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Abstract

A feasibility study on the use of shape memory
alloys (SMA) for suppression of the random response
of composite panels due to acoustic loads at elevated
temperatures is presented. The constitutive relations
for a composite lamina with embedded SMA �bers are
developed. The �nite element governing equations and
the solution procedures for a composite plate subjected
to combined acoustic and thermal loads are presented.
Solutions include: 1) critical buckling temperature,
2) 
at panel random response, 3) thermal postbuck-
ling de
ection, and 4) random response of a thermally
buckled panel. The preliminary results demonstrate
that the SMA �bers can completely eliminate the ther-
mal postbuckling de
ection and signi�cantly reduce
the random response at elevated temperatures.

Introduction

Future high-performance aircraft, such as the high
speed civil transport (HSCT), will subject the external
skin panels to signi�cant acoustic and thermal loads.
The new vectored thrust propulsion systems on the
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YF-22 Advanced Tactical Fighter ATF provide short
take-o� and landing capability and increased maneu-
verability. However, the vectored thrust also subjects
portions of the aircraft structure to intensi�ed acous-
tic and thermal loads. Acoustic fatigue thus emerges
as one of the critical considerations in the design and
development of high speed 
ight vehicles1.

A signi�cant amount of research in the last few
years has greatly advanced the �eld of control of 
ex-
ible structures through the use of smart materials2.
The �eld of adaptive or intelligent structures involves
a broad range of technologies that enable the realiza-
tion of structural systems that are able to sense and
to control their own behavior, such that the range
of operational performance for these materials may
be extended over conventional materials and struc-
tures. Smart materials have the ability to change
shape, sti�ness, natural frequency, damping, and other
mechanical characteristics in response to changes in
temperature, electric �eld, or magnetic �eld. The
most common smart materials are shape memory al-
loys, piezoelectric materials, magnetostrictive materi-
als, electrorheological 
uids and magnetorheological

uids.

Shape Memory Alloy Hybrid Composites

Shape memory alloys exhibit a characteristic
phase transformation from martensite to austenite,
initiating at the austenite start temperature Ts and
asymptotically ending at the austentite �nish tempera-
ture Tf . A shape memory alloy in the low temperature
martensitic condition (T < Ts), when plastically de-
formed and the external stresses removed, will regain
its original (memory) shape when heated. For exam-
ple, strains of typically six to eight percent can be com-
pletely recovered by heating the nickel-titanium alloys
(Nitinol) above the austenite �nish temperature. The
transformation temperatures can be altered by chang-
ing the composition of the alloy. In addition, when
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Nitinol is heated, the Young's modulus increases three
to four times and the yielding strength also increases
approximately ten times3{6.

The materials, referred to in this study as SMA
�ber-reinforced hybrid composites, are conventional
advanced composite materials (such as graphite-epoxy)
that contain embedded SMA �bers having the same di-
rection as the graphite �bers. The memory e�ect of
the SMA �bers may be put to use by applying an ini-
tial elongation to them during fabrication of the lami-
nate. Thus, once the laminate is heated above Ts, the
SMA �bers will try to recover the initial strain and in-
duce tensile inplane forces in the laminate. Since the
expected aerodynamic heating on the skin panels of
a HSCT during supersonic cruise will generate panel
temperatures well above the austenite �nish tempera-
ture, SMA will be ideal for such an application. The
overall sti�ness of the hybrid composite panel will be
increased due to: 1) the increase of the Young's modu-
lus of the SMA �bers by a factor of three or four, and
2) the internal tensile inplane forces induced in the
panel from the recovery of initial strains of the SMA
�bers. Therefore, the root-mean-square (RMS) maxi-
mum de
ection and RMSmaximum strain, due to ran-
dom pressure loading, will be reduced at elevated tem-
peratures as compared to composite panels without
embedded SMA �bers. This has been demonstrated in
a preliminary investigation on passive control of ran-
dom response of SMA hybrid composite plates using
the classic analytical continuum method7.

