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Abstract

The accurate prediction of the aeroacoustic �eld

generated by aerospace vehicles or nonaerospace ma-

chinery is necessary for designers to control and re-

duce source noise. Powerful computational aeroa-

coustic methods, based on various acoustic analo-

gies (primarily the Lighthill acoustic analogy) and

Kirchho� methods, have been developed for predic-

tion of noise from complicated sources, such as ro-

tating blades. Both methods ultimately predict the

noise through a numerical evaluation of an integral

formulation. In this paper, we consider three generic

acoustic formulations and several numerical algo-

rithms that have been used to compute the solutions

to these formulations. Algorithms for retarded-time

formulations are the most e�cient and robust, but

they are di�cult to implement for supersonic-source

motion. Collapsing-sphere and emission-surface for-

mulations are good alternatives when supersonic-

source motion is present, but the numerical imple-

mentations of these formulations are more compu-

tationally demanding. New algorithms|which uti-

lize solution adaptation to provide a speci�ed error

level|are needed.

Notation

2 wave operator, D'Alembertian

c sound speed in undisturbed medium

d� element of emission (in
uence) surface

d
 element of collapsing-sphere surface

dS element of source surface

f = 0 function that describes the source surface

g = 0 surface that describes the collapsing sphere,

g = � � t+ r=c
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F = 0 function that describes the emission surface,

F (y;x; t) = [f(y; � )]ret = f(y; t� r=c)

H(f) Heaviside function

Mr Mach number of the source in the radiation

direction

n̂ unit outward normal vector to surface

p0 acoustic pressure

r distance between observer and source,

r = jx� yj

r̂ unit vector in the radiation direction,

(x � y)=jx� yj

t observer time

vn local normal velocity of source surface

x observer position

y source position

Greek symbols:

� = 0 intersection of collapsing sphere and source

surface

�
p
1� 2Mn cos � +M2

n


 angle used to measure circular arc (see

Fig. 4)

�(f) Dirac delta function

� angle between n̂ and r̂

�o density in undisturbed medium

� source time

Subscript:

ret quantity is evaluated at the retarded time,

�� = t� r=c

Introduction

A great deal of progress has been made in recent

years toward the prediction of rotor noise through

the utilization of �rst-principles methods. Several

reasons account for this progress. First, a de-

tailed and fundamental understanding of how ro-

tor blades generate noise has been gained through

a series of acoustic wind-tunnel and 
ight tests.

Secondly, a rigorous theoretical basis of noise gen-

erated by rotating blades was introduced in 1969

by Ffowcs Williams and Hawkings. The Ffowcs

Williams{Hawkings (FW{H) equation1 is an exten-

sion of the Lighthill acoustic analogy to sound gener-
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ated by surfaces in arbitrary motion and is the start-

ing point for most rotor noise prediction. Because

the FW{H equation is an exact rearrangement of the

continuity and Navier-Stokes equations into the form

of an inhomogeneous wave equation, in principle, the

solution to the FW{H equation will also be exact if

the input data are exact.

In practice, however, the veracity of the input data

and the numerical approach both play major roles

in determining the accuracy of the acoustic predic-

tion. In a recent paper by Gallman et al.,2 several

helicopter rotor noise prediction codes were given

identical input data to predict blade-vortex interac-

tion noise for a model helicopter rotor. Although the

codes were numerical implementations of the same

formulation of the FW{H equation, the codes gave

signi�cantly di�erent answers for several of the oper-

ating conditions and observer locations considered.

Although the discrepancies have not been explained,

a detailed comparison of each of the numerical im-

plementations is dearly needed to determine the rea-

son for the discrepancies. The study by Gallman et

al. illustrates that the discipline of computational

acoustics is becoming more discerning|an assess-

ment of solution accuracy is also needed along with

the acoustic prediction.

