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A discontinuous Galerkin formulation that avoids the use of discrete quadrature formulas is described and applied to
linear and nonlinear test problems in one and two space dimensions. This approach requires less computational time and
storage than conventional implementations but preserves the compactness and robustness inherent to the discontinuous
Galerkin method. Test problems include both linear and nonlinear one-dimensional scalar advection of both smooth and
discontinuous initial value problems, two-dimensional scalar advection of smooth initial value problems discretized by
using unstructured grids with varying degrees of smoothness and regularity, and two-dimensional linear Euler solutions
on unstructured grids.

Introduction are also provided. In reference 3, the method is ap-

possess accuracy properties that exceed those of coRoundary yalue prob_lem for a linear system is proved,
ventional second-order computational fluid dynamicsand numerical experiments were performed for the one-
(CFD) methods. At the same time, many problems ofdimensional Euler equations. In reference 4, the method
interest involve complex geometries that are not easilyS generalized to multispace dimensions. A main re-
treated by common high-order methods that usuallySult in reference. 4 is the de3|gn of a total-va'natlon
require a smooth, structured grid. In addition to thebounded (TVB) limiter that applies to general triangu-
geometrically complex problem, we are particularly in- lations, maintains high order in smooth regions, and
terested in strongly nonlinear flows that contain shockduarantees maximum norm stability. Jiang and *Shu

waves as a major source of sound generation, such d¥ve also proved that the DG method satisfies a local
in the case of jet noise. cell entropy inequality for the square entropy, for ar-

bitrary triangulations in any space dimension, and for

atively untried discontinuous Galerkin (DG) method is any order of accuracy. Thls trivially implieis, Stab."'
being tested for hyperbolic problems. Some advantagegy of the method for nonlinear shocked problems in the
of this approach include the ease with which the methofCalar case.

can be applied to both structured and unstructured grids ~ Although the DG method has not been widely
and its suitability for parallel computer architectures. used in the CFD arena, several instances exist in which

The approach also has several useful mathematical profis method has been applied to the Euler or Navier-

erties. Stokes equations.* 69 Halt and Agarwdl applied the
Johnson and Piticata proved stability and error method of mqment; (similar to the D.G method) to thg

estimates for linear scalar advection. In a series of pa§teady two-dimensional Euler equations for subsonic

pers, Cockburn, Shu, et?at discussed the DG method flows. Bassi and Rebdyapplied the DG method to

using approximate Riemann solvers, limiters, and total_two-dlmensmnal Euler equations for transonic flows

variation diminishing (TVD) Runge-Kutta time dis- and demonstrated the importance of properly treating

cretizations for nonlinear hyperbolic problems. In refer- curved bounplanes. In referencg 8, Bassi and .Rebay
ence 2, the general formulation in one space dimeznsioﬁ)(temje_d their methqd to the Nawer-Stokes equatpns by
is provided, with a detailed description and analysis Ofmtroducmg the gradient of the solution as an auxiliary

accuracy, stability (in terms of total variation), and im- Vaiable. Most recently, Lowrie, Roe, and van Leer
resented a fully discrete DG method for the unsteady

lementation. Numerical examples of scalar e uation% . . . .
P P a uler equations. Biswas, Devine, and Flah&rapplied
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ture formulas. This implementation reduces both thetemporal and spatial functions. In the semi-discrete
storage requirements and the operation count. In tha@pproach, which is used here, the basis set contains only
first section, the DG method is described in generalspatial functions, and the solution expansion coefficients
Then, additional motivation for using the quadrature-v; ; are functions of time. The number of terms in
free approach is given, along with specific details of thethe expansionN(p,d) 4+ 1, depends on the order (or
formulation. Storage requirements and operation countiegree) of the expansignand the number of time-space
are also discussed, and the results of a stability analydimensionsd represented. To streamline the notation,
sis are given. It is shown that the primary argumentsN (p, d) will be denoted simply byV except where the
against the method, high storage requirements and #ull form is needed for clarity.
hlgh Operation count, are Unjustiﬁed. The last section The divergence term is recast by app|y|ng integra-
presents numerical results for one- and two-dimensionafion by parts as
test problems. A linear scalar equation is used to verify
the general properties of the DG method for solution N
expansions up to 12th order. The nonlinear Burger’'s /bk Z(viyj)tbjdﬁ - /vbk - FidQ

g, =0

equation is used to demonstrate the shock-capturing ca- &,

pabilities of the method in one space dimension. The . (5)
method is applied to both scalar advection and the lin- + / by Fff - ds = 0

ear Euler equations in two space dimensions to demon- Py

strate the unstructured grid capability. This work fo- k=0,1,2,..., N

cuses on the new formulation of the DG method and

defers all discussion of boundary conditions to future\hereds is an outward-pointing surface-element normal

articles. Hence, all test problems are treated as spasng the flux vectorF? is some approximation to a

tially periodic. Riemann flux that depends on the solutions in both
element: and the neighboring element.