Shape memory alloys have been applied as ac-
tuators for active control of buckling of beams8 and
shape control of beams9. It is also being studied for
use in active vibration control of beams10,11 and large
space structures12. Active vibration control of 
exible
linkage mechanisms using SMA �ber-reinforced com-
posites has been investigated by Venkatesh et al.13.
Acoustic transmission and radiation control through
the use of SMA �bers in a hybrid composite was
presented by Liang and Anders14,15. In all of these
investigations8{15, the SMA �bers or strips were heated
by applying an electrical current with some control de-
vice. Since it was assumed that the composite would
not be appreciably heated, thermal expansion e�ects
were not included. However, the heat source for the
present study is assumed to be due to aerodynamic
heating. Therefore no control device is needed, but
thermal expansion e�ects are important since the en-
tire laminate is heated and thermal buckling and post-
buckling considerations may be necessary.

Consider a thin composite lamina, for example
graphite-epoxy, having arbitrary orientation angle �

and embedded SMA �bers in the same direction as

the graphite �bers, Figure 1. The 1 and 2 directions,
or principal material directions, are parallel and per-
pendicular to the �ber direction respectively. The con-
stitutive relations for such a lamina can be derived fol-
lowing the engineering approach found in many com-
posite materials texts. A derivation may be found in
the appendix and the resulting constitutive relations,
in principal material coordinates, are given by Eqs.
(A17) and (A18). For a general k-th layer with an ori-
entation angle �, the stress-strain relations, Eqs. (A17)
and (A18), become
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The resultant force and moment vectors of the SMA
�ber-reinforced hybrid composite plate are de�ned as
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where the laminate sti�ness [A�]; [B�] and [D�]
and the recovery inplane force and moment vectors
fN��g and fM�

�g are all temperature dependent. The
inplane strain and curvature vectors are de�ned from
the von Karman strain-displacement relations8<
:
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Finite Element Formulation

A limited number of investigations on the struc-
tural response of panels subjected to combined acous-
tic and thermal loads exist in the literature. Seide and

2



Adami16 were the �rst who studied large de
ection
random response of a thermally buckled beam. The
well-known classic Woinowsky-Krieger large amplitude
beam vibration equation was used. Galerkin's method
and time domain numerical simulation were then ap-
plied to obtain the random response. More recently,
the Galerkin/numerical simulation approach was ap-
plied to simply supported metal and orthotropic com-
posite rectangular plates by Vaicaitis et al.17,18. The
classic von Karman large-de
ection plate equations in-
cluding uniform temperature and orthotropic property
e�ects were employed. Lee19 extended that work to in-
clude nonuniform temperature distributions. He stud-
ied isotropic rectangular plates with either simply sup-
ported or clamped edges. The Galerkin/equivalent lin-
earization method20 was used. The classic continuum
approaches thus have been limited to simple beams16

and isotropic or orthotropic rectangular plates17{19.

For over three decades, the �nite element method
has been the predominant approach for structural me-
chanics of complex structural geometry. However,
there are few studies where the random response of
structures subjected to combined acoustic and ther-
mal loads is involved. Locke and Mei21,22 extended the
�nite element method for the �rst time to beam and
plate structures under combined thermal and acous-
tic loads. The thermal load considered was a steady-
state temperature distribution �T (x; y). Chen and
Mei23 recently re�ned that �nite element formulation
for nonlinear random response of structures by con-
sidering the acoustic pressure and thermal load to be
applied simultaneously.

