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(C] 8 corrected for Mach number
0 angular position of a far-field location
Lagrange multiplier

timal aerodynamic shapes is presented in this paper. The pux
objective of any optimization problem is to find the optimum p
of a cost function subject to a certain state equation (Gov- ¢
erning equation of the flow field) and certain side constraints. ¢,
As in classical optimal control methods, the present approach v
introduces a costate variable (Lagrange multiplier) to evaluate
the gradient of the cost function. High efficiency in reach-

ing the optimum solution is achieved by using a multigrid 1.
technique and updating the shape in a hierarchical manner
such that smooth (low-frequency) changes are done separately
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INTRODUCTION

Analysis of flow fields using computational fluid dy-

from high-frequency changes. Thus, the design variables are "@mics (CFD) has come a long way. Today, accurate com-
changed on a grid where their changes produce nonsmoothPutation of the flow field around realistic aircraft configura-
(high-frequency) perturbations that can be damped efficiently tions using the Navier Stokes equations with turbulence mod-

by the multigrid. The cost of solving the optimization problem
is approximately two to three times the cost of the equivalent
analysis problem.
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eling can be done at affordable cost and reasonable turnaround
time. Design and optimization of aircraft configurations, on
the other hand, is far from this level of maturity. In the
last two decades, many different techniques have been devel-
oped to design aerodynamically better aircraft. These tech-
nigues can be classified into three broad categories, namely
inverse design methods, loosely coupled optimization (LCO),
and tightly coupled optimization (TCO).

The inverse design methdd, pioneered by Lighthill,
requires a priori knowledge of a desirable pressure or velocity
distribution and some strategy for obtaining a shape that
produces this distribution. The quality of the shape obtained
from the inverse design method is strictly a function of the
distribution it is required to match. Therefore, a weakness
of this approach is its dependence on the experience and
knowledge of the designer to establish desirable velocity or
pressure distributions. In addition, the method does not lend
itself to the imposition of constraints.

In the LCO approach, an analysis code interacts with a
numerical optimization code to find a shape that meets some
design objective (i.e., minimizes some cost function). To
achieve this goal, the analysis problem is solved many times
to find the best combination of perturbations to the design
variables that both minimizes the cost function and satisfies
the constraints. This process is repeated until the cost function
cannot be further reduced. Examples of this approach are
found in Refs. 7-10. The approach can be viewed as a two
part process: an inner loop that finds both a direction and
a step size to update the design variables and an outer loop
that repeats the inner loop until the cost function reaches a
minimum. If each inner-loop pass requirdssolutions of



the analysis problem (wheig is proportional to the number
of design variables) and the outer loop requi@gerations
(whereC depends on how far the initial conditions are from a
minimum), then the cost of this approach is approximabtely

x C times the cost of the analysis problem. The LCO method
can be improved by analytically evaluating the sensitivity
derivatives needed to update the design variablddsually

this requires the inversion of a very large matrix. For three-
dimensional problems, the size of this matrix can render the
method impractical with current computer technology.

Even greater efficiency can be achieved through a TCO
method. With this method, the optimization and analysis
problems are attacked simultaneously. The TCO problem
requires the solution of an adjoint problem equivalent in
complexity to the analysis problem. This results in an overall
cost that is proportional to@ The factor of 2 results from
doubling the number of equations that govern the problem.
This approach has been discussed in Ref. 12. Even this
procedure can become prohibitively expensive for practical
aerodynamic design and optimization problems.

The One-Shotmethod®** overcomes the unacceptable
cost of the existing design and optimization procedures. It
brings the cost of design and optimization to the same order
as that of a single analysis. High performance is achieved by
exploiting the property of the partial differential equations (as-
sociated with the scales (frequency) of the errors) which gov-
ern the physics of the flow and by the efficient damping out
of high-frequency error components with multigrid. Consider
the subsonic flow over an airfoil profile. The change in the
shape of the profile of a given wavelength produces changes of

the same wavelength in the solution. These changes penetrate

into the flow field only up to a distance that is proportional
to the wavelength of the perturbation. Thus, while the high-
frequency changes in the shape of the airfoil produce changes
in the solution that are of high frequency and remain local to
the neighborhood of the airfoil, the smooth (low-frequency)
changes in the shape produce smooth changes to the solutio
and are global in nature. Typically, any relaxation scheme
quickly damps the high-frequency components of the error
on a grid. Multigrid efficiently damps the whole spectrum of
error components by relaxing the governing equations on a
sequence of grids of varying resolution.

