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GENERALIZED FUNCTIONS AND KIRCHHOFF FORMULAS

F. Farassat”
NASA Langley Research Center, Hampton, VA 23681, USA

ABSTRACT

The theory of generalized functions was
developed by L. Schwartz in the forties. It has
had a major impact in many areas of
mathematics, physics, and engineering. In
patticular, the solution of many of the problems
of wave propagation in acoustics can be
simplified by using generalized function theory.
In this theory, mathematical objects other than
ordinary functions, such as the Dirac delta

function §(%) and its derivatives, are treated
rigorously. One begins by thinking of a function
f(x) not as a table of ordered pair (x, f(x))

but as table of the action of f(x) on functions in
a suitable space of functions D. This action is
defined by the functional F[¢] = [ f¢ dx
where ¢ € D. After selecting D and defining

linearity and continuity of a functional on D, we
define generalized functions as the space of all
continuous linear functionals on D. Each
functional produces a generalized function by
the table of the functional values on D. The
operational properties of generalized functions
make them very useful in applications. For our
purpose in acoustics, the most important
generalized functions are the Dirac delta
function (1) and its derivatives, where f is a
closed or open moving surface. The theory part
of this paper is based on NASA Technical Paper
3428 (May, 1994) by the author. Next the
derivation of the subsonic and supersonic
Kirchhoff formulas are briefly discussed. This
part of the paper is based on two works of
Farassat and Myers (JSV, Vol. 123 (3), 1988,
451-460 and on a paper presented at the First
Joint CEAS/AIAA Aeroacoustics Conference,
June 12-15, 1995, Munich, Germany). These
latter articles are included as an appendix to the
present paper. Finally, some remarks on the
development and validation of codes based on
Kirchhoff formulas are made to help in the
application of these results.
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INTRODUCTION

When Ffowcs Williams and Hawkings
published their now famous paper on the noise
from moving surfaces in 1969,1 they used a
level of mathematical sophistication unfamiliar to
engineers who would later be the main users of
this work. Advanced generalized function theory
and differential geometry were employed by
these authors to derive the Ffowcs Williams -
Hawkings (FW-H) Equation and to obtain some
important qualitative results in this paper. The
subject of generalized functions is very abstract,
particularly as described in books written by
mathematicians. The level of differential
geometry needed in acoustics is, however, basic
and at the level essentially fully developed by
the end of the nineteenth century. Both of these
subjects are not emphasized in engineering
education. It is possible to teach advanced
generalized function theory to engineers if some
of the abstractions are left out initially. One
needs to learn how to work with
multidimensional Dirac delta functions and their
derivatives concentrated on moving surfaces,
i.e. with support on moving surfaces. This goal
can be achieved.

This paper is written as a guide to the users of
generalized functions in acoustics. The
application of this theory to derivation of the
subsonic and supersonic Kirchhoff theory is also
discussed. All the materials of interest are in the
papers of the author2-4 (see Appendix A). The
first is NASA Technical Paper 3428 (May, 1994)
which can be downloaded from the internet. The
second is a soon to be published NASA
Technical Memorandum on the derivation of
Kirchhoff formulas. Two papers which are co-
authored by M. K. Myers are also included in this
appendix.

In the next section, some general comments
on generalized function theory are made. In
particular, we indicate what areas of generalized
function theory must be learned initially for
applications in acoustics. In the following
section, we discuss the derivation of the
subsonic and the supersonic Kirchhoff formulas.
This section is complementary to the papers in
Appendix A on Kirchhoff formulas. We make
some remarks on the development and



validation of codes based on the Kirchhoff
formula in the following section. For
completeness, in Appendix B, we give a formula
for the mean curvature of the Z-surface (the
influence surface) of a moving surface

f(3, ) = 0 which is needed in the supersonic
Kirchhoff formula.

GENERALIZED FUNCTIONS

Our main reference for this section is NASA
TP-3428.2 See Appendix A. To derive the
Kirchhoff formulas for moving surfaces, we need
to learn how to manipulate multidimensional
Dirac delta functions and their derivatives.
Some knowledge of differential geometry and
tensor analysis is also essential. In addition to
reference 2, we give some other useful
references on generalized functions as well as
on differential geometry and tensor analysis in
this paper.5-13 To learn about generalized
functions, we need a change of paradigm in the
way we look at ordinary functions. Ordinary
functions are locally (Lebesgue) integrable
functions, i.e., functions that have a finite integral
over any finite interval. This change of paradigm
is actually very familiar in mathematics. For
example, learning about fractions, negative
numbers and complex numbers involves a
change of paradigm although we are not told
that the change is occurring.

How do we think of an ordinary function
F(x)? We think of this function as a table of
ordered pairs (x, f(x)). A graph of a function
is a plot of this table. In generalized function
theory, we need to work with mathematical
objects such as the Dirac delta *function® &(x)
with the sifting property

2 0(x)5(x)dx = ¢(0) (1)

It can be shown that no ordinary function has
this property. The Dirac delta function is an
example of a generalized function which is not
an ordinary function. To include §(x) and other
such useful but strange objects in mathematics,
we change our method of thinking about
functions as follows. Suppose we take a space
of functions D which will be called test function
space. We will be more specific about D below.
Now given an ordinary function f(x), let us
define the functional

Fl[o] == fédx, ¢eD. (2

If we take the space D large enough, then there
is a possibility that the table of functional values

F[¢] where ¢ € D canidentify f(x). Thisis
actually true if we take the space D as the

space of all ¢ functions which are identically
zero beyond a bounded interval, i.e., with
compact support. Therefore, the new paradigm
of viewing a function is: think of the function

f(x) in terms of the table {F[¢], ¢ € D}.

We can show that this table includes an
uncountable number of elements.

Next, one shows that the functional F[¢]
given by eq. (2) is linear and continuous for an
ordinary function f(x).2: 79 We ask whether
all continuous linear functionals are produced by

ordinary functions from eq. (2). The answer is
no. For example, the functional

5[¢] = 9(0) ¢eD ®)

is linear and continuous. Therefore, the class of
linear and continuous functionals is larger than
the class generated by ordinary functions
through eq. (2). Now, using our new paradigm
of thinking of a function as a table generated by
the functional rule we say:

a generalized function is identified by the
table produced using a continuous linear
functional on space D.

By an abuse of terminology, we say that:

generalized functions are continuous linear
functionals on space D.

By this definition the functional in eq. (3) is
(represents) the Dirac delta function! Note that
each continuous linear functional on space D
produces (represents, identifies, gives) one
generalized function. Ordinary functions then
become a subset of generalized functions called
regular generalized functions. Other functions
are called singular generalized functions.