The governing equations of motion can be derived
for a SMA �ber-reinforced hybrid composite panel sub-
jected to combined thermal and acoustic loads through
the use of a variational principle. These equations may
be written in the form
�
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or
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where [M ] and [K] are the system mass and sti�-
ness matrices; [K�� ] and [KN�T ] are the geometric
sti�ness matrices due to the recovery stress ��r (or
fN��g) and thermal inplane force vector fN�T g, re-
spectively; [N1] and [N2] are the �rst and second or-
der nonlinear sti�ness matrices which depend linearly
and quadratically upon displacement fWg, respec-
tively; fP (t)g is the random acoustic excitation load
vector, fP�Tg is the thermal load vector, and fP ��g
is the SMA recovery force vector. The subscripts b
and m denote bending and membrane components,
respectively; and the subscripts B; Nm and NB
indicate that the corresponding sti�ness matrix is
due to the laminate sti�ness [B], membrane forces
fNmg(= [A]f�omg) and fNBg(= [B]f�g), respectively.
The sti�ness matrices [K]; [N1] and [N2] and the re-
covery force vector fP ��g are also temperature depen-
dent. Detailed derivations of the equations of motion
and expressions for the element matrices and load vec-
tors are referred to reference 21. The solution proce-
dures developed in references 21{23 are to be extended
to obtain the critical buckling temperature, thermal
postbuckling de
ection, and linear RMS maximum de-

ection of SMA hybrid composite panels.

Solution Procedures

Four di�erent types of analyses are required for
sonic fatigue design of SMA hybrid composite panels.
They are: (1) thermal buckling analysis, (2) random
vibration analysis, (3) thermal postbuckling analysis,
and (4) random vibration analysis of thermally buck-
led panels. Each analysis is discussed brie
y in the
following.

Thermal Buckling Analysis

As the �rst step, a thermal buckling analysis is
carried out to determine the critical buckling temper-
ature Tcr = �Tcr + To, where To is the reference or
ambient temperature. Equations governing the ther-
mal buckling are obtained by neglecting the inertia,
nonlinear, bending-membrane coupling, and bending
force terms from the incremental form of Eq. (5) as

([Kb] + [K��]� [KN�T ] + [N1Nm])f�Wbg = 0 (7)

and
[Km]fWmg = fPm�Tg � fP �m�g (8)

The �rst-order nonlinear sti�ness matrix [N1Nm] is
linearly dependent upon the inplane displacement
fWmg which can be expressed at a given �T as

fWmg = [Km]
�1(fPm�Tg � fP �m�g)

= fWmg1 � fWmgo
(9)
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where fWmg1 = [Km]
�1
fPm�Tg is linearly dependent

upon �T and fWmgo = [Km]
�1
fP �m�g is a constant

vector. Thus, the matrix [N1Nm] is the sum of two
matrices: the �rst matrix [N1Nm]1 is evaluated with
fWmg1 and the second matrix [N1Nm]o is evaluated
with fWmgo as

[N1Nm] = [N1Nm]1 � [N1Nm]o (10)

The matrices [KN�T ] and [N1Nm]1 are linearly de-
pendent upon �T . Therefore, Eq. (7) can be ex-
pressed as an eigen-problem

([Kb] + [K��]� [N1Nm]o)f�g = �([KN�T ]

�[N1Nm]1)f�g
(11)

The critical temperature change corresponds to
the lowest value of � and is given by �Tcr =
��T; and f�g is the corresponding buckling mode.
Since the matrices [Kb], [K

�

�], [N1Nm]o and [N1Nm]1
in Eq. (11) are all temperature dependent, an itera-
tive scheme is implemented to achieve convergence for
�Tcr (� = 1.000 � .001).

Random Vibration Analysis

Once the critical buckling temperature is deter-
mined, the next step will depend on the panel tem-
perature for the particular application of concern. For
panel temperatures greater than the critical tempera-
ture (T > Tcr), a thermal postbuckling analysis has to
be performed, followed by a random vibration analysis
of the thermally buckled structure.