Geﬁeral Dlscqntlnuous Galgrkln Method Although equation (5) could be evaluated in phys-
~ Consider an arbitrary domain in which the solu-  jcq| space, the equation can be conveniently (and some-
tion is governed by a conservation equation of the formimnes advantageous) represented in terms of coordinates
that are local to the element. After such a mapping, (5)
becomes

U +v-F =0 (1)

The DG method can be arrived at by partitioning N .
the domain onto smaller, nonoverlapping elements /bk Z(vm')tbj JidA — /ka - JTVF; J,dQ
that cover the domain and then applying a traditional ¢ j=o0 o,

Galerkin! method to each element. The Galerkin ap- .

proach within an element is defined by selecting a finite- + / b J7E - Jids =0

dimensional basis set, approximating the solution as an  sq;

expansion in that basis, and then projecting the govern- k=0,1,2,...,N
ing equation onto each member of that basis set. (6)
where
B = {b, 0<k<N(pd) )
INw,y,z)
N J, = W ; Ji = |3,
U, ~ Vi = > wijb 3 o
j=0 and (¢, 7,¢) are the local coordinates within the ele-
ment.
= _ Depending on the choice of basis functions and the
/b’“ (V’ TV F)idQ =0 () form of J;, the first integral can usually be simplified.
2 If, for example, the basis set is orthonormal with respect
k=012, N to J;, then the first integral term in (6) reduces to an

identity mass matrix. In most implementations, either

the transformation is an isoparametric form (thus,
The basis set must be constructed from the lower ordeis a polynomial) or the element is allowed to be an
terms of a complete and linearly independent set. Irarbitrary polygon. In either case, the temporal term can
the fully discrete approachthe basis set contains both be expressed abl; V, , whereM; = [my ;] is the



mass matrix,V = [v], and the quadrature points. In the DG method, however, the
formulation requires the evaluation of both volume and
my; = / by, by J; dQ) 7) surface in_tegrals, and no single set/of 1 quadrature_z
points exist that can be used to evaluate all the inte-
grals to the required accuracy. Thus, the usual practice

In most cases, the mass matrix can be computed and the implementation of the DG method is to choose
inverted in advance of the main calculation; however,2 P2sis and to store the expansion coefficients. As a

it must be stored for every element. In all previous im- consequence, the evaluation of the volume integral, for
plementations, the spatial integrals are evaluated wit

Q’L

finstance, requiresy + 1 operations at each quadrature

quadrature formulas that are appropriate to the elemerRCiNt Simply to obtain the data needed to evaluate the

shape and the required degree of accuracy. The resulfluadrature formula. Because all integrals must be ex-

ing IV + 1 equations are then used to evolve in time the@Ct for polynomials of degregp, the operation count

coefficients of the solution expansian; for the complete evaluation of the volume integral is
3"

2 . .
In the present formulation, we place a fundamental>" the order of ' + 1)” operations for each equation,

restriction on the types of elements that are permittedf?lssumlng optimal quadrature formulas exist.

In particular, we require that all elements (except per- N contrast, if the basis functions are judiciously
haps elements near a curved boundary) have a |ineé:!hosen such that integrals of products of the basis func-
mapping to a simple similarity element, such as an equitions can be evaluated exactly, then thg complete vol-
lateral triangle or a square in two dimensions (or similarUme integral can be evaluated exactly in omy+ 1
simple similarity elements in three dimensions). With OPerations. A more precise comparison of the operation
this restriction, the temporal term can be rewritten ascount is given in a later section. In the quadrature-free

J:M V, , where the mass matri¥ is now defined by implementatior!, we derive a set of matrices that accom-
plish exactly this task. Further, as a consequence of the

b do 8 restriction previously placed on the type of elements,
Mhj = [ Pk 0 B these matrices are the same for all elements of a given
£, type (e.g. one set of matrices applies to all triangles,

another set applies to all squares, etc.). The result is a

low storage and low computational cost method that re-

tains the ability of the DG method to treat unstructured
rids in a accurate and robust manner.

As a consequencéyl is the same for all elements of
a given similarity shape (e.g. orfd is applicable to
all triangles, another is applicable to all squares, etc.
except those near a curved boundary. A considerabl
reduction is realized in the storage requirements thag)yx Expansion
far out weights any inconvenience that arises from the————

restriction in element shapes. To accomplish this task, however, an efficient

Throughout the remainder of this discussion, themethod for expanding the flux vectd? in terms of
subscript that identifies the element will be omitted the basis set is needed.

unless its use is necessary for clarity. In addition,

although the above discussion applies to a general basis . Mo

set, the remaining discussion will assume the basis F = ijbj M > N(p,d) (9)
functions are polynomials. In particular, the results j=0

presented later all use a basis constructed from simple

monomials (e.g.B = {1, z, y, 2%, 2y, y* }.) where the number of terms in the expansidndepends
’ on the form of the nonlinearity irf'.
Quadrature-Free Approach The expansion is trivially accomplished whén