Next the operations on ordinary functions are
extended to all generalized functions in such a
way that they are equivalent to the old definitions
when applied to ordinary functions. To do this,
one should write the operation in the language of
functionals on space D. For example, the



derivative of generalized function F[¢] is
defined by

F[¢] = -F[¢'] @

In this way, many operations on ordinary
functions can be extended to generalized

functions.2 5-9

Finally, we mention here that the space of
generalized functions on D is called D’. For

any singular generalized function F[¢], we use
eq. (2) with a symbolic function f(x) under the

integral sign. Here the integral does not
represent an ordinary integral but stands for the

rule specified by F[¢]. For example, 5(x) isa
symbolic function which is interpreted as follows.
Interpret | 5(x)¢(x) dx as 6[¢] = ¢(0) for
all ¢ € D, i.e., in our new way of looking at

functions as a table of functional values on
space D

5(x) = {¢(0), ¢ € D}. (5)

Of utmost importance to us are delta functions
and their derivatives with support on a surface

f=0.Here f = f(¥)or f = f(%,1). We
give the following two results2 assuming that
|Vf] = 1on £ = 0, which is always possible:

[e(x)6(r)dx = [;_o0ds ©)

fo(2)o'(f)dx = If=o[— ‘?—Jﬁ + 2Hf¢]ds
@

where Hf is the local mean curvature of the
surface f = 0 with dS the element of the
surface area. Also if the function f(%) has a

discontinuity across a surface g(%) = 0 with
the jump defined as

Af=f(g=0+)-r(g=0-), (8
then
Vf=Vf+Af Vg é(g) (9)

where Vf is the generalized gradient of f(z).2
Finally, we mention here that the Green's

function method is valid for finding solutions of
differential equations with discontinuities (weak
solutions) provided that all derivatives in the
differential equation are viewed as generalized
derivatives.

THE KIRCHHOFF FORMULAS FOR MOVING
SURFACES

Assume that f(%,t) = 0 is the moving

Kirchhoff surface defined such that |Vf| = 1 on
this surface. Let ¢ satisfy the wave equation in

the exterior Q of f = 0, i.e.,

0% =0 3iieQ (10)

Extend ¢ to the entire unbounded space as
follows, calling the extended function ¢

é = {g(f»')

The governing equation for deriving the Kirchhoff
formula for moving surfaces is then found by
applying the generalized wave operator

(D'Alembertian) to ¢ to get:2-4

)
e (11)

=

0% = (4, + Lat,0, )a(1)

149
- z 5{ [Mn¢8(f)]

-Velsas(s)] (12)
where M, = -‘;l is the local normal Mach
¢ ¢

numberon f = 0, = — and = -
f On pY o gy

We can now apply the Green’s function
method for the wave operator in the unbounded
space to eq. (11) to find the Kirchhoff formula for
subsonically moving surfaces.3 The formula
involves a Doppler singularity making it
inappropriate for a supersonically moving
surface. For supersonic surfaces, we derive the
Kirchhoff formula for an open surface (e.g. a
panel). The reason is that the Kirchhoff surface
is usually divided into panels and the formula is
applied individually to each panel. The subsonic
formula, applies to both open and closed
surfaces. However, the supersonic formula



differs for open and closed surfaces. If. t.he
formula for an open surface is known, obtaining
the formula for a closed surface is trivial.

The governing equation for deriving the
supersonic Kirchhoff formula for a panel is

0% - ~(40 + £ 480 (7))

- =2 [m, ¢ 1(F) ()]

-ve[ean(7)s(r)] 3

where H(f) is the Heaviside function, f is a

function such that f > 0 on the panel and

f = f = 0 defines the edge of the panel. The

derivatives on the right side of eq. (13) are
brought inside to get three source terms

involving H(f) 5(f), H(f) &(fr) and
5(F)8(f).# The solutions of the wave

equation with these kinds of sources are given
by the author.2 The Kirchhoff formula for a
supersonically moving surfaces using the above
method was derived and presented by Farassat
and Myers.4 It is a particularly simple and
straightforward result and easy to apply. This
formula requires the mean curvature Hp of the

surface =: F(§; %,t) = [F(7, r)]ret. We give

the formula for calculation of Hg in Appendix B

in terms of the geometric and kinematic
parameters of the Kirchhoff surface f = 0.

SOME REMARKS ON DEVELOPMENT AND
VALIDATION OF KIRCHHOFF CODES

The development of a Kirchhoff code requires
a good subroutine for retarded time calculation if
the Kirchhoff surface is rotating. The possibility
of multiple emission times for a supersonic panel
complicates retarded time calculation,
particularly for two nearly equal emission times.
If the Kirchhoff surface is not selected properly
for the supersonic formula, there is the
possibility of a singularity.4 This singularity can
be avoided as suggested by Farassat and
Myers4 or by using two different Kirchhoff
surfaces for different intervals of the observer
time. There is a fool-proof test of the Kirchhoff
code that must not be ignored by code
developers. Both of the Kirchhoff formula for

moving surfaces, as well as that for a stationary

surface, are written such that ¢ = 0 inside a

closed surface. Therefore, to test a Kirchhoff
code, use a point source inside the closed

surface and specify ¢, ¢ and ¢,, analytically on
the Kirchhoff surface f = 0. If the observer is

now put anywhere inside f = 0 and ¢ # 0,
then there is a bug in the code. One must rule
out conceptual misunderstanding of the
parameters in the formulation first. |t is
recommended that one should be familiar with
the complete details of the derivation of the
Kirchhoff formulas to avoid conceptual
misunderstanding.

A. S. Lyrintzis and coworkers have may
publications on development of Kirchhoff
codes.14-19 The applications have been mainly
to helicopter noise prediction. Y. Ozydrik and L.
N. Long have used Kirchhoff methodology for
prediction of the noise of ducted fan engines.
They have combined this method with high
resolution aerodynamics. Some applications to
jet noise prediction have also been attempted by
these authors.17:24

CONCLUDING REMARKS

The availability of high resolution
aerodynamics and turbulence simulation make
the Kirchhoff formulas discussed here attractive
in aeroacoustics. The mathematics for
derivation of these formulas have been under
development in the last decade and are well
within the reach of modern engineers. The final
form of the formulas are simple and relatively
easy to apply. The present paper is written as a
guide to understanding the mathematical
derivation as well as application of these results.
The subsonic Kirchhoff formula for a rigid
surface has been tested and validated by the
author as well as by Myers and Hausmann25
and by Lyrintzis and Long. The supersonic
formula is being coded by Lyrintzis for High
speed helicopter rotor noise prediction.

Readers are informed that a new NASA
publication by the author includes the expository
material presented in a day-long workshop on
Kirchhoff formulas in 1995.26
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Kirchhoff’s formula for radiation from a closed surface has been used recently for
prediction of the noise of high speed rotors and propellers. Because the closed surface
on which the boundary data are prescribed in these cases is in motion, an extension of
Kirchhoff’s formula to this condition is required. In this paper such a formula, obtained
originally by Morgans for the interior problem, is derived for regions exterior to surfaces
moving at speeds below the wave propagation speed, by making use of some results of
generalized function theory. It is shown that the usual Kirchhoff formula is a special case
of the main result of the paper. The general result applies to a deformable surface. However,
the special form it assumes for a rigid surface in motion is also noted. Some possible
areas of application of the formula to problems of current interest in aeroacoustics are

discussed.