For panel temperatures less than the critical tem-
perature (T < Tcr), the panel is 
at. A random vibra-
tion analysis including the thermal and SMA e�ects
is performed. The response results include frequen-
cies and modes of vibration, RMS maximum de
ec-
tion, and power spectral density (PSD) functions of
maximum de
ection. The equations of motion for a
SMA hybrid composite panel subjected to a combined
acoustic excitation and thermal load can be obtained
from Eq. (6) as

[M ]
n
�W
o
+
�
�K
�
fWg = fP (t)g (12)

where

�
�K
�
= [K] + [K�� ]� [KN4T ] + [N1] (13)

where the only nonzero entries in [N1] are due to
[N1Nm] resulting from the inplane de
ection, Eq. (9).

The natural frequencies !r and mode shapes f�rg
of vibration are obtained from the eigenvalue problem

!2r [M ]f�rg =
�
�K
�
f�rg (14)

A set of uncoupled modal equations with reduced
degrees-of-freedom can thus be obtained from Eq. (12)
as

�qr + 2�r!r _qr + !2rqr = fr ; r = 1; 2; . . . ; N (15)

with the truncated modal transformation

fWg =
NX
r=1

f�rgqr = [�]fqg (16)

In Eq. (15), a modal damping term has been included
where �r is the modal damping ratio and the modal
mass and force are

mr = f�rg
T [Mb]f�rg

fr = f�rg
T
fPb(t)g=mr

(17)

The random modal response can be easily determined
from Eq. (15) for the case of a spatially uniform white
noise random load p(t) with spectral density Sp or Gp

as

E[qrqs] =

Z
1

�1

Sp(!)Hr(!)Hs(�!)d!

=

Z
1

o

Gp(f)Hr(f)Hs(�f )df

(18)

with Gp(f) = 4�Sp(!) for ! = 2�f (f � 0) and

Hr(!) =
1

!2r � !2 + 2i�r!r!
(19)

The cross-correlation of modal amplitudes from Eq.
(18) is

E[qrqs] =
Gp(f)(�r!r + �s!s)

mrmsf(!2r �w2s)
2 + 4[�r�s!r!s(!2r + !2s)

+
�
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�
!2r!

2
s ]g

(20)
and the correlation matrix of the system nodal ampli-
tude becomes

E
h
fWgfWg

T
i
= [�]E

h
fqgfqg

T
i
[�]T (21)

Thermal Postbuckling Analysis

For panel temperatures greater than the critical
temperature (T > Tcr), postbuckling analysis is per-
formed to determine the thermal de
ection. The gov-
erning equations for thermal postbuckling can be ob-
tained from Eq. (6) as�

[K] + [K��]� [KN�T ] +
1

2
[N1] +

1

3
[N2]

�
fWg

= fP�Tg � fP ��g
(22)
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One e�ective approach involves using the Newton-
Raphson iterative method for solving time-independent
nonlinear problems. Thus, for the j-th iteration the in-
cremental form of Eq. (22) can be written as

[Ktan]jf�Wgj+1 = f�Pgj (23)

Then [Ktan]j+1 and f�Pgj+1 are updated by using

fW4Tgj+1 = fW4Tgj + f�Wgj+1 (24)

The solution process seeks to reduce the imbalance
load vector f�Pg, and consequently f�Wg, to a spec-
i�ed small quantity. The tangent sti�ness matrix and
the imbalance load vector are

[Ktan]j = [K] + [K��]� [KN�T ] + [N14T ]j + [N24T ]j
(25)

and

f�Pgj = fP�Tg � fP
�

�g �

�
[K] + [K�� ]� [KN�T ]

+
1

2
[N14T ]j +

1

3
[N24T ]j

�
fW4Tgj

(26)
where the subscript 4T denotes that the nonlinear
sti�ness matrix is evaluated using fW4Tg. The linear
buckling mode shape, Eqs. (9) and (11), normalized
by a scale factor, is usually taken to be the initial trial
solution for Eq. (23).