Quadrature formulas, especially Gaussian quadrai-s a linear function ofU/. Similarly, for common test
ture, are usually the most accurate and efficient mean@r0b|er2nS such as the nonlinear Burger’s equations
of evaluating integrals. However, this feature is based; U(#)” can be obtained by multiplication as long as
on the assumption that the data are readily available dfiple (and higher) products of the basis function are
the quadrature points (i.e., the data are stored thereﬁ'so easily integrated. Such is the case when the basis
which is usually the case for most finite-element andfgnctions are polynomials in the local coordinates of a
spectral-element methods. In these methods, the uriimple element.
known variables are the values of the solution at the ~ The more complex flux functions, such as those
guadrature points, and the basis or “shape” function®f the Euler equations, can be treated in several ways.
are often the Lagrangian polynomials associated withOne approach is that of Lowrie et%ain which the



solution expansion is applied to the parameter vec-  The projection approach is appealing because the
tor [\/p, \/Pu, \/pv, /p H]| instead of the conserved error of the approximate flux is uniformly minimized
variables[p, pu, pv, pe]. Although this approach al- over the whole of the element, whereas in the Taylor
lows all nonlinear fluxes to be evaluated exactly, theseries approach, the flux will be most accurate near the
coefficient matrices become dependent on the local solucenter of the element and less accurate near the edges
tion. Hence the coefficient matrices derived here wouldof the element.
be different for every element and would need to be re-
computed at every time step; the storage requirement¥olume Integral
and computational effort would be unacceptably high.

A general alternative is to expand the flux in a Tay- After the flux is represented as in equation (9), the
lor series. Because the Euler equations consist of term¢olume integral of equation (6) can easily be rewritten
such ag(pu)’/p and(pu)(pv)/p, a practical procedure @S @ matrix times a vector as

is to approximates—' in the basis functions by using 2 2
: . JMV, — G-F
a Taylor series and then use multiplication to complete
the flux expansion. n /[bk]3—1ﬁf? L Jds = 0 (16)
Another approach is to define the flux in terms of 50
the projection operator as follows. Let
M whereV = [vk], G = [ﬁ,]‘]. F = [fj:|'
P om g =Y b (10)
7=0 Gy = /(vbk)b, a0, f, =737
then A (17)
k=012 . N = 0,1,2,.... M
p—lpzl = /bkpde:/bde 0777 ) J 0777 )
Q Q (11)  and M > N is the degree to which a nonlinear flux
k=012,,...,M is expanded in the basis set. The vector matixs a

) ) ) o constant for all elements of a given family and can be
This set of equations results in a system that is lineagecomputed and stored. The evaluation of the volume
in »; and is easily solved exactly. The flux terms, SUChintegraI becomes an ordér + 1 operation for each of

as(pu)(pv)/p, can then be computed by multiplication, ha v + 1 equations in the element.
just as in the Taylor series approach. Alternatively, the

projection method can be used to determine the flusoundary Integral
expansion directly. Let

Vs The boundary integral is partitioned into segments
(pu)(pv)/p ~ F = be' fi (12) associated with the sides of the element._ The_lntegral
izo on each boundary segment can be rewritten in terms

of a vector times a precomputed matrix; however, the

then procedure is complicated by the fact thaf is a func-
/bk pF dQ = /bk(PU)(PU) d2 tion of the solution in the two elements on either side
Q Q (13)  ofa boundary segment and each of these elements has
k=012...M a distinct local coordinate system. The remedy is to

defines a set of equations that are linear for This translate each basis function from their local coordinate
: quatl 1P systems to a coordinate system that is common to both
procedure is also applicable to flux functions that Canelements The use of a boundarv-seament-based coor-
be evaluated exactly by multiplication, such as in the . ) ary-segment-t
case of the nonlinear Burger's equation. Let dinate system actually results in a reduction in the total
' work and storage required. The complete process can

2 M be summarized in three steps: 1) translate the solution

- R F = Z bi fi (14)  to an edge coordinate system, 2) compute the approxi-

1=0 mate Riemann flux in the edge coordinates, 3) project

then the flux onto the space defined by the element basis set.
/ b FdQ = / by U_2 dQ Fo.r the sake of clarity, the procedure is illustrated

’ ’ (15) for a triangular element; however, the same procedure

Q Q
1

can be applied to all types of elements, and the pro-
k=012..M PP P P

cedure facilitates the use of mix element types (i.e.,



squares and triangles together). Figure 1 illustrates ar Mathematica. Thd'; matrix for square elements is
general triangle that has been mapped into a equilateraklatively sparse on all four edges.
triangle. The equilateral triangle has a local coordinate  Gjyen any function expanded in terms of the ele-

system(¢, n) with its origin at the centroid of the ele- ment basis, the expansion in terms of the edge Hsis
ment; each edge also has a local coordirtateith its s derived as follows:
origin in the center of the edge. Note that the dimen-