This paper focuses on the various choices that can

be made both in the selection of formulation and in

the numerical implementation of acoustic integrals

and discusses how these choices a�ect the accuracy

and robustness of the acoustic predictions. These

details are at the heart of every prediction code, yet

they rarely receive su�cient attention in the litera-

ture. The bias of this paper is toward external 
ow

problems, in particular, rotor noise. Because of the

predominance of time-domain formulations in rotor

noise prediction, only time-domain formulations will

be considered in this paper. This paper is an at-

tempt to stimulate thought on the numerical aspects

of acoustic codes based on the acoustic analogy and

Kirchho� formulations. Ultimately, this consider-

ation and scrutiny should help to improve the ac-

curacy, e�ciency, and robustness of integral-based

acoustic predictions.

Formulation versus Numerical Algorithm

The FW{H equation and its close relative

the Kirchho� formulation are usually formulated

through the use of a Green's function. In the case

of the rotating blade noise, the free-space Green's

function (�(g)=4�r) leads to an integral representa-

tion of the solution. We use the term \integral rep-

resentation" because the integral formulation must

either be solved as a singular integral equation or,

as is most often done in rotor noise prediction, the


ow-�eld data in the source region must be given

as input to determine the acoustic solution outside

the source region. The particular formulation that

is developed results primarily from the choice of the

change of variables needed to analytically integrate

the Dirac delta functions.

To illustrate the above explanation, we consider

the following example. An inhomogeneous wave

equation can be written as

2�(x; t) = Q(x; t)�(f) (1)

where 2 is the wave operator, Q(x; t) is the source

strength, and f(x; t) = 0 de�nes a surface over which

the source is distributed. Equation (1) is typical of

the various source terms in the FW{H equation. By

using the free-space Green's function �(g)=4�r, an

integral representation of the solution may be writ-

ten as

4��(x; t) =

tZ
�1

1Z
�1

Q(y; � )�(f)�(g)

r
dyd� : (2)

The next stage in developing the acoustic formula-

tion is to integrate the Dirac delta functions �(f)

and �(g), a process that requires a change of vari-

ables. The change of variables determines the type

of formulation. Equation (2) can be expressed as

4��(x; t) =

Z

f=0

� Q(y; � )

rj1�Mr j

�
ret

dS (3)

=

tZ
�1

Z

f=0

g=0

Q(y; � )

r sin �
cd�d� (4)

=

Z

F=0

1

r

�Q(y; � )
�

�
ret

d� (5)

with the variable transformations (�; y3) ! (g; f),

(y2; y3) ! (f; g), and (�; y3) ! (g; F ), respec-

tively. (See ref. 3.) The three formulations ex-

pressed in equations (3){(5) are known as retarded-

time, collapsing-sphere, and emission-surface formu-

lations, respectively. Time-domain-acoustic formu-

lations can be classi�ed as one of these generic types;

each type has its own physical and geometrical in-

terpretation. These formulations and their interpre-

tations will be discussed in the next section. If the

source in equation (1) had been a volume distribu-

tion, analogous integral formulas would result. (Ref-

erence 4 discusses many of the speci�c linear formu-

lations used in rotating blade noise prediction.)
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The numerical algorithm, on the other hand, has

to do with the numerical procedure and the approx-

imations required to provide a discrete result from

the analytical formulation. The formulation pro-

vides the framework and geometrical interpretation;

we use the term \algorithm" to refer to how the

integral is numerically evaluated. The accuracy, ef-

�ciency, and robustness of the numerical algorithm

depend strongly on the choice of both the formula-

tion and the algorithm, yet the details of the nu-

merical implementation can signi�cantly a�ect code

performance. For example, high-order integration

and adaptive quadrature algorithms can potentially

be much more accurate and e�cient than simpler

counterparts for the same formulation. A detailed

comparison of the formulations and the related al-

gorithms is presented in the remainder of the paper.