Random Vibration Analysis of Buckled Panels

The random vibration analysis of a thermally
buckled panel is performed to determine the frequen-
cies and modes of vibration about the buckled po-
sition, the RMS maximum de
ection, and the PSD
functions. The equations of motion for a thermally
buckled SMA hybrid composite panel can be obtained
from Eq. (6) and ref. 24 as

[M ]
n
�W
o
+ ([K] + [K�

�]� [KN�T ] + [N14T ]

+[N24T ])fWg = fP (t)g
(27)

where the subscript 4T denotes that the correspond-
ing sti�ness matrix is evaluated using the thermally
buckled de
ection fW4Tg. The in
uences of re-
covery stress ��r , thermal force fN�Tg and thermal
postbuckling de
ection are given by the presence of
[K�

� ]; [KN�T ]; [N14T ] and [N24T ] in Eq. (27). An
examination of Eqs. (25) and (27) reveals a novel ap-
proach of the present �nite element formulation. That
is, the sti�ness matrices in Eq. (27) need not to be
computed and assembled. The sum of those sti�ness

matrices is exactly the converged tangent sti�ness ma-
trix in thermal postbuckling analysis. Thus, Eq. (27)
is simply

[M ]
n
�W
o
+ [Ktan]fWg = fP (t)g (28)

The natural frequencies and mode shapes of vi-
bration about the thermally buckled position fW4Tg
are determined from

!2s [M ]f�sg = [Ktan]f�sg (29)

Equation (27) thus becomes a set of uncoupled modal
equations

�qs + 2�s!s _qs + !2sqs = fs; s = 1; 2; . . . ; N (30)

with the truncated modal transformation

fWg =
NX
s=1

f�sgqs = [�]fqg (31)

The determination of the random response follows
from Eqs. (17)-(21).

Results and Discussion

The results shown in this paper were generated for
a SMA hybrid composite laminate, where the graphite-
epoxy composite was treated as the matrix. The fol-
lowing material properties were used in the analysis:

Graphite-Epoxy

E1 155 GPa (22.5 Msi)

E2 8.07 (1.17)

G12 4.55 (0.66)

�12 0.22

� 1550.07 Kg/m3 (0.1458�10-3 lb-s2/in.4)

�1 -0.07�10-6 /�C (-0.04�10-6/�F)

�2 30.1�10-6 (16.7�10-6)

SMA-Nitinol

Ts 37.78 �C (100 �F)

Tf 62.78 (145)

E From Fig. A3
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G 24.86 (3.604) for T < Ts

25.6 (3.712) for T > Tf

� 0.3

� 6450 Kg/m3 (0.6067�10-3 lb-s2/in.4)

� 10.26�10-6 /�C (5.7�10-6/�F)

Table 1 presents the results for a simply supported
rectangular laminate with a graphite-epoxy matrix.
The dimensions of the laminate are 15�12�0.048 in.
and the layup is symmetric (0/45/-45/90)s. Results
are presented for a laminate with no SMA �bers and
for three SMA initial strain values (3%, 4% and 5%)
for each nonzero SMA volume fraction. The head-
ings indicate SMA volume fraction, SMA �ber initial
strain, two critical temperature changes, normalized
maximum thermal de
ection, and normalized maxi-
mum RMS de
ection.

Note that when SMA �bers are present in the lam-
inate, there are at least two critical buckling tempera-
tures (ambient temperature 70�F). One corresponds to
temperatures less than the austenite start temperature
Ts, and the other corresponds to temperatures greater
than the austenite �nish temperature Tf . It can be
seen that the addition of SMA �bers slightly reduces
the critical buckling temperature below Ts. This is
caused by the relatively low modulus of the SMA �bers
in relation to the graphite epoxy matrix they are re-
placing. However, with the addition of only 10% SMA
�bers at 3% initial strain, the critical buckling temper-
ature above Tf is increased drastically. Some of the
reported critical buckling temperatures are unrealistic
for a graphite-epoxy matrix since epoxy composites
are generally considered to have a maximum service
temperature of around 300�F. However, these results
are qualitatively indicative of the shape memory e�ect
and allude to the potential use of SMA �bers in high
temperature matrices such as metals, carbon-carbon,
etc.