1. INTRODUCTION

Kirchhoff’s formula, published in 1882, is used in the theory of diffraction of light and
in other electromagnetic problems [1, 2]. It also has many applications to problems of
wave propagation in acoustics [3]. One of the novel uses of this formula was proposed
by Hawkings for predicting the noise of high speed propellers and helicopter rotors [4].
His idea involves surrounding the rotating blades by a closed surface S which moves
with the forward speed of the machine. Inside this surface, non-linear aerodynamic
calculations are carried out which give the blade loads and the pressure history and its
spatial and temporal derivatives on the surrounding surface S. In the exterior of this
surface, it is proposed that a formula similar to Kirchhoff’s be used to calculate propagation
of sound in terms of these surface values. This necessitates extension of the Kirchhoff
formula to apply to moving surfaces. In 1930, such an extension was derived for the
interior problem by Morgans [5]. His analysis was lengthy and somewhat complicated
and, in addition, it does not seem to be well known among acousticians. For these reasons,
a modern derivation of a generalized Kirchhoff formula applicable to moving surfaces
is presented here. It is very. likely that specialized versions of this formula have been
re-derived by many researchers in the context of specific applications. One such case
known to the authors is discussed in the last section of the current paper. '

In the following section the method used in the derivation of the main result is illustrated
by deriving the Kirchhoff formula for radiation into the region exterior to a stationary
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452 F. FARASSAT-AND M.:K. MYERS

surface S. The method involves application of the wave operator to a function @ which
is set equal to zero outside the domain of interest. The function @ is thus discontinuous
across the surface S. The derivatives in the wave operator are considered as generalized
derivatives [6-9] which are defined everywhere. The resulting expression then .contains
terms which involve the jumps in @ and its derivatives multiplied by Dirac delta functions
whose supports are on S. These terms can be viewed as source terms for a wave equation
which is valid in the entire unbounded space. Kirchhoff’s formula is then derived by
using the Green function of the wave equation for unbounded space.

In the main section of this paper, this method is extended to a deformable piecewise
smooth moving surface. It will be observed that essentially no major difficulties arise in
this case. One thus avoids the conventional approach which can become complicated in
the case of moving surfaces. The resulting general Kirchhoff formula is then written for
piecewise smooth rigid surfaces. It is also shown that the usual formula for a stationary
surface is a special case of the general result presented here.

In this paper the wave propagation problem is treated as an acoustic problem and the
terminology of acoustics is used. The main result is of course applicable to many other
wave propagation problems. Immediate applications to the problem of the prediction of

the noise of high speed propellers and rotors are expected.

2. EXAMPLE OF THE MATHEMATICAL‘ APPROACH

In this section the mathematical method of deriving the main result is illustrated by
utilizing it to obtain the Kirchhoff formula for a stationary surface [1-3]. Consider the
_closed and bounded smooth surface S described by f(x) =0 such that f> 0 in the exterior
of this surface. Assume that @ and its first derivatives are continuous in >0, that @
satisfies the wave equation

(1/c*) 3*P/ot* -V d=0* D=0 : (1)
in the exterior of surface S, and that @, @, and &, are given on S for ¢ € (-0, ). Extend

& to the interior of S(f <0) by assuming that ¢ =0 inside S. To reduce confusion between
@ and this extended function, the latter function @(x, t) is defined as follows:

&(x,t)  f>0 (exterior of S)}
| ) 0o f<0 (interior of S) J’

The function & is a discontinuous function whose derivatives do not exist on f=0.
One can, however, define generalized derivatives for such a function [6-9]. In this paper
operators involving generalized derivatives will be denoted by a bar over the operator symbol.

It follows from the definition of @ that wherever ordinary derivatives of @ exist (i.e.,
interior or exterior to S) one has

B(x, 1) ={ ()

0*d=0. (3)
However, one can show, as is done below, that
2P =(1/c)FD/a? -V D =0, (4)

It will be seen that what appears on the right side of equation (4) leads to the Kirchhoff
formula. For the reader who is not familiar with generalized function theory, it is mentioned
that one requires considerable conceptual development in going from equation (3) to
equation (4). Examples of applications given in references [7] and [8] may help in
understanding the following steps. :

One can always define the surface =0 in such a way that [Vf] =1 on this surface. This
is done by taking df =dn where dn is distance from the surface f=0 along its local



EXTENSION. OF KIRCHHOFF'S FORMULA 453

normal. With this definition one has Vf=n, where n is the, local.unit normal pointing
into the exterior region. Then, using.generalized: derivatives [8], one can write at once
R 36 9d Lof . b FE PP o
-9t ot ?vatﬁ(ﬂ“ ot’ arr  art’ T
, - VE=VI+Pnd(f), VH =2+ D, 8(/)+V - [®nd(f)],:  (5¢,d)
_ 'w'h_ere. in equation (5c) the ‘function @ on the right side is defined as "

‘@ = lim D(x, t). (6)
f-=0+

© (5a,b)

The function @, in equation (5d) is the normal derivative of @, and is defined similarly.
The Dirac delta function is denoted 3(f). From equation (5) one obtains

=2 F-0,5(f)-V-[@nd(f)]=—D, ) -V - [Pnd)] (7)

Here, equation (3) is used in the last step. This completes the determination of the right
side of equation (4). » : '

Equation (7) is valid in the entire unbounded space. One can now use the Green
function for the wave equation in unbounded space, 3(g)/4nr, where g=7— t+r/cand
r=|x—y|. The space-time variables of the observer and source are denoted (x,t) and
(y, 7), respectively. The speed of sound is c. Equation (7) then yields

- (e)] _
47d(x,t)= —J —r'-'B(f) 3(g)dydr—-V - J’ ?—?S(f) d(g)dydr (8)

The space integrals in equation (8) are over the entire unbounded space and the time
~ integral is over (—o, t]. The divergence operator on the right acts on the variable x. Use

the fact that the volume element dy = df dS, where dS is the element of area of the surface
S: f=0. Then let 7- g noting that the Jacobian of the transformation |97/ ag|=lag/ar|™"
is unity. Integration over f, by virtue of the delta function 3(f), restricts the expressions
to f = 0. Subsequent integration over g restricts the expressions to g =0, which introduces
the retarded time. Equation (8) thus becomes N '

‘4'n'<f’(x,t)=—J‘ [j-)-"—]dS—V-J [—gnds. , '(9)
f . .

f=0 T -0 T

Here the square backet stands for evaluation of the functions at the retarded time: i.e.,
[@P]=D(y, t—r/c). ‘
~ Taking the gradient operator inside the second integral of equation (9) and collecting
terms of O(1/r) and O(1/r?), one-gets .
4rd(x,t)  f> o} o '
0 f<0