Therefore, the basic idea of tl@ne-Shotmethod is to
change the shape of the airfoil profile in a hierarchical man-
ner such that smooth changes are made separately from high
frequency changes. Because each of these changes involves
different scale, the governing equation of the flow field can be
solved efficiently on grids of appropriate resolution. Thus, the
flow field due to smooth changes in the shape of the airfoil is
solved on coarse grids, and the flow field due to increasingly
high-frequency shape changes is solved on increasingly fine
grids. This breaks the optimization procedure into a sequence
of suboptimization problems, each of a given scale; therefore,
the problem is well conditioned. The resulting optimization
procedure is very efficient because the work on a particular
scale is done on the appropriate grid. (Il conditioning results
from working on many scales simultaneously.) Thee-Shot
method is implemented within a full approximation scheme
(FAS) full multigrid (FMG) algorithm. The solution process
starts on the coarsest grid, where only the smooth component
of the shape function is updated. This solution is interpolated
to the next finest grid, where it serves as an initial approxi-
mation of the solution on that grid. This process is continued
until the finest grid is reached. Thus, smooth (low-frequency)

n

are updated on finer grids. The fine- to coarse-grid transfers
are designed such that the optimization problem at each grid
level is driven by the fine-grid residual. The resulting algo-
rithm has an estimated overall cost that ranges from two to
three times the cost of the analysis problem.

The successful application of th@ne-Shotmethod to
the aerodynamic shape design problem was first reported in
Ref. 14. The capability of the method was demonstrated by
using the small-disturbance potential equation as the govern-
ing equation of the flow field. However, in that study, the
issue of updating the grid was avoided. In the present study,
the full potential equation is used as the governing equation;
hence, the grid must be updated as the shape changes. In this
work, the adjoint equation and the corresponding gradient of
the cost function are derived. The solution procedure and
some typical results are also presented.

2. CONSTRAINED MINIMIZATION PROBLEM

A general constrained minimization problem can be
stated as

min I° [0, Q(b)] (2.1
subject to
R[b.Q(b)] =0 (2.2)
and
Calb, Q)] <0 (n=1,2,...,N) (2.3)

where F' is the cost functiond the design variables; an@,

the state variables. The set of state equations is denot&tl by
and the side constraints are denotedthy, C,, is referred to

as a side constraint because the state equation is considered
to be the primary constraint of the problem.

In aerodynamic minimization problems, the cost func-
tion is, for example, the drag coefficient; or the ratio of
drag to lift Cy/C,. The design variables are, typically, the
shape parameters that define the shape of the body in the
flow field. The state equations are the governing equations
of the flow field and their boundary conditions. Depending
on the level of fidelity of the mathematical model, the gov-
erning equations are the Navier-Stokes equations, the Euler

gquations, or the potential equations. The side constraints are
either geometric constraints like the maximum thickness of
the airfoil section, the volume of the wing, or aerodynamic

constraints like maximum liftifax C,).

2.1 The Necessary Conditions

The objective of the minimization problem is to fibd
and the correspondin@* such that?'(b*, Q*) is a minimum
and the state equations and the side constraints are satisfied.
A necessary condition fob* to be at a minimum is

VoF(b*,Q*) =0 (2.4)
where .
OF dQ\ " oF
ViF = b + <%> @ (2.5)

(Vi Fwill be referred to as the gradient #f). This necessary

shapes are updated on coarse grids; high-frequency shape§ondition can be proved by contradiction as follows. The



Taylor-series expansion df in the neighborhood ob* and
Q* can be written as

F(b* +eb Q" + ec}) = F(b", Q") +eb" V, F(b", Q")
+0(<%)
~ ~ (2.6)
wheree is a positive scalar anblis a vectorgb is the change
in b*, ande Q is the corresponding change@" that satisfies
the state equations and the side constraintsZlf'(b*, Q*)
is nonzero, then a vectdr must exist for which
bV, F(b*,Q*) <0 2.7
(e.9..b = —V,F(b*,Q%)). A vectorb that satisfies (2.7) is
called a descent direction &t. Given any descent direction

b, a positive scalag exists such that for all positive that
satisfye < ¢,

bV F(b*, Q%) +0(%) < 0 (2.8)
If we substitute (2.8) into (2.6), then
F(b* +eb, Q" + ec}) < F(b", Q% (2.9)

for all suche. Hence, unles¥,F(b*, Q*) = 0, the neigh-
borhood ofb* contains points with a lower function value
than F(b*, Q*). The other necessary conditions that must be

satisfied at the minimum are the state equations and the side

constraints.

