
QUADRATURE-FREE IMPLEMENTATION OF THE DISCONTINUOUS
GALERKIN METHOD FOR HYPERBOLIC EQUATIONS

H. L. Atkins*

NASA Langley Research Center, Hampton, VA 23681

Chi-Wang Shu†

Brown University, Providence, RI 02912

A discontinuous Galerkin formulation that avoids the use of discrete quadrature formulas is described and applied to
linear and nonlinear test problems in one and two space dimensions. This approach requires less computational time and
storage than conventional implementations but preserves the compactness and robustness inherent to the discontinuous
Galerkin method. Test problems include both linear and nonlinear one-dimensional scalar advection of both smooth and
discontinuous initial value problems, two-dimensional scalar advection of smooth initial value problems discretized by
using unstructured grids with varying degrees of smoothness and regularity, and two-dimensional linear Euler solutions
on unstructured grids.

Introduction

Computational methods for aeroacoustics must
possess accuracy properties that exceed those of con-
ventional second-order computational fluid dynamics
(CFD) methods. At the same time, many problems of
interest involve complex geometries that are not easily
treated by common high-order methods that usually
require a smooth, structured grid. In addition to the
geometrically complex problem, we are particularly in-
terested in strongly nonlinear flows that contain shock
waves as a major source of sound generation, such as
in the case of jet noise.

In an effort to satisfy these requirements, the rel-
atively untried discontinuous Galerkin (DG) method is
being tested for hyperbolic problems. Some advantages
of this approach include the ease with which the method
can be applied to both structured and unstructured grids
and its suitability for parallel computer architectures.
The approach also has several useful mathematical prop-
erties.

Johnson and Pitk¨arata1 proved stability and error
estimates for linear scalar advection. In a series of pa-
pers, Cockburn, Shu, et al2–4 discussed the DG method
using approximate Riemann solvers, limiters, and total-
variation diminishing (TVD) Runge-Kutta time dis-
cretizations for nonlinear hyperbolic problems. In refer-
ence 2, the general formulation in one space dimension
is provided, with a detailed description and analysis of
accuracy, stability (in terms of total variation), and im-
plementation. Numerical examples of scalar equations

Copyright  1996 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-free
license to exercise all rights under the copyright claimed herein for
government purposes. All other rights are reserved by the copyright
owner.

* Research Scientist, Aerodynamic and Acoustic Methods Branch,
Fluid Mechanics and Acoustics Division, Senior Member AIAA.

† Professor, Division of Applied Mathematics.

are also provided. In reference 3, the method is ap-
plied to one-dimensional systems. Stability of the initial
boundary value problem for a linear system is proved,
and numerical experiments were performed for the one-
dimensional Euler equations. In reference 4, the method
is generalized to multispace dimensions. A main re-
sult in reference 4 is the design of a total-variation
bounded (TVB) limiter that applies to general triangu-
lations, maintains high order in smooth regions, and
guarantees maximum norm stability. Jiang and Shu5

have also proved that the DG method satisfies a local
cell entropy inequality for the square entropy, for ar-
bitrary triangulations in any space dimension, and for
any order of accuracy. This trivially impliesL2 stabil-
ity of the method for nonlinear shocked problems in the
scalar case.

Although the DG method has not been widely
used in the CFD arena, several instances exist in which
this method has been applied to the Euler or Navier-
Stokes equations.3, 4, 6–9 Halt and Agarwal6 applied the
method of moments (similar to the DG method) to the
steady two-dimensional Euler equations for subsonic
flows. Bassi and Rebay7 applied the DG method to
two-dimensional Euler equations for transonic flows
and demonstrated the importance of properly treating
curved boundaries. In reference 8, Bassi and Rebay
extended their method to the Navier-Stokes equations by
introducing the gradient of the solution as an auxiliary
variable. Most recently, Lowrie, Roe, and van Leer9

presented a fully discrete DG method for the unsteady
Euler equations. Biswas, Devine, and Flaherty10 applied
the DG method in an h-p version in the adaptive grid
environment and considered the issues of limiters for
moments, as well as for parallel implementations.

In the works described above, the integrals that
appear in the formulation are evaluated with quadrature
formulas. In this particular work, the DG method is
implemented in a form that avoids the use of quadra-

1

ture formulas. This implementation reduces both the
storage requirements and the operation count. In the
first section, the DG method is described in general.
Then, additional motivation for using the quadrature-
free approach is given, along with specific details of the
formulation. Storage requirements and operation count
are also discussed, and the results of a stability analy-
sis are given. It is shown that the primary arguments
against the method, high storage requirements and a
high operation count, are unjustified. The last section
presents numerical results for one- and two-dimensional
test problems. A linear scalar equation is used to verify
the general properties of the DG method for solution
expansions up to 12th order. The nonlinear Burger’s
equation is used to demonstrate the shock-capturing ca-
pabilities of the method in one space dimension. The
method is applied to both scalar advection and the lin-
ear Euler equations in two space dimensions to demon-
strate the unstructured grid capability. This work fo-
cuses on the new formulation of the DG method and
defers all discussion of boundary conditions to future
articles. Hence, all test problems are treated as spa-
tially periodic.

General Discontinuous Galerkin Method

Consider an arbitrary domain
 in which the solu-
tion is governed by a conservation equation of the form

Ut + O � ~F = 0 (1)

The DG method can be arrived at by partitioning
the domain onto smaller, nonoverlapping elements
i

that cover the domain and then applying a traditional
Galerkin11 method to each element. The Galerkin ap-
proach within an element is defined by selecting a finite-
dimensional basis set, approximating the solution as an
expansion in that basis, and then projecting the govern-
ing equation onto each member of that basis set.