¢ 'd, cos §— D, e} 6
J L o3 ]dS+J [PJcosb (10)
f=0 r =0 r

4rd(x, 1) ={

Here &, =6®(y, 7)/dr and 6 is the angle between n (pointing into the exterior region)
and the radiation direction r=x-y. For the exterior region f>0, this is Kirchhoff’s
formula for a stationary surface S. The present method automatically shows that for the
obﬁerver inside the surface S the integrals in Kirchhoff’s formula yield a zero (null) field.
Th1§ means that &, @, and P, are not independent on the surface S. Equation (10) is
an 1.dentity which may be utilized in various ways. As it stands it may be considered as
an integral representation of @ at points exterior to S in terms of surface quantities.
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‘Another interpretation follows if the:observer point x is taken on S itself; in that case,
equation. (10) becomes an integral equation governing @ on-S. This latter interpretation
is the basis of modern boundary element methods. It is clear that equation (10) remains
valid for a piecewise smooth surface S.- ' - -

It is noted that in the usual applications of equation (10) @ is taken as a complex
harmonic function-of time so that the temporal part of ® disappears in equation (10);
the resulting Kirchhoff formula pertains to the complex amplitude of & [1-3]. The
amplitude satisfies Helmholtz’ equation. In this case one could begin the above procedure
from a Helmholtz equation rather than from the wave equation as is done above.

3. THE GENERAL KIRCHHOFF FORMULA

In this section, the Kirchhoff formula for moving surfaces will be derived. Let f(x, t) =0
describe the moving surface S which is assumed to be piecewise smooth. The function f
is defined as before such that f> 0 outside S and Vf=n on f=0. The function & and
its first derivatives are assumed to be continuous, and & satisfies equation (1). This
function is again extended to & by equation (2) so that equation (3) is satisfied both
inside and outside S. The terms on the right side of equation (4) are found by the same
technique as presented above.

Taking the generalized derivative of & with respect to time gives

id b af 3P .
—=—+@=3(f)=——Pv, 3(f), 11
at at 6t o) ot % () (11)
where v, = —3f/at is the local normal velocity of S with respect to the undisturbed

medium. Differentiating both sides 'of equation (11) once more yields

aqb 647

P T bt b (N2 B3P, (12)

where ®,(,, =3P/ at|,. The generalized Laplacian of <I> is given by equation (5d) as before.
From this and equation (12), one obtains

uE <5=—(¢"+§Mn¢,<x>) B() -7 =M, @5(NI-V [@ns(N],  (13)

where M, =v,/c is the local normal Mach number on S. In the following, partial
derivatives with respect to time holding different sets of space variables fixed will appear.
The notation introduced above (e.g., @,.,) will be maintained wherever necessary in
order to prevent confusion. The source terms in equation (13) can be written in other
forms by performing the temporal and spatial derivatives in the second and third terms,
respectively. The above form, however, seems to require the fewest algebraic manipulations
in the following analysis.

( l;pon use of the Green function of the wave operator in unbounded space, equation
13) gives

o, 1 1 13 (1
smdx, == [ 1 (2, +1 M) 0@ ayar-2 2 [ L a0 80508 ayar

—V-J.%CbnS(ﬂ 3(g)dydr, (14)

where 45,.(,,, =dP(y, 7)/or.
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If the spatial variables y are transformed to Lagrangian variables m, and if the transfor-
mation - g is employed and the delta functions integrated out, then equation (14) can
immediately be written in the form of equation (5.3) of reference [10]. Such an approach
leaves the divergence and the time derivative operators outside the integrals, however,
which renders the resulting formula unsuitable for numerical application. In the current
paper equation (14) will be manipulated differently to lead, as will be seen, to a more
practicaily useful result.

Before interpreting the integrals in equation- (14), the following relation is used to
convert the space derivatives in the last integral to a time derivative:

j_[?&g_)]=_1_5_ [ﬁ S(g)]_f,- 5(g) (15)

ax; r c at r r

where = (x—y)/r is the unit radiation direction vector. Note that in this relation the
source variables (y, 7) are held fixed. Equation (14) can now be written as

4rd(x, t)= —J %((D" +% M,,(D,(y)> 3(f) d(g) dy dT+J % ® cos 0 5(f) d(g) dydr

+lijl(cos 6—M,) ®3(f)d(g)dydr | (16)
caot)r

There are two types of integrals in equation (16), which will be denoted
139 -
I, =‘J Q,3(f)d(g)dydr, L=_— J’ Q,3(f) 3(g) dy d~. (17, 18)

The technique of evaluation of these integrals will be given below.

Although in many applications of the Kirchhoff formula in acoustics the surface S is
taken as rigid, for completeness S is here assumed to be deformable. Let S be described
by the surface co-ordinates (u', u*) and assume u® = f. This mapping is required only in
the vicinity of f=0. Let the mapping (u', u’, u’)>y be a differentiable function of time
7. Denote the determinant of the coefficients of the first fundamental form on S by
g2 =81gxn— g2,, where the g;(i,j=1,2) are the metric tensor components. Then g is
a function of time 7 in addition to (u', u®). For example, consider a sphere of radius
R(7) whose center is moving at speed U(r). Let (u', u”) be the spherical surface co-
ordinates on this sphere as shown in Figure 1. Then if at 7=0 the center of the sphere
is at the origin of the y-frame, it follows that

1= y3(r)+[u*+ R(r)] cos u' sin u?,

y,=y3(r)+[u®+ R(7)]sin u' sin u?, y3=y3(r)+[u’+ R(7)] cos u? (19)

73
u2 é
m UZ/I
_—’ v - .
o(3) -~ { > ¥,
ul
! 1
L 2w v
¥ S

Figure 1. The mapping y->(u', u?). Domain D(S) is independent of time.
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where
o y%(7) =J U(r') dr. ‘ . - (20)
o O SO 0 ) )
Also, it is seen that on S _
V - ' v g(z) = Rz(T) Sln uz. (21)

To evaluate I,, the following successive transformations are carried out: y—> (u', u?, u?)
and then 7- g. The Jacobians of the transformations are 1 and 1/(1— M,), respectively,
where M, =v - / c. Here v.= 3y/ o7, holding (u}, u”, u’) fixed. After the first transformation

and integration with respect to f (i.e., u*), I, is given by
L= J J Qi(u', u*,0,7) 8(g)Vgp) du' du’ dr, (22)
-0 J D(S) .

where D(S) is the domain of S in (u', u?)-space. Note that even if S is deformable, the
limits of the inner integrals can be made time independent and are assumed so here (see
Figure 1). The deformation of S appears in the variation of g, with = The second
transformation 7 - g and the subsequent integration with respect to g restrict the integrand
to g =0 and yield