Numerical Algorithms

Numerical algorithms vary signi�cantly between

di�erent formulation types, even though the same

physical and mathematical problem is ultimately

solved. For this reason, the algorithms discussed in

this paper are categorized by the type of formula-

tion with which they are associated. In this section,

the three di�erent types of formulations are treated

separately. A brief description and a geometrical in-

terpretation are given, followed by a more detailed

discussion of the algorithm and its application for

each formulation. The discussion in this section is

restricted to algorithms for surface-source distribu-

tions, but analogous techniques are available for the

integration of volume-source distributions.

Retarded-Time Algorithms

We will �rst consider the retarded-time formula-

tion

4��(x; t) =

Z

f=0

� Q(y; � )

rj1�Mr j

�
ret

dS (6)

where Q is the known source strength, which is a

function of the source position and time (y; � ). Nor-

mally in acoustic predictions, � is the acoustic pres-

sure p0 = p� po. The interpretation of equation (6)

is that integration of the occurs over the physical

surface, with the integrand evaluated at the emis-

sion, or retarded, time �� = t� r=c. The integration

is easy to understand because the integration sur-

face is given as part of the source description. Note

that the formulation requires that the observer loca-

tion x and the observer time t are �xed during the

evaluation of the integral. Numerical implementa-

tions of this formula have proven to be very robust

and e�cient; hence, most acoustic-analogy-based ro-

tor noise predictions (e.g., refs. 5{11) and Kirchho�

codes (e.g., refs. 12{16) utilize retarded-time formu-

lations.

Mid-Panel Quadrature

The most common method of numerically evalu-

ating retarded-time integrals is to approximate the

integral as follows:

4��(x; t) �

NX
i=1

�Q(yi; t� ri=c)

rij1�Mr ji

�
ret
�Si (7)

Here, the surface S is divided into N panels, and the

integrand is evaluated at the center of each panel

(yi) at that point's retarded time. If the source

is not moving, then the determination of the re-

tarded time �� is made by a simple computation

�� = t � ri=c, where ri = jx � yij. If the source is

in motion, then the source position is a function of

the retarded time (i.e., the desired yi is yi(�
�)) and,

unless the source motion is simple, the retarded time

cannot practically be determined analytically. The

retarded time, then, is found numerically as the root

of the equation t � � � r(� )=c = 0. Even when the

source motion is complex, such as for a helicopter

main rotor, standard root-�nding algorithms work

well (e.g., see ref. 17). Because the source strength

Q is evaluated at the retarded time, temporal inter-

polation of the input data is usually required. A time

history of � is developed by choosing both the ob-

server position and the observer time, evaluating the

summation in equation (7), and then choosing the

next observer time in the time history. Equations

(6) and (7) can be used to �nd the time history of

� for a moving observer if the observer position is

moved for each evaluation of the integral.

The approximation given in equation (7) with yi
at panel centers is in widespread use and works well

as long as the panel size is su�ciently small. In

this case, su�ciently small means that the source

strength variation is approximately linear over the

panel and the retarded time does not vary signi�-

cantly over the panel (i.e., �� << typical period of


uctuations). Re�nement of the panel size is clearly

needed if the source strength Q is not linear over the

panel because Q is not resolved and the midpoint

value is unlikely to represent the mean value. In-

su�cient resolution of the source strength can occur

in practice whenever the noise source is physically

localized, such as occurs in blade-vortex interaction

noise for a helicopter rotors; therefore, we must re-

quire that the input data resolve the source spatially

and temporally.

A subtle but extremely important point is that the

variation of Q over a panel in retarded-time space

can be much more signi�cant than the variation
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Figure 1. Pressure at one source time � compared

with pressure evaluated at retarded time �� for

Kirchho� calculation by Meadows and Atkins

(ref. 15).