B � fbk; 0 � k � N (p; d)g (2)

U
i
� Vi �

NX
j=0

vi;j bj (3)

Z

i

bk

�
Vt + O �

~F

�
i
d
 = 0 (4)

k = 0;1;2; . . . ; N

The basis set must be constructed from the lower order
terms of a complete and linearly independent set. In
the fully discrete approach,9 the basis set contains both

temporal and spatial functions. In the semi-discrete
approach, which is used here, the basis set contains only
spatial functions, and the solution expansion coefficients
vi;j are functions of time. The number of terms in
the expansion,N (p; d) + 1, depends on the order (or
degree) of the expansionp and the number of time-space
dimensionsd represented. To streamline the notation,
N (p; d) will be denoted simply byN except where the
full form is needed for clarity.

The divergence term is recast by applying integra-
tion by parts as

Z

i

bk

NX
j=0

(vi;j)tbjd
 �

Z

i

Obk � ~Fid

+

Z

@
i

bk
~F
R
i � d~s = 0

k = 0; 1; 2; . . . ; N

(5)

whered~s is an outward-pointing surface-element normal
and the flux vector~FR is some approximation to a
Riemann flux that depends on the solutions in both
elementi and the neighboring element.

Although equation (5) could be evaluated in phys-
ical space, the equation can be conveniently (and some-
times advantageous) represented in terms of coordinates
that are local to the element. After such a mapping, (5)
becomes

Z

i

bk

NX
j=0

(vi;j)tbj Jid� �

Z

i

Obk � J
�1

i
~Fi Jid

+

Z

@
i

bk J
�1

i
~F
R
i � Jid~s = 0

k = 0; 1; 2; . . . ; N
(6)

where

Ji �

@(x; y; z)

@(�; �; �)
; Ji = jJij

and (�; �; �) are the local coordinates within the ele-
ment.

Depending on the choice of basis functions and the
form of Ji, the first integral can usually be simplified.
If, for example, the basis set is orthonormal with respect
to Ji, then the first integral term in (6) reduces to an
identity mass matrix. In most implementations, either
the transformation is an isoparametric form (thus,Ji

is a polynomial) or the element is allowed to be an
arbitrary polygon. In either case, the temporal term can
be expressed asMi Vt , whereMi � [mk;j] is the

2

mass matrix,V � [vl], and

mk;j =

Z

i

bk bjJi d
 (7)

In most cases, the mass matrix can be computed and
inverted in advance of the main calculation; however,
it must be stored for every element. In all previous im-
plementations, the spatial integrals are evaluated with
quadrature formulas that are appropriate to the element
shape and the required degree of accuracy. The result-
ing N +1 equations are then used to evolve in time the
coefficients of the solution expansionvi;j.

In the present formulation, we place a fundamental
restriction on the types of elements that are permitted.
In particular, we require that all elements (except per-
haps elements near a curved boundary) have a linear
mapping to a simple similarity element, such as an equi-
lateral triangle or a square in two dimensions (or similar
simple similarity elements in three dimensions). With
this restriction, the temporal term can be rewritten as
JiMVt , where the mass matrixM is now defined by

mk;j =

Z

i

bk bj d
 (8)

As a consequence,M is the same for all elements of
a given similarity shape (e.g. oneM is applicable to
all triangles, another is applicable to all squares, etc.)
except those near a curved boundary. A considerable
reduction is realized in the storage requirements that
far out weights any inconvenience that arises from the
restriction in element shapes.

Throughout the remainder of this discussion, the
subscript that identifies the element will be omitted
unless its use is necessary for clarity. In addition,
although the above discussion applies to a general basis
set, the remaining discussion will assume the basis
functions are polynomials. In particular, the results
presented later all use a basis constructed from simple
monomials (e.g.B �

�
1; x; y; x2; xy; y2; ...

	
.)

Quadrature-Free Approach

Quadrature formulas, especially Gaussian quadra-
ture, are usually the most accurate and efficient means
of evaluating integrals. However, this feature is based
on the assumption that the data are readily available at
the quadrature points (i.e., the data are stored there),
which is usually the case for most finite-element and
spectral-element methods. In these methods, the un-
known variables are the values of the solution at the
quadrature points, and the basis or “shape” functions
are often the Lagrangian polynomials associated with

the quadrature points. In the DG method, however, the
formulation requires the evaluation of both volume and
surface integrals, and no single set ofN +1 quadrature
points exist that can be used to evaluate all the inte-
grals to the required accuracy. Thus, the usual practice
in the implementation of the DG method is to choose
a basis and to store the expansion coefficients. As a
consequence, the evaluation of the volume integral, for
instance, requiresN + 1 operations at each quadrature
point simply to obtain the data needed to evaluate the
quadrature formula. Because all integrals must be ex-
act for polynomials of degree2p, the operation count
for the complete evaluation of the volume integral is
on the order of(N + 1)2 operations for each equation,
assuming optimal quadrature formulas exist.

In contrast, if the basis functions are judiciously
chosen such that integrals of products of the basis func-
tions can be evaluated exactly, then the complete vol-
ume integral can be evaluated exactly in onlyN + 1
operations. A more precise comparison of the operation
count is given in a later section. In the quadrature-free
implementation, we derive a set of matrices that accom-
plish exactly this task. Further, as a consequence of the
restriction previously placed on the type of elements,
these matrices are the same for all elements of a given
type (e.g. one set of matrices applies to all triangles,
another set applies to all squares, etc.). The result is a
low storage and low computational cost method that re-
tains the ability of the DG method to treat unstructured
grids in a accurate and robust manner.

Flux Expansion

To accomplish this task, however, an efficient
method for expanding the flux vector~F in terms of
the basis set is needed.