11=J’ [-———Q“g(”] du' du’. (23)
D(S) l_Mr g=0

The interpretétion of the integrand is as follows. If the relation g =0 is explicitly written
(remembering that u®=f=0.also in the integrand)

g=1—t+|x~y(u', 4?0, 7)|/c=0, (24)

then the solution in source time, 7*, of this equation is the emissior time which must be
used in the integrand of equation (23). Note that since |v|<c by assumption, equation
(24) has a unique solution. Equation (23) will thus be written as

1,'=J [————?‘_‘f}”] du' du’. (25)
D(S) rdz*

Since D(S) is independent of ¢, I, follows immediately from equation (18) as

1. N N/
Izz—J i[oz g(Z)] duldu2=lJ- [ 1 _?_{QZ g(Z)}] dulduz, (26)
C JDp(s) at l—M, o~ ] ¢ Jp(s) 1_"M, orT 1"‘M,. ™

where the relation 3/dt = (1-M,)™'3/47|,, obtained from equation (24), is used in the
last expression. Note carefully that in taking 3/97 the variables u' and u? are kept fixed.
After using the results of equations (25) and (26), equation (16) can be written as

5 (@, + ¢ M, &, wg—]
4 @ ,t = - n*r(y d 1 s
wP(x, ) JD(S)[ (L= M) du du
+J [gz_g(z)_COS_G] dul duz
psyL rr(1-M,) |.
1 1 a9 [(cos6-M, )db,/gm}]
+- - n L
CJD(S)[I—M, 67{ r(1-M,) wdu du’. (27)

This result is equivalent to that of Morgans [5] and is referred to here as the general
Kirchhoff formula. The notation of the present paper, however, differs from Morgans’,
who addressed the interior problem. '
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There is a somewhat subtle point which should be made, however, about the result
given-in reference [5]. The quantity [V&al.~ du' du? is there written dS, but this is not
the element of area of the physical surface S which is defined by fixing 7 in f(y, 7) =0.
That element is vgg, du' du’. The difference arises because as S deforms in space any
element specified by (u !, u®) has different emission times r* for a fixed x and t. Correspond-
ing to each 7* the surface S has a different shape. Although the main result of Morgans
is correct if interpreted as in the present paper, in some of his elementary examples there
is 'an ambiguity in the meaning of dS. It should be noted that Morgans’ result (27) is
claimed to be erroneous by the authors of reference [10]. However, they do not specifically
point out the nature of the error. The modern derivation given above indicates that
Morgans’ formula is, in fact, correct, a conclusion which was made also by Munro [11].

Finally, it must be mentioned that the moving surface S in the above analysis can be
unbounded provided that it divides the space into interior and exterior parts. An open
bounded or unbounded surface can be considered as the limiting case of a closed surface
of infinitely small thickness to which the Kirchhoft formula can be applied.

If S is stationary, then M, and M, are zero and g is time independent. Also 7* is
simply t—r/c. Under these conditions, equation (27), reduces to the Kirchhoff formula
for stationary surfaces, equation (10). :

3.1. ALTERNATE FORM FOR APPLICATIONS

Because equation (27) contains &, and also 2 time derivative of a complicated
function in the last integrand, it is still not in a form which is readily applied for numerical
analysis. In order to obtain a result which is practically useful it'is essential that the time
derivative in the integrand of the last term be evaluated analytically and the entire result
written in terms of geometric and kinematic quantities which are available or can be
readily measured. To this end the following relations will be used:

1or 13 L2 _ 1M, 1. . 1 ., |
c'af“cafl" y(u', u?,0,7)|=-M,, ; aT—CM r+r(M, M?), (28a, b)
16cos@ -1, , 1 1M, 1 .
- =—n-t+-(M,cos 6 —M,), - ==(M-n+M-n). (28c,d)
c oT c r c oT c

Here the dot over M and n denotes the source time derivative with ( u‘,.uz) kept fixed.
In addition, the following definitions are introduced: '

M,=M-%, d,=n-f, M,=M-n, (29a, b, ¢)
riM =n- M, (1/\/ g(z))a\/ g(z)/aT =g, (29d, e)

Note that in the last integral of equation (27), a new time rate of change of @ will appear
when (u', u?) is kept fixed. This is denoted ®. The relation between &,(,, and & is
obtained as follows:

. d @ Jy;
o={Z oy} {222
T u3=0 ay, ,87‘ or uy=0

= {V VP + ¢-r(y)}u3=0 = CM,,@,l + CM, . V2¢ + ¢‘r(y) . (30)

Here u=(u', u?, u®), v=20y/dr|, and M, is the tangential component of the Mach number
vector M=v/c on S. Also V, stands for the surface gradient operator.
Equation (27) can now be written as

E\Vga ] du du2+J [ PEV g2
™ D(S)

wdon = [ |58 e avan o
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where the expressions E; and E, are

U ‘

E,=(M:-1)®,+MM, - V,&—c'M,d+

1-M,
e . : S Tl . )
+(cos 6 — M,,)<I>+(cos 0—M,)Ds] +(—1———]\:I_)—2 [M,(cos @ - M, D], | (32a)
E,=cos 6+ : ! [2M, cos 6 — M M, — Mn]+m [(cos §— M )(M?Z- M?)]. (32b)
If the surface S is assumed rigid, then g, is independent of 7 and
n=mxn, (33)

where o is the angular velocity of S. One can now write dS =g, du' du? for the element
of area of S. Equation (31) can thus be written for a rigid surface as

- E PDE,
= | —— - d 34
47T¢’(x, t) J‘S [r(l—Mr)]-r* dS+J; [rz(l—Mr)]f* S, ( )

where E,; and E, are again given by equation (32) with equation (33) used where needed.
The general Kirchhoff formula of equations (31) and (34) is now in a form which is
suitable for practical applications. These results appear not to have been published
elsewhere. Once more it can be checked that the Kirchhoff formula for stationary surfaces,
equation (10), can be obtained from these equations.

3.2. REMARKS ON EXTENSION TO SUPERSONIC MOTION

A more general Kirchhoff formula can be derived which is valid for deformable,
piecewise smooth surfaces in arbitrary motion (subsonic or supersonic). The derivation
of this result is very lengthy and complicated, and it will not be written out here. It relies
on the solution of the following wave equation given by the authors [12]:

0*@=V,-[QIVAS(NI (35)

In this equation V,=(V, ¢7'3/dt) and Q is a 4-vector. Note that |[Vf]=1 in the present
paper. Equation (13) can be written as

0z é=_<¢n+%Mn¢1(x)) 5(f)-V,- [Q3(N)], (36)

where Q= @(n, M,,). Now the Green function of the wave equation can be applied to
find & by utilizing the result of reference [12] for the second term of equation (36). The
resulting Kirchhoff formula is more general than the formula presented here. However,
the various forms of the general Kirchhoff formula of the current paper appear to be
adequate for present applications in acoustics.