of Q over a panel at single source time. Meadows

and Atkins15 noticed this phenomenon in a Kirch-

ho� computation of noise generated by an oscillat-

ing sphere. In their work, Meadows and Atkins used

high-order interpolation and quadrature but found

that more points per wavelength than expected were

needed on the Kirchho� surface to achieve the de-

sired accuracy. Figure 1 (from ref. 15) compares

the pressure on the integration surface at one source

time � to the pressure as a function of retarded

time ��. Although the pressure plotted in �gure

1 is not over one panel but over one meridian line

on the spherical Kirchho� surface, the idea is the

same|the function behavior in retarded-time space

can be signi�cantly di�erent from that at any in-

dividual source time. A large panel size with cer-

tain observer orientations (n̂ � r̂ ! 0) and a large

panel velocity (Mr ! 1) can both lead to large

variations in retarded time over a panel. Kirch-

ho� methods are likely to have both larger panels

and signi�cant retarded-time variation over a panel

because the Kirchho� integration surface is located

some distance from the physical source region and

must surround it.

High-Accuracy Quadrature

A re�nement of equation (7) can be made by re-

placing the single evaluation of the integrand at the

panel center with more points; thus, greater accu-

racy is achieved. The discrete computation would

then be

4��(x; t) �

NX
i=1

� niX
j=1

�j

�Q(yj; t� rj=c)

rjj1�Mrjj

�
ret
jJ jj

�
�Si

(8)

where �j and jJ jj are the quadrature weight coe�-

cient and determinant of the Jacobian of the trans-

formation, respectively, for the jth point in the panel

quadrature algorithm. The weights �j and the lo-

cation of the quadrature points yj can be chosen

to increase the order of polynominal approximation

used for the panel quadrature. Thus, with a larger

number of points the limitations of the mid-panel

algorithm can be overcome. Farassat et al.19 and

Dunn and Tarkenton20 utilize a high-order quadra-

ture algorithm of this nature in their propeller noise

prediction code ASSPIN.

The full bene�t of a high-accuracy quadrature is

realized, however, when a solution-adaptive quadra-

ture scheme is utilized. This feature is included in

equation (8) by selecting the number of quadrature

points n used in ith panel with some parameter re-

lated to the solution; that is, a larger number of

quadrature points are used only when the function

variation over the panel requires it. An adaptive-

quadrature scheme can provide high accuracy and

minimize the computational e�ort. Brentner and

Holland10 developed an adaptive-quadrature algo-

rithm in a far-�eld quadrupole noise prediction.

Their adaptation parameter was

n(Mr ;�Si) /
�Si

j1�Mr j
(9)

where Mr (the Mach number of the panel center in

the radiation direction) and �Si (the physical area

of the panel) were used to determine the number

of Gauss-Lengendre quadrature points in the chord-

wise direction of the panel; ni is scaled such that

1 � ni � 20. As Mr approaches unity or if the area

of the panel is large, the adaptation parameter be-

comes large. Similarly, if Mr is small or the area

of the panel is small, then the adaptation parame-

ter becomes small. The computation with adaptive

quadrature required little additional computer time

but yielded a signi�cantly better signal, as shown

in �gure 2. Although the adaptive quadrature of

Brentner and Holland10 worked well in their appli-

cation, what is really needed is an adaptive quadra-

ture scheme that is based on a measure of error in

the solution.

Consider again the spatial (�) resolution of source

pressure for a single source time � in �gure 1. In that

case, as is generally necessary if we have any hope of

predicting the acoustics, the source is well resolved
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Figure 2. Comparison of predicted solution with and without an adaptive quadrature algorithm. (a) No

adaptation, mid-panel quadrature. (b) Adaptive quadrature. (note that considerable panel size variation

occurred in this computation.)

both spatially and temporally. Only the acoustic

quadrature may need additional spatial information

to achieve the desired accuracy. Hence, in equation

(8) the source strength Q is expediently evaluated at

the yj quadrature points by a spatial interpolation

of Q at the �xed source time ��. The procedure for

this evaluation is

1. Determine the retarded time ��j for the quadra-

ture point yj .

2. Perform a temporal interpolation of the data to

the retarded time ��j at each spatial location in

the input data needed for the spatial interpola-

tion.

3. Perform the spatial interpolation of Q(y; ��j ) to

the point yj .