~F =
MX
j=0

~fjbj M � N (p; d) (9)

where the number of terms in the expansionM depends
on the form of the nonlinearity in~F .

The expansion is trivially accomplished when~F
is a linear function ofU . Similarly, for common test
problems such as the nonlinear Burger’s equation,~F =
1

2
U (x)2 can be obtained by multiplication as long as

triple (and higher) products of the basis function are
also easily integrated. Such is the case when the basis
functions are polynomials in the local coordinates of a
simple element.

The more complex flux functions, such as those
of the Euler equations, can be treated in several ways.
One approach is that of Lowrie et al9 in which the

3

solution expansion is applied to the parameter vec-
tor

�p
�;
p
� u;

p
� v;

p
�H

�
instead of the conserved

variables[�; �u; �v; �e]. Although this approach al-
lows all nonlinear fluxes to be evaluated exactly, the
coefficient matrices become dependent on the local solu-
tion. Hence the coefficient matrices derived here would
be different for every element and would need to be re-
computed at every time step; the storage requirements
and computational effort would be unacceptably high.

A general alternative is to expand the flux in a Tay-
lor series. Because the Euler equations consist of terms
such as(�u)2=� and(�u)(�v)=�, a practical procedure
is to approximate��1 in the basis functions by using
a Taylor series and then use multiplication to complete
the flux expansion.

Another approach is to define the flux in terms of
the projection operator as follows. Let

��1 � �� �
MX
j=0

rjbj (10)

then

��1 � = 1)
Z

bk�� � d
 =

Z

bk d

k = 0; 1; 2; . . . ; M

(11)

This set of equations results in a system that is linear
in rj and is easily solved exactly. The flux terms, such
as(�u)(�v)=�, can then be computed by multiplication,
just as in the Taylor series approach. Alternatively, the
projection method can be used to determine the flux
expansion directly. Let

(�u)(�v)=� � F �
MX
j=0

bjfj (12)

then Z

bk �F d
 =

Z

bk(�u)(�v) d

k = 0; 1; 2; . . . ; M

(13)

defines a set of equations that are linear forfj . This
procedure is also applicable to flux functions that can
be evaluated exactly by multiplication, such as in the
case of the nonlinear Burger’s equation. Let

U2

2
� F �

MX
l=0

blfl (14)

then Z

bkF d
 =

Z

bk
U2

2
d

k = 0; 1; 2; . . . ; M

(15)

The projection approach is appealing because the
error of the approximate flux is uniformly minimized
over the whole of the element, whereas in the Taylor
series approach, the flux will be most accurate near the
center of the element and less accurate near the edges
of the element.

Volume Integral

After the flux is represented as in equation (9), the
volume integral of equation (6) can easily be rewritten
as a matrix times a vector as

JMVt � ~G � ~F

+

Z

@

[bk]J
�1 ~FR � Jd~s = 0 (16)

whereV = [vk], ~G = [~gk ;j], ~F =
h
~�f j

i
,

~gk ;j =

Z

(Obk) bj d
 ; ~�f j = J J�1 ~fj

k = 0; 1; 2; . . . ; N j = 0; 1; 2; . . . ;M

(17)

andM � N is the degree to which a nonlinear flux
is expanded in the basis set. The vector matrix~G is a
constant for all elements of a given family and can be
precomputed and stored. The evaluation of the volume
integral becomes an orderM + 1 operation for each of
theN + 1 equations in the element.

Boundary Integral

The boundary integral is partitioned into segments
associated with the sides of the element. The integral
on each boundary segment can be rewritten in terms
of a vector times a precomputed matrix; however, the
procedure is complicated by the fact that~FR is a func-
tion of the solution in the two elements on either side
of a boundary segment and each of these elements has
a distinct local coordinate system. The remedy is to
translate each basis function from their local coordinate
systems to a coordinate system that is common to both
elements. The use of a boundary-segment-based coor-
dinate system actually results in a reduction in the total
work and storage required. The complete process can
be summarized in three steps: 1) translate the solution
to an edge coordinate system, 2) compute the approxi-
mate Riemann flux in the edge coordinates, 3) project
the flux onto the space defined by the element basis set.

For the sake of clarity, the procedure is illustrated
for a triangular element; however, the same procedure
can be applied to all types of elements, and the pro-
cedure facilitates the use of mix element types (i.e.,

4

squares and triangles together). Figure 1 illustrates a
general triangle that has been mapped into a equilateral
triangle. The equilateral triangle has a local coordinate
system(�; �) with its origin at the centroid of the ele-
ment; each edge also has a local coordinate�� with its
origin in the center of the edge. Note that the dimen-

a

b

c

x

y

a b

c

ξ

η

ξ

ξ

ξ

0

12

x , yo o

�
x� xo
y � yo

�
= J

�
�

�

�
(18)

Figure 1. Transform from general triangle to equilateral
similarity triangle that shows coordinate systems
associated with interior and edges of similarity triangle.

sionality of the edge coordinate system is one lower than
that of the element. Hence, for a three-dimensional ele-
ment the edge coordinate system is two dimensional; for
a two-dimensional element, the edge coordinate system
is one dimensional; and for a one-dimensional element,
the edge coordinate system contracts to a single point.

For each edge of the triangle, a constant matrixTj

exist that relates each member of the local basis to an
expansion in terms of the edge coordinate. The sub-
script j identifies the edge to which the matrix applies.
For example, on edge number 0,

B � [bl] =

2
666666664

1
�

�

�2

��

�2

...

3
777777775

=

2
6666666664

1 0 0 . . .
0 1 0 . . .
�1

2

p
3

0 0 . . .
0 0 1 . . .
0 �1

2

p
3

0 . . .
1

12
0 0 . . .