4. APPLICATIONS IN ACOUSTICS

As mentioned in the introduction, application of the Kirchhoff formula has been
proposed for rotor noise prediction. Attempts have also been made by Forsyth and Korkan
[13] to use this formula for high speed propeller noise calculation. These authors have
proposed using the Kirchhoff formula for a stationary surface which, as shown above,
is very different from the general Kirchhoff formula. The surface S in the work of Forsyth
and Korkan is taken as a finite cylinder, fixed with respect to the propeller, with its axis
along that of the propeller. This surface is therefore in motion with respect to the
unbounded acoustic medium, and the general Kirchhoff formula must be applied to S.
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One of the interesting applications of the general Kirchhoff formula may be in the
prediction of the noise of high bypass ratio turbofans. These propulsors are currently
favored in aircraft designs because of their high efficiency. By using a cylindrical surface
S with its axis along the fan axis and its ends at the fan inlet and exhaust (see Figure 2)
the main result of the present paper can be applied to predict the radiation pattern. There
are several sophisticated turbomachinery aerodynamics codes which can supply the
needed input data to the Kirchhoff formula.

LT

Figure 2. Illustrating a surface S appropriate for turbofan noise analysis.

Lyrintzis and George have developed a specialized Kirchhoff formula to calculate the
far field noise from a single helicopter blade interacting with a vortex [14]. Their formula
applies to uniform motion of a rigid surface and is derived by using Green’s theorem. It
is equivalent, in their special case, to the general Kirchhoff formula derived here, equation

(34).
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Note: Unfortunately, owing td an oversight; the next two letters were originally published separ-
ately.—Hawkings in JSV 132(1), 160 and Farassat and Myers in JSV 132(3), 511. They are published
agair} together in this issue, as originally planned.

-

COMMENTS ON “EXTENSION OF KIRCHHOFF’S FORMULA TO RADIATION FROM
MOVING SURFACES” (by F. Farassat and M. K. Myers, Journal of Sound and Vibration 123(3),
451-460). , ' ’

The authors have discussed how Kirchhoff’s formula can be extended to moving and
deforming surfaces, and cited two previous papers covering this subject by Morgans
(1930) [1] and Ffowcs Williams and Hawkings (1969) [2]. (Incidentally, another relevant
paper not cited is that of Khromov (1963) [3], who used a novel four-dimensional method.)
Farassat and Myers commented that Ffowcs Williams and Hawkings stated that the
Morgans paper is in error without clarifying the nature of the error, whereas in their
opinion it is correct.

In fact, the error mentioned by ourselves was just the same ambiguity of interpretation
in the Morgans result that Farassat and Myers now spell out in their paper. The fact that
the metric g, is a function of time and must lie within the retarded time operator is
crucial. It cannot be taken outside the operation and converted back to an element of
physical surface dS, as implied by Morgans. The difference would show up in numerical
schemes for the direct computation of the integrals.

Thus both Farassat and Myers, and ourselves, have recognized the same defect in the
Morgans paper; they regarded it as an ambiguity of interpretation, we regarded it as an
error. ..

Westland System Assessment Limited, D. L. HAWKINGS
Yeovil, BA21 4DQ, UK ' ’

(Received 10 November 1988)
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e - AUTHORS’  REPLY

The authors thank Dr Hawkings for clarifying the comment about Mdrgans’ derivation
of KirchhofP's formula for moving surfaces in the joint paper with Ffowcs Williams
(Philosophical Transactions of the Royal Society, 1969). We chose the word “ambiguity”

rather than “error” because it is clear from Morgans’ derivation that he was aware of

the subtlety mentioned in our paper. Had he not known about it, his main result would
have been erroneous, and it is not so. Furthermore, what Ffowcs Williams and Hawkings
have presented as the correct general Kirchhoff formula requires considerable algebraic
manipulation in order to be put into the form presented by Morgans. This makes it
difficult to compare the two analyses. We feel that the use of the word “error” about a
result that is fundamentally correct is likely to divert interested readers from studying
Morgans’ excellent and beautifully written article.

The authors also appreciate Dr Hawkings’ calling their attention to Khromov’s 1963
article. This paper was also commented upon in the 1969 joint papers of Ffowes Williams
and Hawkings. Khromov’s method is based on converting the wave equation into a

Laplace equation by taking x,=1ict, where i=+/—1. We agree with Ffowcs Williams and
Hawkings that there is a fundamental error in Khromov’s work, early in the derivation.’
Since the nature of this error is also not pointed out in their paper, we take this opportunity’
to do so for completeness. In equation (19) of Khromov’s paper an integration over a:
surface S in four dimensions is split into an integration on x, (essentially the source time)’

followed by one on the physical moving surface s. Since each element of the surface s
emits a signal at a different source time, this interpretation of the surface integral over s

is incorrect. This point is, of course, related to the ambiguity mentioned about some ‘of”

Morgans’ examples. The final result of Khromov’s paper is therefore in error. The authors
believe that, -while Khromov’s derivation may be corrected, his introduction of the
imaginary time-like co-ordinate is counter-intuitive and can lead to errors such as that
mentioned here. -

NASA Langley Research Center, F. FARASSAT
Hampton, Virginia 23665, U.S.A. o
The George Washington University, M. K. MYERs
JIAFS, o

Hamp_tqn Virginia 23665, U.S.A.
(Received 12 January 1989)
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ABSTRACT

The Kirchhoff formula for radiation from stationary
surfaces first appeared in 1882, and it has since found many
applications in wave propagation theory. In 1930, Morgans
extended the formula to apply to surfaces moving at speeds
below the wave propagation speed; we refer to Morgans’
formula as the subsonic formulation. A modem derivation of
Morgans’ result was published by Farassat and Myers in
1988, and it has now been used extensively in acoustics,
particularly for high speed helicopter rotor noise prediction.
Under some common conditions in this application, however,
the appropriate Kirchhoff surface must be chosen such that
portions of it travel at supersonic speed. The available
Kirchhoff formula for moving surfaces is not suitable for this
situation. In the current paper we derive the Kirchhoff
formula applicable to a supersonically moving surface using
some results from generalized function theory. The new
formula requires knowledge of the same surface data as in
the subsonic case. Complications that arise from apparent
singularities in the new formulation are discussed briefly in
the paper.