N
C
V7 = Vi 5 b] = V;T B
: 2 20)
X —_— =VIT,B = [V\TI]'"B = VI, B
hence,
b a Vz’,j = Tj V; (21)

a
After V, ; has been computed on every face of ev-
[l‘ - l‘o] -3 [&] (18) eV element, the flux through an edge can be computed
Y=Y n without regard to the type of elements or the orientation
Figure 1. Transform from general triangle to equilateralmc the coordmate.system of the element§ thgt border the
edge. At an arbitrary edge, illustrated in figure 2, we

similarity triangle that shows coordinate systems bitrarily desianat | tto b the left and
associated with interior and edges of similarity triangle.ar itrarlly designate one element to be on the 1eft an
the other to be on the right. The two edge coordinate

sionality of the edge coordinate system is one lower than -~ ‘

that of the element. Hence, for a three-dimensional ele- i
ment the edge coordinate system is two dimensional; for B ; 3
a two-dimensional element, the edge coordinate system < ”4 51 T t, 3
is one dimensional; and for a one-dimensional element, : Y ¢ !
the edge coordinate system contracts to a single point. i

For each edge of the triangle, a constant mditjx J S |

exist that relates each member of the local basis to afrigure 2. Relation of edge coordinates

expansion in terms of the edge coordinate. The subof adjacent elements.

script j identifies the edge to which the matrix applies. systems of the two elements always point in opposite di-
For example, on edge number 0, rection. A function of the edge coordinates of the right
element can be represented in terms of the edge coordi-

{1: nate system of the left element simply by negating the
odd members ofV; ;. In the three-dimensional case,
_ €772 the relation is not as trivial because a rotation may also
B =[] = én be involved.
n’ In the present work, the Riemann flux is approxi-
: mated by a simple Lax—Friedrichs flux of the form
M1 0 0 1 S 1 ~ ~
-1pR | gz — = =1 7
0 (1) 8 1 JITVFF 4z = 2{[JJ (F, —|—F)] T )
EVE a — oV, — Vi]tds
_ 28% 01 52 [ ik
-1
? 23 0 . whereds = fids, the subscript$ andr denote the left
=z 0 0 and right sides of the edgé, points from left to right,
: and « is some smooth positive function that is greater
_ '_I‘o.[}] E TOIB : (19) in_magnitude that the eigenvalues of the Jacobian of

%[JJ” F, + ﬁ«)] -7 . By applying equation (21),
the Lax—Friedrichs flux is easily expressed in terms of
The matrices for the other two edges are considerablyh® €dge coordinate to give

more dense but are easily derived in exact form with . e
the aid of a symbolic algebra package such as Maple JIT'FR . ds = F, Bds (23)



where Computational Effort

Fi = [fo.f1f2f5..] The effort required to evaluate the complete spa-
_ > =~ ~ R tial operator is contained in three basic operations: the

_ . : .
- {[‘]J (T” Fr+ 1T, F’“)] " evaluation of equation (26) for each element, the eval-

—a [iTj, vV, - T, Vz} }/2 uation of equation (21) for each edge of each element,
. . and the computation df andF from V andV, respec-
= {[J J-! (F, + TFT” 7 tively. The operation count of the first two operations
o _ is directly related to the size of the matrick$—! G,
-~ [I vV, — Vl] }/2 (24)  M~'E;, andT;. The row dimension of all three ma-

trices is N(p,d) + 1. If the flux is linear, then the
column space oM~! G is alsoN(p, d) + 1. However,

in the nonlinear case the flux must be expanded to at
least degreg-+1; and thus, the column dimension must
be at leastV(p + 1,d) + 1. The column dimension of
bothM~! E;, and T, is N(p,d—1) + 1.

The operation count of the flux computation can
vary considerably depending on the complexity of the
flux function. In the linear case the operation count is on
) . . . the order ofN (p, d)+1 andN(p,d — 1)+1 for F andF,
Finally, the boundary integral is evaluated in the respectively. ('I]')he)operation(]éount ir)1 the nonlinear case

edge frame of reference by expressingin terms of Id b high a$ N (p.d) & 1} {N Ld +1
the edge coordinates and collecting in terms of thecou e as high a3y (p, )j— H —(p+ )+ 1}

S S : and {N(p,d—1)+1}* for F and F, respectively.
components off = [fo, fi, fa, . ]. To illustrate, Thus, the total operation count for the spatial operator
let [t;]; denote thekth row of T;. The integral on

a boundary segment becomes in a single element varies from
2
/ (bi) (E"B) ds = / (4], B) (7 B) ds AN (p, d) + 1]
an a0 + 2n.[N(p,d) + 1][N(p,d — 1) + 1] @7)
- /{<t 1€ 4ty 28" ka8t + ) + O(d[N(p,d)+1] + n.[N(p,d—1)+1])
- k0T kL k.2 k.3
(219

andI = diag(1, —1, 1, =1, ...) accounts for the
difference in the left and right edge coordinates. The
coefficients of the approximate Riemann flux on the
right face are simphf, = I"!F;. As a side note,
depending on the form of the flux, less computational
effort by be required to compute directly fromV than

to translate the flux from element to edge coordinates
This is especially true for linear fluxes.

for the linear case to

(fo+ HE+LE+FE+ .. )} ds d[N(p,d) + 1][N(p+ 1,d) + 1]
= [Hleotteérta + 00 + 20N (p,d) + 1IN (p,d = 1) + 1] 28
50 + O{d[N(p+1,d) + 1][N(p,d — 1) + 1]