It can be seen that the thermal de
ection W�T/h
is attenuated in all cases and even eliminated in most.
The themal de
ection is eliminated for the cases with
10% SMA �bers at 5% initial strain and all greater
volume fractions since the critical buckling tempera-
ture has been shifted well above the panel tempera-
ture (300�F). This e�ect is bene�cial due to the fact
that the optimal structural con�gurationmay be main-
tained and the possibility of snap-through motions is
eliminated.

Although the dynamic response Wmax/h of panels
with some of the lower SMA volume fractions and ini-
tial strains is actually greater than that for the panel
without SMA �bers, signi�cant dynamic response at-

tenuation may be achieved with SMA volume frac-
tions of thirty percent or more. The increase in the
dynamic response, observed for some of the cases, is
due to the relatively low modulus of the Nitinol alloy,
even at high temperatures and another factor which
will be discussed subsequently. Finally, the case of
10% SMA and 4% initial strain exempli�es the im-
portance of choosing the SMA parameters carefully,
as indicated by the excessively large RMS maximum
de
ection. This particular choice results in a critical
buckling temperature of 295.06�F, which is within 2%
of the panel temperature (300�F). Thus, the panel is
very compliant since it is close to buckling.

The variation of the RMS (Wmax/h) with sound
spectrum level (SSL) is shown in Figure 2 for four
cases: no SMA �bers at 70�F, 10% SMA �bers and
5% initial strain at 300�F, no SMA at 300�F, and 30%
SMA and 5% initial strain at 300�F. Note that the
panel without SMA �bers at 300�F exhibits signi�-
cantly reduced dynamic response because of the addi-
tional sti�ness due to the fact that the panel is ther-
mally buckled. Adding 10% SMA �bers to the 300�F
panel increases the dynamic response since the recov-
ery forces induced are not su�cient to overcome the
modulus de�ciency of the SMA �bers and the loss of
sti�ness due to the fact that the panel is no longer ther-
mally buckled. Finally, addition of 30% SMA �bers
provides ample recovery forces to signi�cantly reduce
the dynamic response, even more than the thermally
buckled case.

The variation of the RMS (Wmax/h) with temper-
ature for a laminate with no SMA �bers in comparison
to one with 30% SMA and 5% initial strain is shown
in Figure 3. Note that they both exhibit a peak, albeit
beyond the linear range (Wmax/h<1), at their respec-
tive low critical temperatures due to extremely low
sti�ness at this point of instability. In addition, the
response of the laminate with SMA �bers has a peak
at 100�F since the SMA modulus has a local minimum
at that temperature.

The power spectral density of the maximum de-

ection at 100 dB is shown in Figures 4|6 for three
cases: no SMA at 70�F; 30% SMA and 5% initial strain
at 70�F; and 30% SMA and 5% initial strain at 300�F,
respectively. At low temperature, the fundamental fre-
quency of the panel with SMA �bers is lower than that
for the panel with no SMA since the SMA reinforced
panel is less sti� at low temperatures and more mas-
sive. At 300�F, the modes of the SMA �ber-reinforced
panel exhibit signi�cant amplitude reduction and have
shifted to much higher frequencies.
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Conclusions

The �nite element method has been successfully
implemented to analyze the thermal buckling, ther-
mal postbuckling, and random response of SMA �ber-
reinforced hybrid composite panels. The constitu-
tive relations, including the thermal and shape re-
covery e�ects, have been derived and used in the �-
nite element formulation to model the mechanics of a
SMA/graphite-epoxy panel.

