - 2X"v
Zgh = (2 ~ 2n,) — 2Xn,

(13)

where
X = (zei = Tny)Nz + (Yei — Uny)0y + (2e,i = 2ny)12

is a contravariant vector component of distance, and
the subscript ny denotes the a boundary node. These
coordinates are used only in the initial generation and
storing of the weighting factors and are not used there-
after.

The flow information within the ghost cells must
be updated throughout the solution process. For solid
boundaries, the flow tangency condition is imposed at



the nodes by constructing an image of the interior ve-
locity vector within the adjacent ghost cell. As be-
fore, this is accomplished by subtracting twice the con-
travariant velocity from the adjacent interior cell veloc-
ity vector:
Ugh = Ue;i — 2Un,
Vgh = Ve — 2Uny (14)

Wy = we; — 2Un,

where
U = Ue,ifz + Ve,ify + We,iNs.

For viscous, no-slip boundaries, negative values of the
cell-centered velocity components are assigned to the
corresponding ghost cell. The density and pressure
within the ghost cell are set equal to the values in the
adjacent interior cell.

The face-centered boundary conditions can be de-
fined by either a low-order or a higher-order approach.
The low-order approach involves setting the five prim-
itive variables on the boundary faces to their cell-
centered values. The higher-order approach utilizes the
Taylor series expansion formula of Eq. (2) to construct
a more accurate estimate of the state on the boundary.

Flow tangency is enforced on solid inviscid bound-
ary faces by subtracting the contravariant velocity com-
ponent normal to the surface. A condition of zero
mass and energy flux through the surface is ensured
by setting the left and right states of solid boundary
faces equal to the boundary conditions prior to comput-
ing the fluxes with Roe’s approximate Riemann solver.
This technique only permits a flux of the pressure terms
of the momentum equations through a solid boundary.

The viscous, no-slip boundary conditions take ad-
vantage of inherent “structure” in the grid imposed by
the Advancing-Layers Method (ALM) of Ref. 12. The
ALM produces thin-layer tetrahedral grids with nodes
in the “viscous region” distributed along predetermined
surface vectors. Thus, as for structured grids, the pres-
sure can be extrapolated to the boundary nodes by a
two-point formula. Density is determined by either an
adiabatic condition or a prescribed temperature, and
velocity at the nodes is explicitly set to zero. Once
the nodal quantities are set on the boundary, Eq. 2 is
applied to determine the face boundary condition for
pressure and density. The velocity is explicitly set to
zero on the boundary faces.

Characteristic boundary conditions are applied to
the far-field subsonic boundary using the fixed and ex-
trapolated Riemann invariants corresponding to the in-
coming and outgoing waves. The incoming Riemann
invariant is determined from the freestream flow and
the outgoing invariant is extrapolated from the interior

domain. The invariants are used to determine the lo-
cally normal velocity component and speed of sound.
At an outflow boundary, the two tangential velocity
components and the entropy are extrapolated from the
interior, while at an inflow boundary they are specified
as having far-field values. These five quantities provide
a complete definition of the flow in the far field.

Implicit boundary conditions are employed with
the implicit time integration scheme as described in
Ref. 22.

Results

Results are presented in this section to 1) demon-
strate improved convergence properties of the second-
order averaging scheme for a representative “problem”
case, 2) assess convergence characteristics of the im-
plicit time integration scheme, and 3) validate the algo-
rithm for solving the Navier-Stokes equations for lam-
inar, attached flow. The inviscid results will focus on
convergence characteristics since the code accuracy is
well documented in literature!®=2!,

Weighted Averaging Scheme

A surface grid is shown in Fig. 4 for the ONERA
M6 wing which has a leading edge sweep of 30 de-
grees, an aspect ratio of 3.8, a taper ratio of 0.56, and
symmetrical airfoil sections. The complete grid con-
tains 288,869 cells and 53,791 nodes. An inviscid so-
lution was obtained for M, = 0.84 and o = 3.06°
with inverse-distance averaging, Eq. (4), using Runge-
Kutta time stepping. Convergence was accelerated by
local time stepping and implicit residual smoothing
with a CFL number of 4. The computational domain
is bounded by a rectangular box with boundaries at
~-65<2<11.0,00<y<25 and -65<2<86.5
relative to the wing with a semispan of 1. As can be
noted in Fig. 5, the Ls-norm enters a limit cycle. This
type of convergence behavior does not occur often with
Eq. (4), but has surfaced occasionally during wide use
of the code. The initial spike at cycle 500 is caused
by the code automatically shifting from first-order to
higher-order differencing.