Brentner and Holland10 used linear interpolation

for both the temporal and spatial interpolations in

this adaptive quadrature algorithm. Meadows and

Atkins15 called the procedure of spatial interpola-

tion at constant source time \enrichment" to empha-

size that the computational 
uid dynamics (CFD)

solution, which is the most expensive part of the

calculation, was not re�ned.

Source-Time-Dominant Algorithm

A completely di�erent approach can be taken to

evaluate a retarded-time integral if source time is re-

garded as dominant. Rather than select the observer

time in advance, one can now choose the source time

for a panel (by again using the panel center) and

determine when the signal will reach the observer.

If the observer x is stationary, then t = � + ri=c;

otherwise, we must �nd the root of the equation

t � � � jx(t) � yi(� )j=c = 0. The determination

of t even for the later case is easier than �nding

the retarded time because observer motion is usually

simple; hence, the solution for t can be found ana-

lytically. A sequence of source times (e.g., the times

at which the source strength is available) will lead to

a sequence of unequally spaced observer times. This

panel time history can be interpolated to provide the

contribution at the desired observer times. Interpo-

lation in time is necessary so that the contributions

from all source panels can be added together at the

same observer times. This algorithm can be written

symbolically as

4��(x; t�) �

NX
i=1

I
�
Ki(t); t

�
�

(10)

where I(�; t�) is an interpolation operator and t� is

the desired observer time. The approximation of the

integral over the panel K is de�ned as

Ki(t) =
Q(yi; � )

rij1�Mr ji
�Si (11)

The value of t� is determined by the selection of

yi and � . This algorithm has the advantage that a

retarded-time calculation is not necessary per se and

the discrete time-dependent input data do not need

to interpolated. This characteristic may be useful

when a CFD code provides the input data. An-

other computational advantage of the source-time-
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dominant algorithm is that the solution process is in-

herently parallel; thus, the algorithm is a good can-

didate for massively parallel computers. Neverthe-

less, we do not yet know how a source-time-dominant

algorithm can be made solution adaptive or how

the computation time and accuracy will compare

with the observer-time-dominant algorithm. Xue

has implemented this algorithm in a general Kirch-

ho� aeroacoustics code.18

Supersonic-Source Motion

Although retarded-time algorithms are robust,

they have one drawback|for supersonic-source mo-

tion the integrals become singular (i.e., whenMr = 1

the Doppler factor j1�Mr j = 0) and the retarded-

time equation can have multiple roots. The mul-

tiple roots for supersonic-source motion can be

found without too much trouble, but the real prob-

lem is the Doppler singularity in the integrand.

The necessary regularization of the integral requires

both mathematical analysis and conditional code

logic. As an alternative, either the collapsing-sphere

method or the emission-surface method may be used

to avoid the singularity. In references 19 and 20 the

formulation is switched for supersonic panels to re-

alize the e�ciency and robustness of the retarded-

time formulation for subsonic panels while enabling

the code to handle supersonic-source motion. (Note

that the source velocity is the velocity of the source

point rather than the 
uid velocity. Also, the Mach

numberMr is based on the sound speed of the undis-

turbed medium rather than the local sound speed of

the 
uid.)

Collapsing-Sphere Algorithms

Now we turn our attention to the collapsing-

sphere formulation

4��(x; t) =

tZ
�1

Z

f=0

g=0

Q(y; � )

r sin �
cd�d� (12)

In equation (12), the inner integration is over the in-

tersection of the source surface f = 0 and the surface

de�ned by g = � � t + r=c = 0. The equation g = 0

(which is exactly the retarded-time relationship) can

be interpreted as the equation of a sphere with radius

r centered at the observer position x for a particu-

lar source time � . Recall that the observer position

and time (x; t) are �xed during the integration in

equation (12); hence, as � approaches t the radius

of the sphere reduces, or collapses. The collapsing

sphere contains all points in space that can poten-

tially emit, at the source time � , a signal that will be

Γ curve

Observer position x

Collapsing sphere (g = 0)

Figure 3. Schematic of collapsing sphere that inter-

sects rotor blade.

received by the observer x at time t; the intersection

of g = 0 and f = 0 (called a � curve) is the collection

of source points that do emit a signal at source time

� that reaches the observer at time t. A schematic

is shown in �gure 3. The collapsing-sphere formula-

tion does not have a Doppler singularity; however,

this formulation does have a singularity in the inte-

grand that occurs when the surface normal vector n̂

is parallel to the radiation vector r̂ (i.e., sin � = 0).