1. INTRODUCTION

Since its first publication in 1882, the Kirchhoff formula
has played a fundamental role in the study of optical, acoustic
and electromagnetic wave propagation.'? The formula
provides a representation of solutions to the homogeneous
wave equation in regions interior or exterior to a closed
surface in terms of data specified on the surface itself. Here
we will call this surface the Kirchhoff surface. The original
formula applies only to a stationary Kirchhoff surface. In
many circumstances, however, it is convenient to have an
analogous formula applicable to a moving surface, and such
a result was derived by Morgans,’ who extended the original
formula of Kirchhoff to include surfaces moving at speeds
below the wave speed in the propagation medium; we refer
to Morgans’ result as the subsonic Kirchhoff formula. A
modem derivation this formula based on generalized function
theory and in a form suitable for application was given by the
authors in 1988.*

In addition to the fact that representation formulas of the
Kirchhoff type are of interest from a fundamental analytical
standpoint, they have in recent years also assumed importance
as computational tools for use in conjunction with CFD
calculations. One illustration of the utility of the subsonic
Kirchhoff formula is its successful application by Lyrintzis’
to helicopter noise prediction. Here unsteady aerodynamic
calculations were performed in the near field of a helicopter
rotor in a reference frame fixed to the rotating blades (see

fig. 1). These then provided data on a blade-fixed Kirchhoff
surface like that indicated in fig. 1 for subsequentapplication
of the subsonic Kirchhoff formula to determine the noise
radiated by the blade. This particular application, however, is
limited by the fact that under some commonly occurring
conditions the shock system associated with a high speed
helicopter rotor can extend well beyond the tip region, a
phenomenon that has been called delocalization.® To apply
a (linear) Kirchhoff formula in this case requires that the
entire shock system be included inside the Kirchhoff surface.
Because part of the surface thus travels at supersonic speed,
the available Kirchhoff formula for moving surfaces is not
suitable.

The primary difficulty with the subsonic formula is the
appearance of the Doppler factor 1-M, in the denominator of
the integrands, where M, is the component of the surface
Mach number in the radiation direction. For supersonic
surfaces, there exist directions in which M=1, and thus
singularities appear in the subsonic Kirchhoff formula. Here
we derive a new Kirchhoff formula that does not contain the
Doppler singularity. The new formula is actually valid for all
surface speeds, but, because it is somewhat complex to code
for computer applications, its use is not recommended for
Kirchhoff surfaces, or portions or Kirchhoff surfaces, moving
subsonically. In this paper, therefore, we refer to the new
formula as the supersonic Kirchhoff formula. The analysis is
carried out with a view toward practical numerical
implementation. Thus, the new formula is derived for an
open surface panel considered as a portion of the closed
Kirchhoff surface. This allows its use to be restricted to just
those parts of the Kirchhoff surface that are actually moving
at supersonic speed.

In the next section, the inhomogeneous source terms of
the wave equation leading to the Kirchhoff formula are
derived. In the following section, the solution of this wave
equation is obtained which is valid for supersonically moving
surfaces. This solution is the desired Kirchhoff formula. In
the subsequent section the singularities associated with the
new formula are briefly discussed. The main complications
in the supersonic formulation are the existence of mutltiple
emission times and the appearance of small or vanishing
denominators in the algebraic expressions. We indicate how
these complications can be overcome in applications.

2. THE INHOMOGENEOUS WAVE EQUATION

Our approach to deriving the supersonic Kirchhoff
equation is similar to that of reference 4. The primary
reference for the mathematics used in the derivation is a
recent publication by the first author.” Let us assume that the



moving Kirchhoff surface is defined byf(x,t) =0 with f>0
in the exterior of the surface and <0 in the interior. This
function is selected in such a way that |Vf|=1 over the
surface, which can always be done.” We are interested in
radiation into the region exterior to the surface f=0. Let

&® (%,t) satisfy the homogeneous equation in this region:
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in which ¢ is the speed of sound. To find the inhomogeneous
source terms of the wave equation leading to the Kirchhoff
formula, we extend @ to the entire three-dimensional space
as follows:

&(x,t) ={%(i’t) 28 @

We now find CF® where [ stands for the wave operator
with generalized derivatives.

Using the rules of generalized differentiation,”’® we
obtain
la_¢=la_°_Mn¢5(f) 3-a)
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In egs. (3) the bar over a derivative stands for generalized
differentiation, and M, =v Jc is the local normal Mach
number of the surface f=0. The Dirac delta function with

support on £=0 is denoted 8(f). The generalized Laplacian of &
is similarly found as follows:

vo + Piid(f) (4-a)
Vo +@ 8(f) + V- [@HS ()] (4-b)
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Here #fi=Vf is the local unit outward normal and
@ =fi-V® on f=0. From eqgs. (3) and (4), and the fact that

& =0, we find
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The last two terms of this equation need further
manipulations to make them suitable for the derivation of the
supersonic Kirchhoff formula. We perform these
manipulations below.

In applications, the Kirchhoff surface is first divided into
panels (Fig. 2-a). Some of these panels travel at supersonic
speed, so that the subsonic Kirchhoff formula is not suitable.
We therefore, derive the new formula for a single panel. Let

us assume that a panel on =0 is defined by the equation of
its edge curve, f=0. We assume that >0 on the panel. We

can always define f in such a way that Vf=¥ where v is
the local unit inward geodesic normal at the edge of the
panel. The geodesic normal is tangent to the surface =0 and

is normat to the edge of the panel f=f=0 (see Fig. 2-b). For
the open surface at this panel, the source terms of the wave
equation in eq. (5) must be modified by the Heaviside

function H(f) as follows:
P& - -(% LA @n)H(f)a(f)
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Now we carry out the time differentiation and divergence in
the last two terms of eq. (6). We have
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where a tilde under a function stands for the restriction of the
function to the surface £=0.7 The symbol M, =v [c is the

local Mach number of the edge f=f=0 in the direction of the
geodesic normal. Similarly, the last term in eq. (6) can be
written as

v-[@eiH®E)8(f)]1=-2H,2HE) 5(f) + @HFE) 6'(F)  (8)

where H; is the local mean curvature of the surface f=0.
After substituting eqs. (7) and (8) into eq. (6) and collecting
terms, we get
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This is the desired form of the inhomogeneous source terms
of the wave equation. In the next section, we give the
solution of eq. (9) which is the supersonic Kirchhoff formula.

3. THE SUPERSONIC KIRCHHOFF FORMULA

Equation (9) is now written as

& =q,&, DHE) 8(f) +q,E, D HE) /()

+q, (X, 1) 8(F) 8(f) (10)

Note that g, is restricted to =0 and hence is written as g,.

Next we write & as the sum of three functions



(i:d)1+(1)2+d)3 1

where these functions are the solutions of the wave equations

@, =q, & HHE) () (12-2)
O ®,=q,,t) HE) 5/¢) (12-b)
(12-¢)

O @, =q,X,t) 5@ ()

The solutions of these equations are given fully in reference
7 (see solutions of eqs. 4.23-b, e, { in Ref. 7). Here we
utilize these results directly and refer readers to the original
source.