It was found that panels with SMA �ber reinforce-
ment have at least two critical buckling temperatures;
one below the austenite start temperature Ts, and one
above the austenite �nish temperature Tf . The ex-
tremely high critical buckling temperatures predicted
for SMA volume fractions greater than 10% indicate
the possible suitability of SMA �bers in high temera-
ture composites.

The thermal postbuckling de
ection can be to-
tally eliminated, for panel temperatures greater than
Tf , with as little as 10% SMA �bers. The property
could be useful in practical applications by maintain-
ing optimal aerodynamic con�guration and eliminat-
ing snap-through motions.

The RMS maximum de
ection actually increases
for some SMA volume fractions because of two fac-
tors: the modulus of the SMA �bers is relatively low,
even at high temperatures; and the recovery forces in-
duced by small volume fractions of SMA �bers is su�-
cient to prevent thermal buckling (for Tf<T<Tcr) but
insu�cient to overcome the loss of the buckling sti�-
ness. However, signi�cant reductions in the dynamic
response are realizable with SMA volume fractions of
30% or more.
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Figure 1: SMA �ber{reiforced hybrid compostite lam-
ina.

vs �r
�Tcr

T<Ts

�Tcr

T>Tf

W�T/h
at

300�F

RMS Wmax/h
at 300�F

SSL=100 dB

0% | 13.73 13.73 2.7732 0.0616

3% 192.25 1.1605 0.2181

10% 4% 11.93 225.06 0.4308 1.0113

5% 277.38 | 0.3173

3% 421.43 | 0.1144

20% 4% 10.48 493.09 | 0.0902

5% 609.25 | 0.0687

3% 714.57 | 0.0604

30% 4% 9.27 837.90 | 0.0510

5% 1037.69 | 0.0413

Table 1: Results for simply supported (0/45/-45/90)s
panel (ambient temperature 70�F).
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ection versus sound
spectrum level.

8



100 150 200 250 30010-2

10-1

100

101

102

103

104

SSL=100 dB

No SMA
vs=30%, εr=5%

Temperature, oF

R
M

S
(W

m
ax

/h
)
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Figure 5: PSD ofWmax for 30% SMA, 5% initial strain
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Appendix

Hybrid Lamina Constitutive Relations.

A representative volume element of a SMA �ber-
reinforced hybrid composite lamina is shown in Figure
7. The element is taken to be in the plane of the
plate. The composite matrix, for example graphite-
epoxy, has the principal material directions 1 and 2
and the SMA �ber is embedded in the 1{direction.

In order to derive the constitutive relation for the
1{direction, it is assumed that a stress �1 acts alone
on the element (�2 = 0) and that the SMA �ber and
composite matrix are strained by the same amount,
�1 (i.e., plane sections remain plane). The 1{direction
stress-strain relation of the SMA �ber can be described
as

�1s = E�

s�1 + ��r ; T > Ts (A1)

or
�1s = E�

s (�1 � �s4T ) ; T < Ts (A2)

where Ts is the austenite start temperature and �s is
the thermal expansion coe�ecient. The Young's mod-
ulus E�

s
and the recovery stress ��

r
are temperature de-

pendent, indicated by the superscript (*). The recov-
ery stress ��

r
is also dependent on the initial strain �r.

For Nitinol, ��r and E
�

s
can be determined from Figures

8 and 9, respectively4. Similarly, the one{dimensional
stress{strain relation in the 1{direction for the com-
posite matrix can be expressed as

�1m = E1m(�1 � �1m4T ) (A3)

The resultant force in the 1-direction (�2 = 0) is
distributed over the SMA �ber and composite matrix
and can be written as

�1A1 = �1sAs + �1mAm (A4)
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where (�1; A1), (�1s; As), and (�1m; A1m) are the
(stress, cross sectional area) of the entire element,
SMA �ber, and composite matrix, respectively. Thus,
the average stress �1 is