...
...

...
...

3
7777777775

2
664
1
��
��2

...

3
775

= T
0

�
�bj

�
� T

0

�B (19)

The matrices for the other two edges are considerably
more dense but are easily derived in exact form with
the aid of a symbolic algebra package such as Maple

or Mathematica. TheTj matrix for square elements is
relatively sparse on all four edges.

Given any function expanded in terms of the ele-
ment basis, the expansion in terms of the edge basis�B

is derived as follows:

Vi =
NX
j=0

vi;j bj = V
T

i B

= V
T

i Tj
�B =

�
ViT

T

j

�
T
�B � �V

T

i;j
�B

(20)

hence,
�Vi;j = T

T

j Vi (21)

After �Vi;j has been computed on every face of ev-
ery element, the flux through an edge can be computed
without regard to the type of elements or the orientation
of the coordinate system of the elements that border the
edge. At an arbitrary edge, illustrated in figure 2, we
arbitrarily designate one element to be on the left and
the other to be on the right. The two edge coordinate

ξ

η
l

ξ
ξ

η

r
ξ

Figure 2. Relation of edge coordinates
of adjacent elements.

systems of the two elements always point in opposite di-
rection. A function of the edge coordinates of the right
element can be represented in terms of the edge coordi-
nate system of the left element simply by negating the
odd members of�Vi;j. In the three-dimensional case,
the relation is not as trivial because a rotation may also
be involved.

In the present work, the Riemann flux is approxi-
mated by a simple Lax–Friedrichs flux of the form

J J�1 ~FR
l � d~s �

1

2

nh
J J�1

�
~Fl + ~Fr

�i
� ~n

� �[Vr � Vl]gds
(22)

whered~s = ~nds, the subscriptsl andr denote the left
and right sides of the edge,~n points from left to right,
and� is some smooth positive function that is greater
in magnitude that the eigenvalues of the Jacobian of
1

2

h
J J�1

�
~Fl + ~Fr

�i
� ~n . By applying equation (21),

the Lax–Friedrichs flux is easily expressed in terms of
the edge coordinate to give

J J�1 ~FR
l � d~s = �F

T

l
�B ds (23)

5

where

�Fl �
�
�f
0;
�f;1 �f;2 �f;3 . . .

�
=

nh
J J�1

�
Tjl

~Fl + bITjr
~Fr

�i
� ~n

� �
hbITjr Vr � Tjl Vl

io
=2

=

nh
J J�1

�
~�Fl + bI ~�Fr

�i
� ~n

� �
hbI �Vr � �Vl

io
=2 (24)

and bI = diag(1; �1; 1; �1; . . .) accounts for the
difference in the left and right edge coordinates. The
coefficients of the approximate Riemann flux on the
right face are simply�Fr = bI�1 �Fl. As a side note,
depending on the form of the flux, less computational
effort by be required to compute~�F directly from �V than
to translate the flux from element to edge coordinates.
This is especially true for linear fluxes.

Finally, the boundary integral is evaluated in the
edge frame of reference by expressingbk in terms of
the edge coordinates and collecting in terms of the
components of�F =

�
�f
0
; �f

1
; �f

2
; . . .

�
. To illustrate,

let [tk]j denote thekth row of Tj . The integral on
a boundary segment becomesZ
@

(bk)
�
�FT �B

�
ds =

Z
@

�
[tk]j

�B

� �
�FT �B

�
ds

=

Z
@

��
tk;0 + tk;1�� + tk;2��

2 + tk;3��
3 + . . .

�
�
�
�f
0
+ �f

1

�� + �f
2

��2 + �f
3

��3 + . . .
�	

ds

=

Z
@

��
tk;0 + tk;1�� + tk;2��

2

+ . . .
�
�f
0

+
�
tk;0 �� + tk;1��

2 + tk;2��
3 + . . .

�
�f
1

+
�
tk;0 ��

2 + tk;1��
3 + tk;2��

4 + . . .
�
�f
2

+ . . . g ds

� [ek] �F (25)

where[ek] is a constant row matrix that is easily evalu-
ated exactly. LetE denote the matrix that is generated
by applying the above process to each member of the
basis set. The final form of the semidiscrete equation is

Vt � J
�1

"
M
�1 ~G � ~F �

neX
k=1

�
M
�1
Ek
�Fk

�#
= 0

(26)
where ne is the number of edges and the matrices
M
�1 ~G andM�1

Ek are constant matrices that apply
to all elements of a given type. Furthermore, these ma-
trices can be efficiently precomputed by the procedure
just described.

Computational Effort

The effort required to evaluate the complete spa-
tial operator is contained in three basic operations: the
evaluation of equation (26) for each element, the eval-
uation of equation (21) for each edge of each element,
and the computation of~F and�F fromV and �V, respec-
tively. The operation count of the first two operations
is directly related to the size of the matricesM�1 ~G,
M
�1
Ek, andTj . The row dimension of all three ma-

trices isN (p; d) + 1. If the flux is linear, then the
column space ofM�1 ~G is alsoN (p; d)+1. However,
in the nonlinear case the flux must be expanded to at
least degreep+1; and thus, the column dimension must
be at leastN (p+ 1; d) + 1. The column dimension of
bothM�1

Ek andTj is N (p; d� 1) + 1.

The operation count of the flux computation can
vary considerably depending on the complexity of the
flux function. In the linear case the operation count is on
the order ofN (p; d)+1 andN (p; d� 1)+1 for ~F and�F,
respectively. The operation count in the nonlinear case
could be as high asfN (p; d) + 1gfN (p+ 1; d) + 1g

and fN (p; d� 1) + 1g
2 for ~F and �F, respectively.