The solution of eq. (12-a) is given by eq. (4.34) of
reference 7 as follows:

Q
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where Q, =[q,(¥,7)], =q,(¥,t-1/c), r=|X-¥|,
F(¥;%,t) =[f(F, )], F(F:%,t) =[f(F,7)],, and

A2=1+M?-2M, cos® (14)

Here M, is local normal Mach number on the panel and
cosO=fi-f, where f= (X -¥)/r is the unit radiation vector. In
eq. (13) dX is the element of surface area of the surface

F=0,F>0. This is the surface formed by the curves of
intersection of the collapsing sphere r=c(t-t), (X,t) fixed,

with the panel in motion as the source time t increases from —e
to t. Figure 3 illustrates the construction of the Z-surface for
a panel.

The solution of eq. (12-b) is given by eq. (4.42) of
reference 7 in the form
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0
15)
cotd’ (
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where Q, =[q, (¥, )], and we have introduced the following
symbols:

(16-a,b)
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In eq. (15) we have also denoted the mean curvature on the
Z-surface by Hi, and dL is the element of the length of the
edge of the Z-surface. Below we will see why we must

retain the restriction sign (~) in Q, in the integrand of the

surface integral.

The solution of eq. (12-c) is given by eq. (4.49) of
reference 7 as follows:

. Q
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where Q3 = [‘I3 (y T )]ret and

Ay= |VFxVE|=AAsin6’ 18)

After combining the egs. (13), (15) and (17) we get
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In eq. (19) we have explicitly performed the derivative 6/oN
in eq. (15) and separated the near and far field surface
integrals. We note that

N VQ, =[N-ng]m —%[N -quz]m (20)

where the symbol 4, is used for 3q,(¥,t)/dt. From eq.
(16-b), we have

%[ﬁ—Mﬂ(ﬁ cos@+{, sin6)] =%(1 ~M, cos)ii

M, sin® . 21
A 4

in which ?1 is the unit vector along the projection of T on
the local tangent plane of £=0. Since 0q,/0n=0 (this a

property of the restriction’ ), we get



M, sin® 9q,(7, 1)
dao,
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where J/do, is the directional derivative in the direction of

t, (keeping T fixed). We aiso have
§-7p o Ma—cos8 @3)
A
which, when substituted in eq. (20), gives

_ M sin6 JQ, . cos8-M, .

N-vQ,=—2 70, —— Q& 9

In eq. (24), Q, stands for (8q,/dt),, and the directional
derivative again is calculated keeping 1 fixed. Finally, after
using eqs. (23) and (24) in eq. (19), we get
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Equation (25) is the supersonic Kirchhoff formula and is the
main result of this paper. We will discuss the above result
further below.

First, however, we remark on the significance of utilizing
the restriction of the function q, to the surface f=0 in the
derivation of eq. (25). The key property of the restriction is

that dq,/dn =0, which allows the derivative in the directionN

in eq. (15-b) to be evaluated very simply (see eq. (22)). If
we had not introduced the restriction, the uitimate result
would still be eq. (25), but it would contain a number of
extra terms arising from unnecessary differentiation of g, in
the direction fi. The extra terms, of course, cancel one
another, but is difficult to recognize the cancellation in the

form in which the terms arise in eq. (25). Using g, leads

directly to the above resuit which the authors believe is the
simplest possible expression of the supersonic Kirchhoff
formula.

One important fact that we point out here is that eq. (25)
is valid for a Kirchhoff surface in arbitrary motion, including
motion at subsonic speed. However, we do not recommend
its use for subsonic speeds because the formula presented by
the authors in reference 4 is much more efficiently applied
for computation.

4. ANALYSIS OF THE MAIN RESULT

We first check to see if we recover the classical

Kirchhoff formula from eq. (25) when the surface is
stationary. We assume a closed surface described by

f($) =0. In this case there is no line integral and we have

F(7;%,0)=f(7) =0 (26-a)
M, =0, A=1 (26-b,c)
H.=H,, q,=-9, -2H;® (26-d,e)
q,=9 , q,=0, dY=dSs (26-f,g,h)

where dS is the element of the surface area of f=0.
Substitution of these resuits in eq. (25), yields

Qcoseds
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This is the classical Kirchhoff formula.'? Thus this aspect of
consistency of our main result has been established. It is

evident that eq. (25) depends on ®,® and & on the
Kirchhoff surface f=0. This is, of course, expected. Note
that 8Q,/d0, involves d®/do,, which is obtained from
knowiedge of @ on f=0.

We will now discuss the problem of singularities of eq.
(25). The quantity A appears in every term of the
denominator and produces a singularity when A=0. The
singularity A,=0 appears in the line integral of eq. (25) if
the conditions discussed in reference 11 are satisfied. When

A=0, the collapsing sphere is tangent to the Kirchhoff surface
f=0 at a point where M,=1. The X surface in the vicinity of

this point is very complicated with a possible mean curvature
singularity. This case requires further analysis which we will
not pursue at present. For now we will indicate a practical
method to get around this problem. Assume that the
Kirchhoff surface is chosen to have a shape like that of a
biconvex airfoil such that there are no points on the surface
at which M,=1. Then we only have to be concerned with the
singularities of the line integral in eq. (25) on the leading and
trailing edges of the Kirchhoff surface. However, the
integrand of the line integral of eq. (25) is precisely eq. (17-
¢) of reference 11 with p’c’ replaced by ®. An analysis
identical to that of reference 11 shows that the singularity of
the line integral in eq. (25) is integrable so long as @ is
continuous in the vicinity of the singular point. But this
condition is always satisfied in practice so that there will be
no numerical problems in using eq. (25) for the proposed
Kirchhoff surface.

5. CONCLUDING REMARKS

In this paper we have derived a Kirchhoff formula that
describes solutions of the homogeneous wave equation
exterior to a surface in arbitrary motion. The formula is
specifically designed for practical computation of radiation
from surfaces in supersonic motion. Because surfaces
moving at subsonic speeds are more efficiently treated using
an earlier result, the new formula is derived for an open
surface; it is recommended that it be used only on surface



panels that are actually moving supersonically. The new
formula is expressed in a relatively simple form in terms of
surface data and of easily calculated geometric and kinematic
properties of the moving Kirchhoff surface. It is complicated
somewhat by the existence of singularities that occur under
certain conditions in supersonic motion, but these singularitics
arc shown to present no difficultics in  numecrical
implementation of the formula.
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Appendix B

The Mean Curvature of X-Surface Needed in the
Supersonic Kirchhoff Formula



The Mean Curvature Hy of Z-Surface

M 20y (1-M )2 1-M, - .
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A= (1+M%—2Mncose)1/2, cos@ =n-7, F= 5}_-;_2’ M = |Ml,
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r,= P —nRcosH, A_/?t = M—Mnﬁ (7, and M, are projections of 7 and M on

local tangent plane to f=0), k, and K, local principal curvatures of f=0, x_
local normal curvature of f= 0 along ?‘t, H f local mean curvature of f=0,
= Ax®, ® angular velocity, ¥ = AXF,, A= i‘zxMt,

q
M,=n-M, (AL, A2) and (7!, 92) components of A and 7 in principal
directions with respect to unit basis vectors, respectively.
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