A second run was made with the pseudo-Laplacian
averaging scheme of Eq. (6) with the same low-order
boundary conditions. The result in Fig. 5 is a signif-
icant improvement in L, convergence and a slight in-
crease in lift coefficient (plotted on an expanded scale).
The disturbances in the L;-norm at cycles 2000 and
4000 are due to initialization problems during restart,
and are not characteristic of the algorithm.

A third run is shown in Fig. 5 with Eq. (6) and
higher-order boundary conditions. (Attempts to ap-
ply higher-order boundary conditions with Eq. (4) were
unsuccessful.) There is little difference in the L,



convergence properties, but a slight difference in lift
coefficient. The conclusion is that the second-order
pseudo-Laplacian averaging scheme substantially im-
proves the robustness and convergence properties of the
flow solver.

Implicit Time-Integration

The implicit time integration scheme is investi-
gated for inviscid flow using the Low-Wing Transport
(LWT) configuration shown in Fig. 6 which contained
135,207 cells and 25,400 nodes. A study is performed
to determine combinations of CFL number and num-
bers of subiterations for the Jacobian matrix which pro-
duce rapid convergence. Computations are performed
at both subsonic and transonic speeds using the the im-
plicit Gauss-Seidel (GS) algorithm and compared with
computations reported in Ref. 26 using the explicit
three-stage Runge-Kutta (RK) time stepping scheme.
Convergence of the RK scheme is accelerated to steady
state with implicit residual smoothing, while both RK
and GS employ local time stepping.

Subsonic. Figure 7 depicts the effect of CFL
number on solution convergence for M. = 0.498 and
a = 1.615°. Convergence to four-orders of magnitude
is most rapid for CFL=75. Note that convergence dete-
riorates for CFL=100 as a result of decreased diagonal
dominance of [A] in Eq. (12). Figure 8 shows the ef-
fect of the number of subiterations, NSUB, with CFL
fixed at 75. The number of global time steps to achieve
4-orders of residual reduction, NCYC, are shown for
reference. Note that 20 subiterations produce the most
rapid convergence which is consistent with results from
Ref. 22.

The convergence history from the implicit scheme
with CFL=75 and 20 subiterations is compared with
the explicit RK history from Ref. 26 in Figure 9. The
solution converges to four orders of residual reduction
with 5 to 6 times less computer time for the implicit
scheme. The lift coefficient for the implicit result con-
verges more rapidly and has better damping of low fre-
quency oscillations than the explicit scheme. Figure 10
verifies that the surface pressures computed from the
implicit algorithm are identical to those from the ex-
plicit scheme, which are in reasonable agreement with
experimentai data from Ref. 27.

Transonic. Similar results are presented for the
LWT at the transonic flow conditions My, = 0.768 and
a = 1.116° in Figs. 11 through 14. Figure 11 shows
that CFL=100 yields the most rapid convergence of
the Li-norm. The effect of the number of Jacobian
subiterations is shown in Figure 12 where the best value
is difficult to determine. However, the plots suggest
that 20 subiterations would be a good compromise.

The convergence history for the implicit scheme
with CFL=100 and 20 subiterations is compared in Fig.
13 with the explicit RK history from Ref. 26. The im-
plicit solution converges in over 6-times less computer
time than the explicit scheme. Figure 14 again confirms
that the two solutions yield identical surface pressure
distributions. The poor agreement in Fig. 14 between
the computed solutions and the experimental data from
Ref. 27 is unfortunately typical of that produced by
inviscid methods on supercritical airfoils. At the test
Reynolds number of 2.5 x 108, the boundary layer has
a pronounced effect of decreasing the aft-camber which
dramatically alters the circulation and resulting shock
location.?®

Laminar Viscous Solution

The viscous unstructured algorithm is validated for
laminar attached flow over the ONERA M6 wing by
comparing with structured-grid solutions from
CFL3D?° on a common base grid. A tetrahedral vis-
cous grid was constructed by subdividing a structured
97 x 41 x 37 O-O grid (chord-radial-span) into tetra-
hedral cells (Fig. 15). Thus, each hexahedral cell is
divided into 6 tetrahedra, producing an unstructured
grid with 829,440 cells and 143,705 nodes. A normal
grid spacing of 1.5 x 105 root chord was prescribed at
the surface and stretched geometrically to yield 11 to
12 points in the mid-chord laminar boundary layer for
a Reynolds number of 1 x 10°