2.2 The Minimization Process

At some initialb, any minimization process seeks to find
a descent directioh and a step size in which to change
such that
F(b+¢b,Q+2Q) < F(b,Q) (2.10)

whereQ is the corresponding change @ that satisfies

The Step size

Once the descent direction has been determined, the next
step is to evaluate the step size One approach is to do a
line search. The objective of the line search is to finslich

~ ~ 2
that HV,,F (b +eb,Q+ eQ) ” is a minimum. That is,

aHva(b+ b, Q+ ec}) ’(2
de

=0 (2.13)
If we use a Taylor series expansion, then we can write

H Vol (b+¢b, Q + Q) ’(2

= |VoF(®. Q) +eViF® Q)b+ 20+ O() H2

=[ViF (b, Q)" Vo F(b, Q) +2¢[Vo F(b, Q) Vi F(b, Q)b
+ B [VEF(b, Q)] VEF(b, Q)b+ 2[VuF (b, )] C}

+0(¢)

(2.14)
whereC' denotes the (?) term of the expansion. Note that
Vi F includes the variation with respect . If we set the
derivative with respect te on the right-hand side of (2.14)
equal to 0 and solve for, then

__ [VoF' (b, Q)" VEE (b, Q)b
BI[VEE (b, Q)T V2E (b, Q)b+ 2[V,F(b, Q)1 C
+0(<%)

(2.15)
Near the minimum, becausé,F' is small, the second term
in the denominator is negligible in comparison with the first
term; hence, it is dropped. Therefore, if we also neglect the
O(e?) terms in (2.15), then the step size becomes

the state equations and the side constraints. This process is

repeated several times until a minimum is reached.

The Descent Direction

A descent directiol can be determined as follows. The
Taylor series expansion @ aboutb andQ can be written as

F (b +¢b,Q + ec}) = F(b,Q) +¢b" V4 F (b, Q)
+0(e%)

whereV, F' is given by (2.5). Equation (2.11) clearly shows
that if

(2.11)

VW l(b,Q)
Vo F (b, Q)]
then (2.10) is satisfied. Equality occurs in (2.10) at the
minimum whenV,F(b*, Q*) = 0, whereb* is the optimum
value of the design variables ar@* is the corresponding

b= (2.12)

value of the state variables that satisfies the state equations.by VIF(b,Q

Therefore, to obtain the descent direction, the gradient of

must be evaluated. The efficient and accurate evaluation of =

this gradient is one of the important but difficult steps in any
minimization scheme. The formula for the gradient of
given by (2.5), is not a very useful one because, in general,
dQ/db is difficult to determine . However, by using the
adjoint method, this difficulty can be easily overcome. This
method is outlined in section 2.3.

[VoF(b, Q)" ViF(b, Q)b
bI[VEE (b, Q)" VIF(b, Q)b

(2.16)

where Vi F is a symmetric matrix and is often referred to

as the Hessian. Computation of the Hessian is expensive;
the cost is proportional to the number of design variables.
However,V; Fb can be evaluated relatively easily with finite

differences as follows:

) Vb (b+2b,Q+2Q) - ViF(b,Q)
Vi F(b, Q)b = —

‘ (2.17)
where ¢ is a trial perturbation. To find the step size, the
design variables are perturbed with an arbitrarily sraalind
the new values of the state variables that satisfy the state
equations and the side constraints are determined. Next, the

new gradier¥,F (b +¢eb,Q + e@) is evaluated, followed

)B. Then, the step size is determined with
16).



2.3 The Adjoint Method adjoint equations form an additional set of necessary condi-
tions that must be satisfied at the minimum. In summary, the

As stated earlier, the efficient and accurate evaluation necessary conditions that must be satisfied at the minimum are

the gradient ofF' is one of the important but difficult steps
in any minimization scheme. The most elegant way of deter-
mining this gradient is to use the adjoint method. The adjoint

equations, also referred to as the costate equations, can be

derived as follows. In the following derivation and in the rest
of the paper, we assume that no side constraints exist. For a
small change:d in b and a corresponding chang€ in Q

that satisfies the state equations (2.2), we can show that

T
()

oR oR
b
With (2.5), we can write

g 2
ag) +0(®) =0  (2.18)

s s OF ~pOF
eb” Vi =¢b b +eQ 20 (2.19)
where 10

If we add a term, which is the product of (2.18) and an
arbitrary multiplierA, to (2.19), then we get

o 0 dF <, 9F
eb" V' =¢b ab—|—6Q 20
o (OR\T . /OR\"
+e bT<%> +QT<£> A+0(%)
(2.21)