(thof + 41 + 48+ )i + nJ[N(p,d—-1)+ 1°}

_|_

2 3 4 3
+ (oo F o1 el +.0) fo for the nonlinear case. These estimates assume that the
+...}ds matrices are full, which is not the case. The exact form
¥

= ler (25)  of N(p,d) is
0 d=1
where[e;] is a constant row matrix '_[hat is _eaS|Iy evalu- N(p,d) = dp + plp—1)/2 d i 2 (29)
ated exactly. LeE denote the matrix that is generated 3p(p—1)/2 d=3
by applying the above process to each member of the 3p(p — 1) d=4

basis set. The final form of the semidiscrete equation IS, d Table 1 givesV(p, d) + 1 for a degree range of

1 < p < 6 and for time-space dimensions that range
from 1 to 4.

(26) In a conventional DG implementation (i.e. one
where n, is the number of edges and the matricesthat uses gquadrature points), the operation count is on
M-' G andM~' E, are constant matrices that apply the order of
tq all elements o_f a given type. Furthermore, these ma- [N (p,d) + 1{(1+ )N, + 20.N,)
trices can be efficiently precomputed by the procedure
just described. + O(dNyy + neNy)

V, - J7' MG F —Z(M‘lEk F.)| =0

k=1

(30)



where IV, and IV, denote the number of quadrature in the DG method would be larger (by a factorof- 1
points required for the volume integral and boundaryin one-dimension) than the mesh size of a compara-
segment integrals, respectively, and the last term deble finite-difference calculation. Thus, most of the drop
notes the cost of computing the flux at each quadraturén the stability limit can be attributed to definition of
point. Most references do not give the specific quadraAz. The right-most column of Table 2 giveg (p + 1),
ture formulas used; however, Halt ef aéferred to the  which gives the DG stability limit in a form that fa-
work of Dunavant? who derived nearly optimal formu- cilitates comparison with the stability limit of a finite-
las in whichN,, > N(p,d) + 1 in order to evaluate difference method.
the integral exactly to degrezp. Thus, the operation
count for the conventional DG implementation is greater Results
than the values given by either (27) or (28) even if the
sparseness of the matrices is not taken advantage of. One-Dimensional Test

When the DG method is compared to fundamen- . : . .
tally different methods such as finite-difference or finite- The one-d|mens_|0nal version of this method has
volume methods, the comparison must be done in an eqtgeen tested on the linear problem
uitable manner. To do so, we hypothesize that any two
methods that have the same degree of accuracy and the
same physical stencil size will give similar results (for
benign cases that do not violate the basic assumption%
of the method). In practice, we compare methods that 1
are of the same order of accuracy and have the same U + §(U2)m =0 (34)
total number of variables. In this frame of reference,
the evaluation of the spatial operator is an operatioron the domain0 < = < 1 with periodic boundary
of order N(p,d)+ 1 or N(p+ 1,d) + 1 per dependent conditions.

Uy +al, =0 (33)

nd the nonlinear problem

variable for a linear or nonlinear problem, respectively. A linear problem is solved first with smooth initial
conditionsU/(0,z) = % + sin(27z) to demonstrate
Time Integration and Stability the general accuracy properties of the method. The
The solution is advanced in time with a three-stagenUmerical solution is initialized by expanding the initial
TVD Runge-Kutta method? condition in a Taylor series about the center of each
element. All components of the numerical solution are
wo = yn-! compared with the Taylor series of the exact solution

after it has advected for several periods. Theorm of

Bo_ 0 . k-1 k-1
W= B W2+ (1= 5) [W k+ Altl:(;V )] the error of thgth component of the solution is defined
=12 as

Vn - W% 7 1/n
(31) Lu(ej) = l(z |vi j —Um'|n)/I]

where 5, = 0, 3/4, and 1/3 fork = 1, 2, and 3,

respectively. wherew; ; denotes the Taylor coefficient of the exact
Fourier stability analysis has been applied to (31)solution in celli andl denotes the number of elements.
for the one-dimensional linear case of A mesh-refinement study has been performedpferl
through 5. The time step was chosen to be sufficiently
U+ alUy, =0 (32) small such that the error would be dominated by the

spatial operator; however, fgs > 2 the time step
to determine the stability limit\, = a At/Az for  varied asA¢ « (Am)(p“)/g so that the temporal
methods of various orders (i.e., various valuesppf accuracy would be of the same order as the spatial
The results given in Table 2 are fok-stageKth-  accuracy. Figure 3 shows thHe-norm of the error
order Runge-Kutta methods of the type described abovdpr each component of the solution fpr= 1, 2, and
where K = 1, 2, and 3 ang ranges from 0 to 11. 4. The convergence rate of the solution between the
The rapid drop in the stability limit as the order of two finest grids is given in Table 3. Although most
the method is increased would normally be alarming incases converge at the design ratepof 1, the v
comparison with stability constraints of explicit finite- term of thep = 1 case converges at a rate =f 3,
difference methods. However, if we again require thatwhich is one order higher than expected. This faster
comparison be made among methods having the sameonvergence is fortuitous and occurs only because the
total number of variables, then the size of the elemenbasis functions are incidentally orthogonal. Because