Farassat and Brown21 were the �rst to develop

a collapsing-sphere algorithm to predict the noise

from thickness and loading source terms of the

FW{H equation. They computed thickness and

loading noise for a moving, noncompact source with

realistic source geometry for both subsonic- and

supersonic-source motion. In their code, Farassat

and Brown evaluated the double integrals numeri-

cally with the following algorithm:

1. Determine the initial observer time ti for which

the collapsing sphere intersects the source sur-

face.

2. Choose the value of �j.

3. Determine the intersection of the collapsing

sphere g = 0 and the source surface f = 0.

The � curve is approximated by straight line

segments.

4. Compute the integrands at the ends of the line

segments and evaluate the line integral over the

� curve by trapezoidal rule.

5. Advance the source time �j and repeat 3 and 4

until the collapsing sphere no longer intersects

the source surface. Compute the � integration

with Simpson's rule.

6. Repeat this process for each observer time in

the time history.

6
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Figure 4. Schematic of collapsing-sphere intersection

with single planar source panel.

This algorithm is computationally demanding be-

cause a construction of the � curves must be done

many times for each observer time. Experience has

shown that the collapsing-sphere algorithm outlined

above requires 1 to 2 orders of magnitude more com-

puter time than the mid-panel quadrature retarded-

time algorithm. The retarded-time algorithm is

much faster because the retarded time �� must be

found only once per source panel for each observer

time. Another problem experienced by Farassat and

Brown was that the computed solution was oscilla-

tory and required numerical smoothing. The sin �

term in the denominator of equation (12) must be

at least partially responsible for the numerical oscil-

lations.

The collapsing-sphere formulation has not been

widely utilized in practice; however, with new nu-

merical algorithms this formulation may prove to

have some advantages. For example, if the source

surface is approximated as a set of planar pan-

els, then the intersection of the collapsing sphere

and the panel is a circular arc with its center at

X0 = x + r cos �n̂. The radius of the circular arc

is r sin �. The geometry of the collapsing-sphere in-

tersection with a planar panel is shown in �gure 4.

Based on this geometry, we see that d� = r sin �d


and equation (12) may be written

4��(x; t) =

tZ
�1

Z

�


Q(y; � )cd
d� (13)

for a single panel. The notation �
 implies that Q

is evaluated on the portion of the � curve that lies

on the panel. The result in equation (13) has not

been used in application but is interesting because

the r sin � term in the denominator is absent; hence,

the integral is quite simple, and the quadrature is

likely to be robust. Also,the number of quadrature

points in the 
 quadrature can easily be selected to

improve the accuracy. We do not know, however,

whether the planar panel assumption will be appro-

priate in general, but for some special cases (e.g., the

far-�eld quadrupole approximation used by Brentner

and Holland10) the source panels are planar. (Note

that when sin � = 0 the contribution of the inner

integral in equation (13) comes from a single point.)

Emission-Surface Algorithms

Finally, we consider the general form of an

emission-surface formulation:

4��(x; t) =

Z

F=0

1

r

�Q(y; � )
�

�
ret

d� (14)

where the � surface is the emission, or in
uence,

surface. The � surface is the collection of points

in space-time that emit signals that reach the ob-

server at one particular observer time. The emission

surface is sometimes referred to as the acoustic plan-

form, but we reserve this terminology for when we

mean the projection of the � surface onto a thin

surface (i.e., the helicoidal surface swept out by a

propeller (e.g., see ref. 22) or the rotor disk for a he-

licopter rotor). The �-surface formulation does not

su�er from the Doppler singularity, but a true sin-

gularity can occur when the surface normal vector n̂

of a source point is parallel to the radiation vector r̂

and the source point is moving toward the observer

at exactly sonic speed (i.e., � = 0). This singularity

is an indication of a caustic in the solution; Faras-

sat and Myers23 have shown for the FW{H equation

that the singularity from the surface source is elim-

inated if the quadrupole-source term is included.