�1 = �1svs + �1mvm (A5)

where vs = As=A1 and vm = Am=A1 are the volume
fractions of SMA and composite matrix, respectively.
When T > Ts, the SMA e�ect is activated and the one-
dimensional stress-strain relation in the 1-direction
becomes

�1 = (E�

s
�1 + ��

r
)vs +E1m(�1 � �1m4T )vm

= E�

1
�1 + ��

r
v
s
�E1m�1mvm4T

(A6)

where
E�

1
= E1mvm +E�

s
vs (A7)

When T < As, the SMA e�ect is not activated and
the stress �1 is

�1 = E�

1
�1 � (E�

s
�
s
v
s
+E1m�1mvm)4T

= E�

1
(�1 � �14T )

(A8)

where

�1 =
(E1m�1mvm + E�

s
�svs)

(E1mvm + E�

s
vs)

(A9)

A similar constitutive relation may be derived for
the 2{direction by assuming that the applied stress
�2 acts upon both the �ber and the matrix (�1 = 0).
Thus, the one-dimensional stress-strain relations in
the 2{direction for the SMA �ber and the composite
matrix become

�2s = �2 = E�

s
(�2s � �s4T ) (A10)

and

�2m = �2 = E2m(�2m � �2m4T ) (A11)

respectively. The recovery stress does not appear in
Eq. (A10), since the SMA �ber initial strain �r and
recovery stress ��

r
are considered to be a 1{direction

e�ect only.

The total elongation is due to strain in the com-
posite matrix and the SMA �ber and may be written
in the form

A1�2 = Am�2m +As�2s (A12)

Thus, the total strain becomes

�2 = �2mvm + �2svs (A13)

Since �2 = E�

2
(�2 � �2�T ), Eqs. (A10) and (A11)

may be substituted into Eq. (A13) to give

�2 =
�2

E�

2

+ �2�T

=
�2vs

E�

s

+
�2vm

E2m

+ (�
s
v
s
+ �2mvm)�T

(A14)

Therefore, the modulus and thermal expansion coe�-
cient in the 2{direction become

E�

2
=

E2mE
�

s

(E2mvs + E�

s
vm)

(A15)

and
�2 = �2mvm + �

s
v
s

(A16)

Expressions for the hybrid composite Poisson's ratios
and shear moduli follow from similar derivations.

The constitutive relations for a thin composite
lamina with embedded SMA �bers can be derived
using a similar engineering approach to give
8<
:
�1
�2
�12

9=
; =

2
4
Q�

11
Q�

12
0

Q�

12
Q�

22
0

0 0 Q�

66
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5
8<
:
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12

9=
;

+

8<
:
��
r

0
0

9=
;vs � [Q]

m

8<
:
�1
�2
0

9=
;
m

vm4T

= [Q�]

8<
:
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12

9=
;+

8<
:
��
r

0
0

9=
;vs

�

0
@[Q]

8<
:
�1
�2
0

9=
;v
1
A
m

4T ; T > Ts

(A17)

and
8<
:
�1
�2
�12

9=
; = [Q�]

0
@
8<
:

�1
�2

12

9=
;�

8<
:
�1
�2
0

9=
;4T

1
A ; T < Ts

(A18)
where [Q]

m
and [Q�] are the reduced sti�ness matrices

of the composite matrix and the composite lamina, re-
spectively. The [Q�] matrix is temperature dependent
and is evaluated using the previously derived relations
as

(E�

1
; �12) = (E1m; �12m)vm + (E�

s
; �

s
)v
s

(A19)

and

(E�

2
;G�

12
) =

(E2mE
�

s
; G12mG

�

s
)

[(E2m; G12m)vs + (E�

s
; G�

s
)vm]

(A20)

where the �'s are Poisson's ratios and the G's are
the shear moduli. The thermal expansion coe�cients
�1 and �2 are derived in Eqs. (A9) and (A16).
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Figure 7: Representative volume element for SMA
�ber-reinforced hybrid composite lamina.
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