is only second order and; is undefined, a solution of the same as the degreepfl” to obtain the design rate

degree > 1 cannot be recovered at any point other thaof convergence ofp + 1. This expected convergence

the element center without departing from the Galerkinproperty was verified by a mesh refinement study in

framework. Furthermore, although converges faster which the calculation was stopped just before shock

than the design order, its error is still considerably largerformation. The mesh-refinement was performed for

than the error of the=2 case. several values of, and the finest grid contained 320
In the second test case, the DG method is applied t&lements. Typical results, shown in Table 4 foe 2,

the linear problem with a discontinuous initial solution: indicate that the convergence rate measured irLthe

norm drops tox~ p whenM = N(p,d) butis~p+1

for all other cases.

Figure 11 shows solutions fgF = 1 andp =

2 (second and third order) in which the shock has
Figures 4 through 8 show several results for this casg@ormed and has begun to propagate. In both cases,
on a grid with 40 elements. Figures 4, 5, and 6 showthe solutions were obtained without the use of limiters,
the solution after one period fop = 1, 2, and 6, added dissipation, or entropy correction terms; however,
respectively. Each method has small overshoots thahe case in which = 2 required that the nonlinear flux
are confined to the neighborhood of the discontinuity.pe fully expanded /' = N(2p,d)). Otherwise, the
Similar results were observed for orders up o= solution would diverge shortly after shock formation.

11. Figures 7 and 8 also show solutions for= 6,  All higher order casesp(> 2) required some type of
but the solution has advected for 5 and 50 periodsjimiter; work is continuing in this area.

respectively. The overshoots neither grow or spread

in time, which is in sharp contrast to the behavior of Two-Dimensional Test

more traditional methods. A typical finite-difference

approach, for instance, would tend to smear a contact The DG method is applied to the scalar advection

discontinuity over a region that grows linearly in time. equation in two dimensions to demonstrate its robust
Next, the DG method is applied to a linear test tr_eatment of unstructured grids. The test problem is

case that was prescribed as part of the ICASE/LarcdIVEN by

Workshop on Benchmark Problems in Computational

Aeroacoustic¥; these results are compared with the Uiy +aly, +0U, =0 37)

finite-difference results described in reference 14. The U(0,2,y) = [sin(7z)sin (7y)]*

test case consists of a Gaussian pulse that is advected

across a uniform domain. The Gaussian pulse has defined on the periodic domaih < z,y < 1. The

half-width of 6 and is initially centered on the origin approximate solutiori; is initialized from the Taylor

of a domain that ranges from —20 to 450. Results arexpansion of the exact initial condition. The baseline

shown in Figure 9 fop = 1, 2, and 3; however, gsis  case is chosen to be a uniform Cartesian grid that

increased the number of elements is decreased such thiat triangulated in a regular manner, as illustrated in

the total number of variables is approximately 470 (theFigure 12. Figure 13 shows tha norm of the error

number of points specified in the workshop). In figurein the v, component of the solution. As in the one-

10, the results of the fourth-order DG method at t = 400dimensional case, the time step was small so that the

are compared in detail with the results of a fourth- andspatial error dominated and, fer > 2, the time step

fifth-order finite-difference method. The fourth-order was proportional thx)(pH)/?’. In mesh refinement

DG method with only 117 elements is considerably studies, the first grid in the sequence is coarsened as

better than either fourth- and fifth-order finite-difference the order of the method is increased so that the total

methods using 470 points. (Note: smooth curves ar@umber of variables is roughly the same. The abscissa

generated for results of the DG method by evaluatingn figure 13 is the square root of the total number of

the solution at several points within each element.)  variables, which facilities comparison with a simple
The last one-dimensional test case is a nonlineafourth-order finite-difference method. The higher-order

problem (eq. (34)) in which a shock forms from an convergence of the¢ = 1 case that was observed in

initially smooth solution. This problem was used to not ©ne dimension is not observed in the two-dimensional

only demonstrate the robustness of the method but alsgase. The accuracies of the fourth-order DG and finite-

to investigate the effect of truncating the nonlinear fluxdifference methods are quite similar.

at various levels. We expect, based on the formulation, = One of the major motivations for pursuing a DG

that the nonlinear flux must be expanded % = method is its ability to maintain accuracy for complex

N(p+ 1,d) terms such that the degree ob; - Fis geometries. Here, the baseline grid is altered in several

1
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ways to test and demonstrate this capability. Figure 14/, = 0.5, M, = 0, and
illustrates four of the variations that were tested. In the

first case, grid A is uniform like the baseline case but (z —67)" + ¢
the triangulation has been done in a random mannelr = £)(0,2,y) = 0.Lexp |(=1n(2))———F=—"
In the second case, grid B is generated from grid A by s
smoothly clustering the grid toward a diagonal. Grid C P(0,2,y) = exp [(_ In (2)) (90 ty )]

is generated from grid B by randomly perturbing each 9

grid point by an amount that is less than 20 percent u(0,z,y) = 0.04x P(0,x,y)

of the average mesh size. In the last case, grid D is o(0,2,y) = 0.04yP(0,,y)

generated from the baseline by imposing a piecewise-

constant mesh spacing that places half of the points iRhe \yorkshop, which targeted finite-difference meth-
a narrow band around the axis. ods, prescribed a grid af00.X 200. In the present