Dual computations were performed with the un-
structured and structured codes for M, = 0.5, a = 3°,
and R. = 1 x 10%. The CFL numbers were ramped lin-
early from 0.1 to 5 over the first 1000 cycles, and main-
tained at 5 for the remaining cycles. The unstructured
algorithm used 20 subiterations of the Jacobian ma-
trix. Figure 16 compares the structured and unstruc-
tured surface grid, upper surface pressure contours, and
normalized velocity vectors. Reasonable agreement is
noted in the flow parameters. The normalized velocity
vectors were taken from the first node off the surface
and reflect the directionality of the flow. An aberration
in flow direction is present near the apex for the un-
structured case which will be addressed in future work.

A comparison of skin-friction coefficients is shown
in Fig. 17 at 0.44 and 0.90 semispan which shows good
agreement between unstructured and structured solu-
tions. The differences in resolution at the leading edge
may be due to the higher spatial resolution of the tetra-
hedral grid. However, a grid sensitivity study is needed
before drawing firm conclusions. A comparison of pres-
sure coefficients at the same span stations is shown in
Fig. 18 with excellent agreement. Some anomilies are
present in the leading-edge recompression region of C,



at 7 = 0.90 in Fig. 18, and in the unstructured skin-
friction coefficients near the trailing edge in Fig. 17.
Work is underway to investigate the source of these
features.

A comparison of convergence histories is shown in
Fig. 18. The lift coefficient converges to 0.210 for the
unstructured algorithm and 0.202 for CFL3D. Peculiar
convergence behavior is noted for the unstructured so-
lution after 3500 iterations which needs further investi-
gation. The rate of convergence may improve with the
inclusion of the viscous terms in [A]" of Eq. (12).

Concluding Remarks

Several improvements to an established three-
dimensional unstructured grid flow solver have been
reported which result in a more efficient and robust
flow analysis tool with viscous-flow capability. A new
weighted averaging algorithm is developed which in-
creases the formal accuracy of the base method to
second-order and leads to improved inviscid solution
convergence for complex configurations. A new data
structured based on tetrahedral face coloring has been
implemented within the code, resulting in a 30-percent
reduction in memory usage and a 16-percent reduc-
tion in required computer time per cycle for the time-
explicit option of the code. An existing time-implicit
Gauss-Seidel algorithm has been installed which results
in a factor 6 decrease in total computer time needed to
obtain a steady state solution, with a factor of four in-
crease in memory. Finally, a 3D unstructured laminar
solution on the ONERA M6 wing has been validated
against a structured-grid solution.

Appendix - Derivation of Extrapolation Formula

In the following, a universal expression for the Tay-
lor series expansion within a triangular cell will be de-
rived. A similar derivation could be carried out for
a tetrahedral cell. The resulting expression requires
knowledge of the state at the vertices or nodes, which
is obtained by a weighted average from the state at the
centers of the cells surrounding the node.

The Taylor series expansion within a cell can be
written as

q(z,9,2) = q(Zc, Yo, 2e) + Vqe - Ar + O(Ar?)
~ Q(zc’ Ye, zc) + q:lc . (z - 27c)
+ayle - (¥ = ve)-
(A4.1)

The area-averaged solution gradient is estimated by
evaluating the closed integral over the boundary 9Q
enclosing the domain Q

1 .
Vqe = Eén qndl. (A.2)

In two-dimensions, Eq. (A.2) represents a line integral
around some closed path surrounding an area. In three-
dimensions, it represents a surface integral over a sur-
face enclosing a volume. The unit normal 1 is assumed
to point outward from the domain.

The components of the gradient in Eq. (A.1) can
be computed as in Ref. 13 by coalescing the surround-
ing cell-averaged information to the vertices of the can-
didate cell, and then approximating the solution to
Eq. (A.2) with the midpoint trapezoidal rule. Consider
the arbitrary triangular cell in sketch a.