Thus, the total operation count for the spatial operator
in a single element varies from

d[N (p; d) + 1]
2

+ 2ne[N (p; d) + 1][N (p; d� 1) + 1]

+ O(d[N (p; d) + 1] + ne[N (p; d� 1) + 1])

(27)

for the linear case to

d[N (p; d) + 1][N (p+ 1; d) + 1]

+ 2ne[N (p; d) + 1][N (p; d� 1) + 1]

+ Ofd[N (p+ 1; d) + 1][N (p; d� 1) + 1]

+ ne[N (p; d� 1) + 1]
2

g

(28)

for the nonlinear case. These estimates assume that the
matrices are full, which is not the case. The exact form
of N (p; d) is

N (p; d) = dp +

8><
>:

0 d = 1

p(p � 1)=2 d = 2

3p(p� 1)=2 d = 3

3p(p� 1) d = 4

(29)

and Table 1 givesN (p; d) + 1 for a degree range of
1 � p � 6 and for time-space dimensions that range
from 1 to 4.

In a conventional DG implementation (i.e. one
that uses quadrature points), the operation count is on
the order of

[N (p; d) + 1]f(1 + d)Nqv + 2neNqbg

+ O(dNqv + neNqb)
(30)

6

whereNqv andNqb denote the number of quadrature
points required for the volume integral and boundary
segment integrals, respectively, and the last term de-
notes the cost of computing the flux at each quadrature
point. Most references do not give the specific quadra-
ture formulas used; however, Halt et al6 referred to the
work of Dunavant12 who derived nearly optimal formu-
las in whichNqv > N (p; d) + 1 in order to evaluate
the integral exactly to degree2p. Thus, the operation
count for the conventional DG implementation is greater
than the values given by either (27) or (28) even if the
sparseness of the matrices is not taken advantage of.

When the DG method is compared to fundamen-
tally different methods such as finite-difference or finite-
volume methods, the comparison must be done in an eq-
uitable manner. To do so, we hypothesize that any two
methods that have the same degree of accuracy and the
same physical stencil size will give similar results (for
benign cases that do not violate the basic assumptions
of the method). In practice, we compare methods that
are of the same order of accuracy and have the same
total number of variables. In this frame of reference,
the evaluation of the spatial operator is an operation
of orderN (p; d) + 1 or N (p+ 1; d) + 1 per dependent
variable for a linear or nonlinear problem, respectively.

Time Integration and Stability

The solution is advanced in time with a three-stage
TVD Runge-Kutta method:13

W 0 = V n�1

W k = �kW
0 + (1� �k)

�
W k�1 + �tR

�
W k�1

��
k = 1; 2;3

V n = W 3

(31)
where �k = 0, 3/4, and 1/3 fork = 1, 2, and 3,
respectively.

Fourier stability analysis has been applied to (31)
for the one-dimensional linear case of

Ut + aUx = 0 (32)

to determine the stability limit�k � a�t=�x for
methods of various orders (i.e., various values ofp).
The results given in Table 2 are forK-stage/Kth-
order Runge-Kutta methods of the type described above,
whereK = 1, 2, and 3 andp ranges from 0 to 11.
The rapid drop in the stability limit as the order of
the method is increased would normally be alarming in
comparison with stability constraints of explicit finite-
difference methods. However, if we again require that
comparison be made among methods having the same
total number of variables, then the size of the element

in the DG method would be larger (by a factor ofp+1
in one-dimension) than the mesh size of a compara-
ble finite-difference calculation. Thus, most of the drop
in the stability limit can be attributed to definition of
�x. The right-most column of Table 2 gives�k(p+ 1),
which gives the DG stability limit in a form that fa-
cilitates comparison with the stability limit of a finite-
difference method.

Results

One-Dimensional Test

The one-dimensional version of this method has
been tested on the linear problem

Ut + aUx = 0 (33)

and the nonlinear problem

Ut +
1

2

�
U2
�
x
= 0 (34)

on the domain0 < x < 1 with periodic boundary
conditions.

A linear problem is solved first with smooth initial
conditionsU (0; x) = 1

2
+ sin (2�x) to demonstrate

the general accuracy properties of the method. The
numerical solution is initialized by expanding the initial
condition in a Taylor series about the center of each
element. All components of the numerical solution are
compared with the Taylor series of the exact solution
after it has advected for several periods. TheLn-norm of
the error of thejth component of the solution is defined
as

Ln("j) �

"
IX

i=1

jvi;j � ui;jj
n

!
=I

#1=n

whereui;j denotes the Taylor coefficient of the exact
solution in celli and I denotes the number of elements.
A mesh-refinement study has been performed forp = 1
through 5. The time step was chosen to be sufficiently
small such that the error would be dominated by the
spatial operator; however, forp > 2 the time step
varied as�t / (�x)

(p+1)=3 so that the temporal
accuracy would be of the same order as the spatial
accuracy. Figure 3 shows theL1-norm of the error
for each component of the solution forp = 1, 2, and
4. The convergence rate of the solution between the
two finest grids is given in Table 3. Although most
cases converge at the design rate ofp + 1, the v0
term of thep = 1 case converges at a rate of� 3,
which is one order higher than expected. This faster
convergence is fortuitous and occurs only because the
basis functions are incidentally orthogonal. Becausev1

7

is only second order andv2 is undefined, a solution of
degree > 1 cannot be recovered at any point other than
the element center without departing from the Galerkin
framework. Furthermore, althoughv0 converges faster
than the design order, its error is still considerably larger
than the error of thep=2 case.