The main di�culty in the numerical evaluation of

equation (14) is the construction of the � surface.

The � surface can be constructed by using either

a retarded-time computation to determine the lo-

cation of the source points at the retarded time or

through the process of computing the intersection of

the collapsing sphere with the source surface. Spe-

cial care must be taken in the construction because

the � surface may be composed of several disjoint

pieces when the source motion is supersonic; this

situation is exactly the type of situation that could

lead to use of the emission-surface formulation.
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Figure 5. Schematic of logical grid, marching cube,

and triangular piece of surface in marching cube.

Brentner24 has developed an alternate method for

constructing the � surface and performing the inte-

gration in equation (14), based on a computer graph-

ics algorithm. The approach is similar to the source-

time-dominant algorithm presented earlier in the

retarded-time algorithms section; the source time is

chosen and the corresponding observer time is com-

puted at each grid point. If the observer times are

computed and stored for each desired source time,

the discrete computational data become a three-

dimensional array; indices i and j parameterize the

surface spatially and the index k accounts for the

source time. In this three-dimensional computa-

tional space, isosurfaces of observer time t are, by

de�nition, distinct realizations of the � surface. The

problem of constructing the � surface is equivalent

to the construction of isosurfaces which is an impor-

tant problem in computer graphics.

Surface reconstruction must be done very e�-

ciently and quickly to be useful for interactive data

visualization. Lorensen and Cline25 have developed

the method of marching cubes, which uses a two-step

approach to the surface-construction problem. The

�rst step is to locate the surface that corresponds

to the level desired and approximate it with trian-

gles. The second step is to calculate a surface normal

vector at each triangle vertex. The marching-cubes

method uses a divide-and-conquer approach to lo-

cate the surface in a logical cube created from eight

data points (four each from two adjacent layers, as

shown schematically in �g. 5).

The extension of the marching-cubes algorithm for

surface integration24 determines how the surface in-

tersects the cube, computes the contribution to the

integral from that portion of the surface, and then

moves (or marches) to the next cube. The topology

of the surface can be determined uniquely by exam-

ining the function value (observer time in this case)

at each of the cube vertices and comparing this value

to the desired surface value. A table lookup is then

used to determine the exact topology of the surface

in the current cube. The surface is formed by a set of

triangular panels that have vertices on the edges of

the cubes. Brentner24 took the value of the surface

integral over each triangle as the average integrand

value of the triangle vertices multiplied by the trian-

gle area. Linear interpolation is used to determine

the integrand values at the triangle vertices based on

the previously computed value at the cube vertices.

(For more detail on the marching cubes algorithm,

see refs. 24 and 25.)

Because computations in the marching-cubes in-

tegration algorithm are done locally, one cube at a

time, the computational problem can be easily sep-

arated into blocks. This separation minimizes the

necessary computer storage requirements. Compu-

tation locality should also make the marching-cubes

integration algorithm a good candidate for paral-

lel computer architectures. Another advantage of

the marching-cubes integration algorithm is that the

methodology is not closely coupled to the physi-

cal problem; hence, the integration routine can be

readily applied to a large class of problems. The

marching-cubes algorithm has no particular problem

in �nding surfaces that are disjoint, which is an im-

portant attribute in considering algorithms for use

with supersonically moving sources. The numerical

integration is accurate only to low order. Improve-

ments in accuracy may be possible by using higher

order interpolation and panel geometries other than


at triangles, but some simplicity and locality would

be compromised in the process.