The arbitrary multiplier is often referred to as either the La-
grange multiplier, the costate variable, or the adjoint variable.
If we rearrange (2.21), then we get

v, r = et | (2B) a4 28
eb " V' =¢b |:(8b> z\—|—8b
. (2.22)
~r|/OR OF 2
+eQ {(w) ,\+8Q +0(e?)
If we chooseA such that
OR\" . oF
<@> A+ @_0 (2.23)
then (2.22) becomes
Vv, F = bt | (2R T,\+£ +0(%)  (2.29)
oveh=e ab ab ‘ :

Equation (2.23) is the set adjoint equations or the costate
equations. The adjoint equations are similar to the linearized
form of the state equations. They include the adjoint boundary
conditions that correspond to the boundary conditions of the
state equations. If we neglect thge*) terms of (2.24), then
the gradient ofF' can be written as

> T
The gradient off' given by (2.25) is much easier to evaluate

than the one given by (2.5). By introducing the Lagrange
multiplier, the need to evalua#® has been eliminated. The

oR
ab

A 2L

= (2.25)

VI,F:<

Rb.Q(b)] = 0
OR\",  OF
(55) 350
OR\" OF
The derivation presented above is for a general con-
strained minimization problem. In the following section, the

b
adjoint equations and the gradient of the cost function are de-
rived for a specific set of state equations and a cost function.

(2.26)

=0

3. DESIGN OF OPTIMAL AIRFOIL SHAPES

The design of optimal airfoil shapes is a constrained
minimization problem. The objective is to find the optimal
shape of the airfoil that will minimize a cost functidn sub-
ject to the state equation of the flow field and side constraints.

3.1 The State Equations

The analysis problem, defined by the state equation, con-
sists of finding the flow over a specified shape for a given
free-stream Mach number and angle of attack. In order to fo-
cus on the optimization procedure, the flow model considered
is the subsonic potential flow over an airfoil profile.

Consider the steady irrotational flow past a two-
dimensional airfoit>!® The governing equation of the flow
field, known as the full potential equation, is

div(pVe) =0 (3.1)
The boundary condition on the airfoil is
Vé-n=0 (3.2)
At infinity the boundary condition is
Vé=Us (3.3)

For the Kutta condition, the circulatiofi around the airfoil
is such that

the velocity at the trailing edge is finite and continuous
(3.4)
In these equations} = ¢(x, y) is the full velocity potential,
p = p(¢) is the densityn is the unit normal, an@/ is the
free-stream velocity. The densigyis given by

—1 NEEL
p=|1- 5= ML(IVel - 1) (3.5)

whereM ., is the free-stream Mach number amds the ratio
of specific heats. If is the angle of attack of the airfoil, then
the free-stream velocity is given by

Uq = Ugo[cos (¢)i + sin ()] (3.6)

wheret andj are the unit vectors in the andy directions,
respectively.



3.3 The Design Variables

The airfoil is represented as follows:

K
k=1

(0<z<1) (3.11)

?

K
k=1

wherea] andat are the amplitudes of the shape functigias

on the upper and lower surfaces of the airfoil, respectively.
The design variables, must be determined to obtain the
optimal shape of the airfoil. Letx denote a vector whose
elements are the design variables. That is,

Figure 1. Computational domain. U U U L L LT
Q= 0, Qg ey Qg O, Qg ey Qg (3.12)

3.2 The Computational Domain The functionality of the shape functions will be presented

The computational domain is shown in Figure 1. The later.
interior of the flow field is denoted b§; the upper and lower
surfaces of the airfoil are denoted byandL, respectively. 3.4 The Optimization Problem
The far-field boundary, located at a finite distance from the
airfoil (30 to 50 airfoil chord lengths) is denoted K. To The model problem chosen is the design of an airfoil

impose the Kutta condition around the airfoil, an artificial Shape that can match a given target potential. Given a target
boundary or cut that begins at the airfoil and extends to the potential distributionpo around an airfoil, the objective is to
far field is introduced. A jump in potential that is equalfo ~ find a that will minimize

is allowed across the cut. For convenience, this cut is chosen .

to emanate from the trailing edge of the airfoil. The top and Fla, ¢(a)] = / (¢ — ¢o)’do (3.13)
bottom sides of the cut are denoted Byand B, respectively. UYL

The jump across the cut can be written as ) ) o
subject to the state equations, whéeg which is an element

6T P =T 3.7) of the airfoil, can be written as
do® = da’ + dy? (3.14)

The value of thd" is determined by requiring that the velocity

perpendicular to the trailing edge bisector be equal to 0 at the Note that the choice of this particular cost function does not

trailing edge. A good approximation fdr is given by make it an inverse-design problem. Unlike inverse-design
problems, the minimization is done over a finite number of
T =g, — g8 (3.8) design variables. This approach also can be used, for ex-

ample, to find the optimal shape of an airfoil that has the
minimum D/ L (Drag/Lift) subject to geometric and aerody-
namic constraints.