In the second test case, the DG method is applied to
the linear problem with a discontinuous initial solution:

U (0; x) =

�
1 1

4
< x < 3

4

0 x �
1
4
; x �

3
4

(36)

Figures 4 through 8 show several results for this case
on a grid with 40 elements. Figures 4, 5, and 6 show
the solution after one period forp = 1, 2, and 6,
respectively. Each method has small overshoots that
are confined to the neighborhood of the discontinuity.
Similar results were observed for orders up top =
11. Figures 7 and 8 also show solutions forp = 6,
but the solution has advected for 5 and 50 periods,
respectively. The overshoots neither grow or spread
in time, which is in sharp contrast to the behavior of
more traditional methods. A typical finite-difference
approach, for instance, would tend to smear a contact
discontinuity over a region that grows linearly in time.

Next, the DG method is applied to a linear test
case that was prescribed as part of the ICASE/LaRC
Workshop on Benchmark Problems in Computational
Aeroacoustics14; these results are compared with the
finite-difference results described in reference 14. The
test case consists of a Gaussian pulse that is advected
across a uniform domain. The Gaussian pulse has a
half-width of 6 and is initially centered on the origin
of a domain that ranges from –20 to 450. Results are
shown in Figure 9 forp = 1, 2, and 3; however, asp is
increased the number of elements is decreased such that
the total number of variables is approximately 470 (the
number of points specified in the workshop). In figure
10, the results of the fourth-order DG method at t = 400
are compared in detail with the results of a fourth- and
fifth-order finite-difference method. The fourth-order
DG method with only 117 elements is considerably
better than either fourth- and fifth-order finite-difference
methods using 470 points. (Note: smooth curves are
generated for results of the DG method by evaluating
the solution at several points within each element.)

The last one-dimensional test case is a nonlinear
problem (eq. (34)) in which a shock forms from an
initially smooth solution. This problem was used to not
only demonstrate the robustness of the method but also
to investigate the effect of truncating the nonlinear flux
at various levels. We expect, based on the formulation,
that the nonlinear flux must be expanded toM =

N (p+ 1; d) terms such that the degree ofObk � ~F is

the same as the degree ofbk V to obtain the design rate
of convergence ofp + 1. This expected convergence
property was verified by a mesh refinement study in
which the calculation was stopped just before shock
formation. The mesh-refinement was performed for
several values ofp, and the finest grid contained 320
elements. Typical results, shown in Table 4 forp = 2,
indicate that the convergence rate measured in theL1
norm drops to� p whenM = N (p; d) but is� p+ 1
for all other cases.

Figure 11 shows solutions forp = 1 and p =
2 (second and third order) in which the shock has
formed and has begun to propagate. In both cases,
the solutions were obtained without the use of limiters,
added dissipation, or entropy correction terms; however,
the case in whichp = 2 required that the nonlinear flux
be fully expanded (M = N (2p; d)). Otherwise, the
solution would diverge shortly after shock formation.
All higher order cases (p > 2) required some type of
limiter; work is continuing in this area.

Two-Dimensional Test

The DG method is applied to the scalar advection
equation in two dimensions to demonstrate its robust
treatment of unstructured grids. The test problem is
given by

Ut + aUx + b Uy = 0

U (0; x;y) = [sin (�x) sin (�y)]4
(37)

defined on the periodic domain0 < x; y < 1. The
approximate solutionVi is initialized from the Taylor
expansion of the exact initial condition. The baseline
case is chosen to be a uniform Cartesian grid that
is triangulated in a regular manner, as illustrated in
Figure 12. Figure 13 shows theL1 norm of the error
in the v0 component of the solution. As in the one-
dimensional case, the time step was small so that the
spatial error dominated and, forp > 2, the time step
was proportional to(�x)(p+1)=3. In mesh refinement
studies, the first grid in the sequence is coarsened as
the order of the method is increased so that the total
number of variables is roughly the same. The abscissa
in figure 13 is the square root of the total number of
variables, which facilities comparison with a simple
fourth-order finite-difference method. The higher-order
convergence of thep = 1 case that was observed in
one dimension is not observed in the two-dimensional
case. The accuracies of the fourth-order DG and finite-
difference methods are quite similar.

One of the major motivations for pursuing a DG
method is its ability to maintain accuracy for complex
geometries. Here, the baseline grid is altered in several

8

ways to test and demonstrate this capability. Figure 14
illustrates four of the variations that were tested. In the
first case, grid A is uniform like the baseline case but
the triangulation has been done in a random manner.
In the second case, grid B is generated from grid A by
smoothly clustering the grid toward a diagonal. Grid C
is generated from grid B by randomly perturbing each
grid point by an amount that is less than 20 percent
of the average mesh size. In the last case, grid D is
generated from the baseline by imposing a piecewise-
constant mesh spacing that places half of the points in
a narrow band around the axis.

In most cases, the measured error was found in-
sensitive to the grid modification or the direction of
propagation (i.e., the value ofa andb). Figure 15 gives
the L1 norm of the error forp = 3 (fourth-order) on
each of the grids shown in figure 14. Results for other
values ofp were similar. All results in Figure 15 are
for a = 1, b = 0, except for case D2 wherea = 1

and b = 1. The slight increase in error in case D2 is
attributed more to the increase in mesh size along the
propagation path than to the discontinuous manner in
which it changes.

In the last test case, the DG method is applied to
another problem prescribed as part of the ICASE/LaRC
Workshop on Benchmark Problems in Computational
Aeroacoustics.14 The linear Euler equations are solved
on a square domain of dimensions�100 < x; y < 100

with initial conditions that place a compact acoustic
source atx = y = 0 and a convecting disturbance
at x = 67, y = 0. Here, the equations have been
recast in a form that emphasizes the decoupling of the
convection terms from the acoustic terms that occurs in
this linear system.