Solution Adaptive Algorithms

Although a brief discussion of solution adaptation

was given in the discussion of high-accuracy quadra-

ture in the retarded-time algorithms section; this

subject is important enough that we need to con-

sider it again here. Solution adaptation is usually

done to improve solution accuracy or to reduce com-

putational time. The ideal numerical algorithm for

each formulation would be adaptive for both reasons.

Two types of solution adaptation are recommended

here.

Temporal Adaptation

In rotor noise prediction, the acoustic signal gener-

ally consists of a local pulse proceeded and followed

by periods without signi�cant acoustic pressure 
uc-

tuations. Although most current codes divide the

time history in equally spaced increments of time,

this approach is not the most computationally e�-

cient. Variation of the time-step size can reduce the

total computational work by minimizing the number

of points needed to resolve the signal, but it will not

improve the quadrature accuracy at any particular

observer time. In the rotor noise prediction code

8



PARIS,7 the time steps are chosen in an unequal

manner with a concentration of time steps within

the main acoustic pulse. By using a variable time

step, the computation time is reduced by more than

1 order of magnitude. The propeller code ASSPIN20

also uses variable time steps. Fine time steps are

taken when the panel is moving supersonically (the

acoustic signal has steep gradients when the blade

is moving supersonically), and course time steps are

taken when the panel is moving subsonically.

One way to minimize the number of time steps in

the acoustic computation is to dynamically choose

the discrete observer time steps. This selection can

be done by computing the acoustic solution at sev-

eral large, equally spaced times and then re�ning the

solution by clustering time points at locations where

the second time derivative of �(x; t) is large. Fur-

thermore, a minimum time step size or maximum

number of allowable points should also be speci�ed.

Quadrature Adaptation

We refer to another type of solution adaptation

as \quadrature adaptation". In quadrature adap-

tation, the number and location of the quadrature

points, in space or time, can be selected to increase

the accuracy of the quadrature. Several codes have

utilized some sort of re�nement to improve the so-

lution accuracy (e.g., refs. 10, 15, 20, and 26); how-

ever, none of these algorithms monitor the error of

the solution. Without a measure of the error, the

algorithm cannot determine if a su�cient number of

quadrature points have been used to achieve the de-

sired accuracy or if too many points are being used;

this approach is ine�cient.

Perhaps we should examine the procedure used

by advanced ordinary di�erential equation (ODE)

solvers. These ODE solver algorithms are relevant

because integration can always be recast into the

form of a di�erential equation. An e�cient ODE

solver takes large steps in regions in which the func-

tion varies slowly and small steps in treacherous re-

gions in which the function varies rapidly. To de-

termine the approximate solution error, the solver

might take a large step followed by two smaller steps

over the same interval and then compare the results.

The algorithm adjusts the step size dynamically to

ensure the solution meets the speci�ed error criteria.

(See ref. 17 for more discussion on adaptive-step-

size ODE solver algorithms.) If this type of algo-

rithm were applied to the numerical integration of

acoustic integrals, the user would be assured of the

solution accuracy. The work required by adaptive

ODE algorithms often orders of magnitude less than

for constant-step-size algorithms because these algo-

rithms can take large steps when appropriate. For

this reason, we propose that this technology should

be incorporated into future acoustic-integral algo-

rithms.

Summary

In this paper we have discussed several of the

numerical algorithms available for the solution of

acoustic integrals. The presentation of these al-

gorithms is applicable to formulations that origi-

nate from either an acoustic analogy or a Kirch-

ho� method. The type of formulation (retarded

time, collapsing sphere, or emission surface) deter-

mines, to a large extent, the ultimate computa-

tional e�ciency and robustness of the algorithm, but

several implementation options exist for each for-

mulation. Retarded-time algorithms are the most

robust and e�cient type, but retarded-time algo-

rithms are not well suited to applications with

supersonic-source motion. Solution adaptation has

been demonstrated to increase accuracy and reduce

computational work. Future solution adaptation

should utilize a measure of the solution error in the

adaptation process.
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