Sketch a

The goal is to expand the solution from the cell cen-
troid to the centroids of the edges, e.g. to edge 2-3.
Note that the vector Ar is defined along the line passing
from node 1 through the cell centroid to the centroid of
the opposite edge 2-3. When the midpoint trapezoidal
rule is applied to the integral in Eq. (A.2) around the
perimeter of the triangle, then the z-component is writ-
ten as

1
Qzlc = ﬁ[(q"x + qﬂz)nﬂulu

+(Qn, + qna)n:l:ga 123

+(qns + qnx)nz‘ax 131] (A 3)

1

= Z[(Chz)Ayn
+(q23) Ayas
+(q31)Ayai)

where A is the area of the triangle, li5, ly3, 3 are
edge lengths and ne,,, ns,,, nz,, the z-component of
the direction cosines for edges 1-2, 2-3, and 3-1,

(q12) = Y/2(qn, + qn,)
(a23) = 2(Qn, + aQn,)
(as1) = Y2(Qny + an,)

and
Ayaz = Y3 — Y2,

Ay =y2 - n, Ayay = y1 — ys.

Similarly, the y-component can be written as

q = T—A}- {a12)Az12 + (q23)Aza3 + (qa1)Azay]
(A4)



where

Az =23-2), Azy3=1z3—23, A3 =2z -3

As shown in sketch a,

Ar = Ys{[a(z2 + 73) — z1]i + (Y22 + y3) = 0113}
= Ys{(Az12 — Azay)i + (Aprz — Aya)i]-

(A.5)
Equation (A.5) applies to any arbitrary triangle due to
the invariant features that 1) a line extending from a
vertex through the cell centroid will always intersect the
centroid of the opposing edge, and 2) the distance from
the vertex to the centroid of the triangle is always two-
thirds of that from the vertex to the opposing edge.

Since Vq = qzi + qyj, then the first order term in
Eq. (A.1) becomes

1
Vqc - Ar = G—A-[((qu)Aylz + (q23)Ayas

+{qs1)Aya1)(Az12 — Aza)
—((q12)Az12 + (q23)Az23
+(qs1)Az31)(Ay12 — Ayay)]

1
= gz[(%s)(AZ‘nAyza - Az3Ay2)

+(q23)(Az23Ay3 — Az31Ayzs)
+({q12) + (q31))(Az1248ys1 — Az31Ay12)].

(A.6)

By defining the edges as vectors
L1z = Az1ai + Ayroj
L3 = Az3i + Ayaaj
La1 = Azsii+ Ayarj
then area of the triangle can be computed as

2A =|{ L1z X Laa | = Az1348y23 — Az3Ay12
=| La3 x Lay | = Azg3Ays; — Az31Ay0s
=| Lgy x Ly3 | = Az31Ay12 — Az12Ay3;.

(4.7)

Substitute Eq. (A.7) into Eq. (A.6) yields

Vq- Ar = 1/3[2(q23) — ({(q12) + (qa1))]

= V[ s(n + Oy — ). D)

Substituting Eq. (A.8) into Eq. (A.1) gives the simple
relation

qez.a =9qc + 1/3[1/2((103 + qns) - qnx] . (AQ)

A similar derivation in three-dimensions on a tetrahe-
dral cell yields the expression

Q10 = Qe+ /a[Y3(Qn, + an, + Any) — dn,). (A.10)

Thus, the state at the edge or face centroid can be
readily determined by Eq. (A.9) in two dimensions and
Eq. (A.10) in three dimensions, respectively. Recall
that the edge or face centroid locations are precisely
where the averaged fluxes are evaluated in the finite-
volume formulation.

The Eqs. (A.9) and (A.10) are formally second-
order accurate. This becomes evident by observing that
the Taylor series in Eq. (A.1) is second-order accurate
and that the midpoint trapezoidal ruie used to evaluate
the integral in Eq. (A.2) is also second-order accurate.
A second-order accurate nodal averaging procedure is
presented in the main body of this paper.
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Figure 1.- Geometrically invariant features of tetrahedra.
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Figure 2.- Stencil for computing viscous stresses at interior nodes (2D simplification).

Figure 3.- Stencil for computing viscous stresses at boundary nodes (2D simplification).
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Figure 16.- Comparison of structured and unstructured grid and parameters for ONERA M6 wing.
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Figure 18.- Comparison of C, distributions for structured and unstructured
laminar solutions for ONERA M6 wing. Mo, = 0.5, = 3°, R, = 1 x 106.
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