@U

@t
+

@E

@x
+

@F

@y
= 0 (38)

where

U =

2
64
� � P

p

u

v

3
75

F =

2
64
Mx(� � P)

MxP + u

Mxu+ P

Mxv

3
75; G =

2
64
My(� � P)

MyP + v

Myu

Myv + P

3
75

Mx = 0:5, My = 0, and

(�� P)(0; x; y) = 0:1 exp

"
(� ln (2))

(x� 67)
2
+ y2

25

#

P (0; x; y) = exp

�
(� ln (2))

�
x2 + y2

9

��
u(0; x; y) = 0:04xP (0; x; y)

v(0; x; y) = 0:04 yP (0; x; y)

The workshop, which targeted finite-difference meth-
ods, prescribed a grid of200X 200. In the present
calculation, we use a uniformnX n Cartesian grid that
has been randomly triangulated (as shown in Figure 14a
in which the number of elements is chosen as a function
of the degreep such that the total number of unknowns
equals approximately2002. Results are shown forp =
0, 1, 2, and 3 (first, second, third, and fourth order)
with n = 141, 81, 57, and 44, respectively. Figure 16
showsP and u at t = 40 for the p = 3 case. The
wave fronts appear smooth and cylindrical in spite of
the fact that the initial disturbance was smaller than the
element size. A more quantitative comparison is shown
in Figures 17 and 18. The pressureP is plotted on the
x = 0, t = 40 line for p = 0 through 3 at the resolution
given above. Also shown is a fine-grid solution withp
= 3, n = 132 and the solution from a fifth-order finite-
difference method on a200X 200 grid. An enlargement
of the right peak (Figure 18) shows that all solutions that
are third order or better give similar results.

Summary

A quadrature-free form of the discontinuous
Galerkin method has been formulated for the hyperbolic
conservation laws. This approach reduces both the stor-
age and operation count to levels that are comparable to
high-order finite-volume methods. The method is well
suited to both unstructured and structured grids and it
has been tested on several one- and two-dimensional
problems to demonstrate its accuracy and robustness.
On smooth meshes, the accuracy of the DG method
is comparable to or better than traditional high-order
finite-difference methods. Contact discontinuities are
advected without the usual diffusion effect, and nonlin-
ear discontinuities (shocks) are propagated by second-
and third-order methods without the use of limiters.
On two-dimensional unstructured grids, random and
discontinuous mesh variations had little effect on the
error and no effect on the convergence of the error.

References

1. C. Johnson and J. Pitk¨arata, “An Analysis of the
Discontinuous Galerkin Method for a Scalar Hy-

9

perbolic Equation,” Mathematics of Computation,
v46 (1986), pp. 1–26.

2. B. Cockburn and C.-W. Shu, “TVB Runge-Kutta
local projection discontinuous Galerkin finite el-
ement method for conservation laws II: general
framework,” Mathematics of Computation, v52
(1989), pp. 411-435.

3. B. Cockburn, S.Y. Lin and C.-W. Shu, “TVB
Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation
laws III: one dimensional systems,” Journal of
Computational Physics, v84 (1989), pp. 90-113.

4. B. Cockburn, S. Hou and C.-W. Shu, “ The Runge-
Kutta local projection discontinuous Galerkin finite
element method for conservation laws IV: the mul-
tidimensional case,” Mathematics of Computation,
v54 (1990), pp. 545-581.

5. G. Jiang and C.-W. Shu, “ On cell entropy inequal-
ity for discontinuous Galerkin methods,” Mathe-
matics of Computation, v62 (1994), pp. 531-538.

6. D. W. Halt and R. K. Agarwal, “Compact Higher
Order Characteristic-Based Euler Solver for Un-
structured Grids,” AIAA J. v30 (1992), pp.
1993–1999.

7. F. Bassi and S. Rebay, “Accurate 2D Euler Com-
putations by means of a High-Order Discontinuous
Finite Element Method,” Proceedings of the 14th
International Conference on Numerical Methods
in Fluid Dynamics, Bangalor, India, July 11–15,
1994.

8. F. Bassi and S. Rebay, “Discontinuous Finite El-
ement High Order Accurate Numerical Solution
of the Compressible Navier-Stokes Equations,”
Presented at the ICFD Conference on Numerical
Methods in Fluid Dynamics, University of Oxford,
Oxford, England, April 3–6, 1995

9. R. B. Lowrie, P. L. Roe, and B. van Leer, “A
Space-Time Discontinuous Galerkin Method for
the Time-Accurate Numerical Solution of Hyper-
bolic Conservation Laws,” presented at the 12th
AIAA Computational Fluid Dynamics Conference,
San Diego, CA, June 19–22, 1995

10. R. Biswas, K.D. Devine, and J. Flaherty, “Paral-
lel, adaptive finite element methods for conserva-
tion laws,” Applied Numerical Mathematics, v14
(1994), pp. 255–283.

11. C.A.J. Fletcher,Computational Galerkin Methods
Springer-Verlag, New York, 1984.

12. D.A. Dunavant, “High Degree Efficient Symmet-
rical Gaussian Quadrature Rules for the Triangle,
“ International Journal for Numerical Methods in
Engineering, Vol. 21, pp. 119–1148, 1985.

13. C.-W. Shu and S. Osher, “Efficient implementa-
tion of essentially non-oscillatory shock-capturing

schemes,” Journal of Computational Physics, v77
(1988), pp. 361-383.