In most cases. the measured error was found incalculation, we use a uniform X » Cartesian grid that

sensitive to the grid modification or the direction of has been randomly triangulated (as shown in Figure 14a
propagation (i.e., the value afandb). Figure 15 gives in which the number of elements is chosen as a function

the L, norm of the error fop = 3 (fourth-order) on of the degree such that the total number of unknowns

; 9 -
each of the grids shown in figure 14. Results for othereduals approximatelg00°. Results are shown fgr =

values ofp were similar. All results in Figure 15 are O: 1. 2, and 3 (first, second, third, and fourth order)
fora = 1,b = 0, except for case D2 where = 1 with » = 141, 81, 57, and 44, respectively. Figure 16

andb = 1. The slight increase in error in case D2 is ShoWsP andu att = 40 for thep = 3 case. The
attributed more to the increase in mesh size along th&/ave fronts appear smooth and cylindrical in spite of

propagation path than to the discontinuous manner irlihe fact that the initial disturbance was smaller than the
which it changes element size. A more quantitative comparison is shown

in Figures 17 and 18. The pressureis plotted on the

In the last test case, the DG method is applied tor = 0, = 40 line for p = 0 through 3 at the resolution
another problem prescribed as part of the ICASE/LaRQgiven above. Also shown is a fine-grid solution wjth
Workshop on Benchmark Problems in Computational= 3, » = 132 and the solution from a fifth-order finite-
Aeroacoustics? The linear Euler equations are solved difference method on200 X 200 grid. An enlargement
on a square domain of dimension$00 < z,y < 100 of the right peak (Figure 18) shows that all solutions that
with initial conditions that place a compact acoustic are third order or better give similar results.
source atz = y = 0 and a convecting disturbance
atx = 67, y = 0. Here, the equations have been Summary

recast in a form that emphasizes the decoupling of the 5 quadrature-free form of the discontinuous

convection terms from the acoustic terms that occurs irbalerkin method has been formulated for the hyperbolic

this linear system. conservation laws. This approach reduces both the stor-
age and operation count to levels that are comparable to
high-order finite-volume methods. The method is well
U OF oF suited to both unstructured and structured grids and it
T oy 0 (38)  has been tested on several one- and two-dimensional
problems to demonstrate its accuracy and robustness.
On smooth meshes, the accuracy of the DG method
is comparable to or better than traditional high-order
finite-difference methods. Contact discontinuities are
advected without the usual diffusion effect, and nonlin-
ear discontinuities (shocks) are propagated by second-
p—P and third-order methods without the use of limiters.
On two-dimensional unstructured grids, random and
u discontinuous mesh variations had little effect on the
v error and no effect on the convergence of the error.
M, (p— P) My (p—P)
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Mou+ P |’ Myu
M,v Myv+ P

where

1. C. Johnson and J. Pékita, “An Analysis of the
Discontinuous Galerkin Method for a Scalar Hy-



10.

11.

12.

13.

perbolic Equation,” Mathematics of Computation,
v46 (1986), pp. 1-26.

B. Cockburn and C.-W. Shu, “TVB Runge-Kutta 14.

local projection discontinuous Galerkin finite el-
ement method for conservation laws Il: general
framework,” Mathematics of Computation, v52
(1989), pp. 411-435.

B. Cockburn, S.Y. Lin and C.-W. Shu, “TVB
Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation
laws Ill: one dimensional systems,” Journal of

schemes,” Journal of Computational Physics, v77
(1988), pp. 361-383.

Harold L. Atkins, “Application of Essentially
Nonoscillatory Methods to Aeroacoustic Flow
Problems,Proceedings of ICASE/LaRC Workshop
on Benchmark Problems in Computational Aeroa-
coustics Edited by J.C. Hardin, J.R. Ristorcelli,
and C.K.W. Tam, NASA Conference Publication
3300, May, 1995, pp. 15-26

Table 1 N(p,d) + 1 for specific values of andd

Computational Physics, v84 (1989), pp. 90-113.
B. Cockburn, S. Hou and C.-W. Shu, “ The Runge-
Kutta local projection discontinuous Galerkin finite

element method for conservation laws IV: the mul-
tidimensional case,” Mathematics of Computation,
v54 (1990), pp. 545-581.

G. Jiang and C.-W. Shu, “ On cell entropy inequal-
ity for discontinuous Galerkin methods,” Mathe-
matics of Computation, v62 (1994), pp. 531-538.
D. W. Halt and R. K. Agarwal, “Compact Higher

Order Characteristic-Based Euler Solver for Un-
structured Grids,” AIAA J. v30 (1992), pp.

1993-1999.

F. Bassi and S. Rebay, “Accurate 2D Euler Com-
putations by means of a High-Order Discontinuous
Finite Element Method,” Proceedings of the 14th

International Conference on Numerical Methods

in Fluid Dynamics, Bangalor, India, July 11-15,
1994,

F. Bassi and S. Rebay, “Discontinuous Finite El-
ement High Order Accurate Numerical Solution
of the Compressible Navier-Stokes Equations,”
Presented at the ICFD Conference on Numerical
Methods in Fluid Dynamics, University of Oxford,

Oxford, England, April 3—-6, 1995

R. B. Lowrie, P. L. Roe, and B. van Leer, “A

Space-Time Discontinuous Galerkin Method for
the Time-Accurate Numerical Solution of Hyper-

bolic Conservation Laws,” presented at the 12th
AIAA Computational Fluid Dynamics Conference,

San Diego, CA, June 19-22, 1995

R. Biswas, K.D. Devine, and J. Flaherty, “Paral-
lel, adaptive finite element methods for conserva-
tion laws,” Applied Numerical Mathematics, v14

(1994), pp. 255-283.

d

P 1

1 2

2 3 6 10 15

3 4 10 19 31

4 5 15 31 53

5 6 21 46 81

6 7 28 64 115

Table 2 Ay, = aAt/Ax for
K-stageKth-order Runge-Kutta methods
applied to a DG method of order

p A Ay A3 Az * (p+1)
0 1.0 1.00 1.256 1.256
1 0.001 0.333 0.409 0.818
2 u-sf 0.06 0.209 0.627
3 u-s 0.02 0.13 0.52
4 u-s 0.01 0.089 0.445
5 u-s 0.006 0.066 0.396
6 u-s 0.004 0.051 0.306
7 u-s 0.003 0.04 0.32
8 u-s 0.002 0.033 0.297
9 u-s 0.002 0.027 0.27
10 u-s 0.001 0.023 0.253
11 u-s 0.001 0.02 0.24

C.A.J. FletcherComputational Galerkin Methods
Springer-Verlag, New York, 1984.

D.A. Dunavant, “High Degree Efficient Symmet-
rical Gaussian Quadrature Rules for the Triangle,
“ International Journal for Numerical Methods in
Engineering, Vol. 21, pp. 119-1148, 1985.

C.-W. Shu and S. Osher, “Efficient implementa-
tion of essentially non-oscillatory shock-capturing

10

T u-s denotes unstable method



Table 3 Convergence Rates of

Ly (g;) between two finest grids _ ——— exactsolution
j 12 O— — - numerical solution
p
0 1 2 3 4
1 2990 2.133 Yo
2 3.064 3.049 3.022
4 4.99 5.74 5.00 5.00 5.00
Table 4 Effect of truncating the nonlinear
flux on grid convergencep=2 case.
0.0 0.25 0.5 0.75 1.0
Norm of M <
measure
N(p,d) N(p+1,d) N(p+2,d)
L (c0) 2.894 2.944 2.942 Figure 5. Solution of the linear problem after one
time period given by DG method with=2.
Lo (20) 2.015 2.923 2.921
_ ——— exact solution
12 O— — - numerical solution
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Figure 3. Convergence of tHg norm of the error for:  Figure 6. Solution of the linear problem after one
time period given by DG method with=6.
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Figure 4. Solution of the linear problem after one
time period given by DG method witp=1. Figure 7. Solution of the linear problem after five
time periods given by DG method with=6.
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—— exact solution _

12 O— — - numerical solution 05
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Figure 8. Solution of the linear problem after 50

time periods given by DG method with=6 Figure 10. Comparison of fourth-order DG with

fourth- and fifth-order finite-difference (FD)
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Figure 9. The DG method applied to the advection of 00 0% 0s 075 10
a Gaussian pulse: @)= 1 with 235 elements; ly) = 2 X

with 156 elements; and ¢) = 3 with 117 elements Figure 11. Solution of the nonlinear

equation with a)p=1, b) p=2
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Figure 12. Triangulated grid and solution Figure 15. Convergence of solution for scalar
of scalar advection problem advection for a fourth order method on several

o I versions of the unstructured grid.
10

e 4-th Order FD

i \D\\D‘\D O— — - 1-st order DG
10° = 4 /x ———2-nd Order DG
Q--v-- 3-rd Order DG

L,(gp)

\/— — — 4-th Order DG
\/— - — 5-th Order DG

sort( 1 (N+1) )

Figure 13. Convergence of solution for scalar advection
on an unstructured grid for various orders of accuracy.

a)
b)
b)
d) Figure 16. Acoustic wave modeled by the linear Euler

Figure 14. Variation on the baseline unstructured grid:Fauations.p = 3, ¢ = 40 for a) 7, b) u.

a) random triangulation, b) smoothly clustered toward
diagonal, c) random perturbation of 20 percent of the
mean cell spacing, d) discontinuous mesh variation.
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Figure 17. Solution of the linear Euler
equations: Pressure on x=0 at t=40
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Figure 18. Solution of the linear Euler
equations: Pressure on x=0 at t=40:
enlargement of solution near y=36
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