14. Harold L. Atkins, “Application of Essentially
Nonoscillatory Methods to Aeroacoustic Flow
Problems,”Proceedings of ICASE/LaRC Workshop
on Benchmark Problems in Computational Aeroa-
coustics, Edited by J.C. Hardin, J.R. Ristorcelli,
and C.K.W. Tam, NASA Conference Publication
3300, May, 1995, pp. 15-26

Table 1 N (p; d) + 1 for specific values ofp andd

d
p

1 2 3 4

1 2 3 4 5

2 3 6 10 15

3 4 10 19 31

4 5 15 31 53

5 6 21 46 81

6 7 28 64 115

Table 2 �k � a�t =�x for
K-stage/Kth-order Runge-Kutta methods

applied to a DG method of orderp

p �1 �2 �3 �3 � (p+ 1)

0 1.0 1.00 1.256 1.256

1 0.001 0.333 0.409 0.818

2 u-s‡ 0.06 0.209 0.627

3 u-s 0.02 0.13 0.52

4 u-s 0.01 0.089 0.445

5 u-s 0.006 0.066 0.396

6 u-s 0.004 0.051 0.306

7 u-s 0.003 0.04 0.32

8 u-s 0.002 0.033 0.297

9 u-s 0.002 0.027 0.27

10 u-s 0.001 0.023 0.253

11 u-s 0.001 0.02 0.24

‡ u-s denotes unstable method

10

Table 3 Convergence Rates of
L1("j) between two finest grids

j
p

0 1 2 3 4

1 2.990 2.133

2 3.064 3.049 3.022

4 4.99 5.74 5.00 5.00 5.00

Table 4 Effect of truncating the nonlinear
flux on grid convergence:p=2 case.

Norm of
measure

M

N (p; d) N (p+ 1; d) N (p+ 2; d)

L1("0) 2.894 2.944 2.942

L1("0) 2.015 2.923 2.921

L1(εj)

10
1

10
2

(I)

10
-10

10
0

10
-8

10
-6

10
-4

10
-2

p=1
2
4

j=0
1
2
3
4

Figure 3. Convergence of theL1 norm of the error for:

v0

0.0 1.00.25 0.5 0.75

x

-0.2

1.2

0.0

0.2

0.4

0.6

0.8

1.0

exact solution
numerical solution

Figure 4. Solution of the linear problem after one
time period given by DG method withp=1.

v0

0.0 1.00.25 0.5 0.75

x

-0.2

1.2

0.0

0.2

0.4

0.6

0.8

1.0

exact solution
numerical solution

Figure 5. Solution of the linear problem after one
time period given by DG method withp=2.

v0

0.0 1.00.25 0.5 0.75

x

-0.2

1.2

0.0

0.2

0.4

0.6

0.8

1.0

exact solution
numerical solution

Figure 6. Solution of the linear problem after one
time period given by DG method withp=6.

v0

0.0 1.00.25 0.5 0.75

x

-0.2

1.2

0.0

0.2

0.4

0.6

0.8

1.0

exact solution
numerical solution

Figure 7. Solution of the linear problem after five
time periods given by DG method withp=6.

11

v0

0.0 1.00.25 0.5 0.75

x

-0.2

1.2

0.0

0.2

0.4

0.6

0.8

1.0

exact solution
numerical solution

Figure 8. Solution of the linear problem after 50
time periods given by DG method withp=6

t=0 t=120 t=240 t=360

v0

a)

v0

b)

v0

c)

-0.1

0.5

0.1

0.3

-0.1

0.5

0.1

0.3

-50.0 450.050.0 150.0 250.0 350.0

x

-0.1

0.5

0.1

0.3

Figure 9. The DG method applied to the advection of
a Gaussian pulse: a)p = 1 with 235 elements; b)p = 2
with 156 elements; and c)p = 3 with 117 elements

v0

390.0 410.0400.0

x

-0.1

0.5

0.0

0.1

0.2

0.3

0.4

exact
4th-order DG
4th-order FD
5th-order FD

Figure 10. Comparison of fourth-order DG with
fourth- and fifth-order finite-difference (FD)

v0

a)

t=0
t=0.3

t=0.6

-0.5

2.0

0.0

0.5

1.0

1.5

v0

b)
0.0 1.00.25 0.5 0.75

x

-0.5

2.0

0.0

0.5

1.0

1.5

Figure 11. Solution of the nonlinear
equation with a)p=1, b) p=2

12

Figure 12. Triangulated grid and solution
of scalar advection problem

L1(ε0)

10
1

10
3

10
2

sqrt(I (N+1))

10
-8

10
0

10
-6

10
-4

10
-2

4-th 0rder FD
1-st order DG
2-nd 0rder DG
3-rd 0rder DG
4-th 0rder DG
5-th 0rder DG

Figure 13. Convergence of solution for scalar advection
on an unstructured grid for various orders of accuracy.

a) b)

c) d)

Figure 14. Variation on the baseline unstructured grid:
a) random triangulation, b) smoothly clustered toward
diagonal, c) random perturbation of 20 percent of the
mean cell spacing, d) discontinuous mesh variation.

L1(ε0)

1.2 2.21.7

Log(sqrt(I (N+1)))

10
-7

10
-1

10
-5

10
-3

baseline
grid A
grid B
grid C
grid D
grid D2

Figure 15. Convergence of solution for scalar
advection for a fourth order method on several
versions of the unstructured grid.

a)

b)

Figure 16. Acoustic wave modeled by the linear Euler
Equations.p = 3, t = 40 for a) P , b) u.

13

P

-100 100-50 0 50

y

-0.05

0.1

0.0

0.05

p=0
p=1
p=2
p=3
p=3; fine
FD

Figure 17. Solution of the linear Euler
equations: Pressure on x=0 at t=40

33 4136 38

0.05

0.1

0.075

p=1
p=2
p=3
p=3; fine
FD

Figure 18. Solution of the linear Euler
equations: Pressure on x=0 at t=40:
enlargement of solution near y=36

14