To make the presentation of the derivation of the adjoint
equations simple and easy to understand, the flow is assumed
i ) ) » to be incompressible (i.el . = 0); therefore,p = 1. In
At the far-field boundary, the circulation modifies the  his case, the full potential equation reduces to the Laplace

wheret.e. refers to the trailing edge of the airfoil (refer to
Appendix C for details). To satisfy mass conservation across
the cut, derivatives of the potential normal to the cut are
required to be continuous.

velocity as follows: equation. Also, no side constraints are considered in this
derivation. Therefore, the specific optimization problem con-
Vé-n=Usx -n+ Lv@ .n (3.9) sidered here is
(o] 27]_ .
min / (6 — ¢o)’do (3.15)
where e
U+L

O =21 —tan™! (\/1 — M2 tan {9) (3.10) subject to

) . ) ) div(Ve¢) =0 in Q (3.16a)
and4 is the angular position of a far-field point. For conve- Lo
nience,n is the unit normal on the boundary. The far-field Vo-n=0 on the airfoil  (3.16b)
boundary condition given by (3.9) is consistent with the in- Vé-n=Usx n+ Lv@.n in the far field (3.16¢)
27

finity condition stated by (3.3).
6T —¢® =T along the cut  (3.16d)

wherel' is given by (3.8).



Figure 2. Domain after perturbation.

3.5 The Adjoint Equations

Vé-n=V(§Veé-t)i on the airfoil (3.22b)
V¢ -n= Zlve ‘n at the far field  (3.22c)
Ky
¢t —4® =T along the cut  (3.22d)
where
f = &Ee. - (g]t?e. (323)

If we introduce a Lagrange multiplier and use (3.22a),
then (3.20) can be written as

&IV F = / 26 — do) \/+_yw tdo
- /.2(¢_¢0)ﬁv¢'td0

L

+ /. (¢_¢0)2 yx!lx d

As stated earlier, the objective of the optimization pro- U%L
cedure is to seek a descent direction and a step size in which " e
the design variables can be changed so that the cost func- + / A9 = Po)gdo
tion is decreased. To determine the descent direction and the UL

step size, the gradient of the cost function with respect to
the design variable¥ , ' must be evaluated (refer to section
2.2). As shown in section 2.3 the adjoint method offers an

+ [ ai V) AdQ
/ iv(va)

elegant means of evaluating the gradient. The derivation of ¢, o integrate by parts, the last integral can be written as

the adjoint equations is presented below.
Let the design variables be perturbed such that
(3.17)

whereea is the change inx; ¢ and & are the step size
(magnitude) and direction, respectively, of the changexin
Figure 2 shows the domain after the perturbation, wHére

a— a+ea

andL denote the upper and lower surfaces, respectively, of the

new airfoil and? denotes the new domain. The shape of the
resulting airfoil 7Y% and the corresponding potentialthat

satisfies the governing equation and its boundary conditions

in the new domain can be Written as
Ut =gVt eyt (3.18)
6= ¢ +ed (3.19)

whereej represents the change in the airfoil shape aad

represents the corresponding change in the potential. We can

show from (3.13) that

&'V F = /2(¢ — ¢0) Vé - tdo
i

N DY L .

v i (3.20)
+ [ G- oor e

U+L

+ [ 26-d0)dto

UtL

wherey, = dy/d« andt is the unit tangent (refer to Appendix
A for details). The objective of this derivation is to eliminate
¢, where

- d¢ &
d=Ta (3.21)

From the governing equation and its boundary conditions
(3.16), we can show that
div(vé) =0

in Q (3.22a)

/ ' div(va) A = / | div(VA)$d9

- /A(va.n)dw/(w.n)&dr
! (3.25)
where the unit normak points into the flow field?; dr is
an element orr, which is the path of integration around the
domain{2 and can be expressed as
T=L+U+T+0+B (3.26)

If the integrals are split along into different components and
substituted into (3.24), then we can write

V(zF / 2(¢ ¢O V¢ tdcr

V1 —|—y

Vo - tdo

- / 2(¢ — ¢0)7/1:——y2

L

+ /.(¢_¢0)2 Yoz d

. 1493
U+L

+ [26 - 60)dto

U4L

+ / C div(VA)39
J

- / A(Vé-n)do + / (VA -n)pdo

uhL UL
— / )\(V<5~n)dr+ / (VA'")quT

4B T4B

/ (w /(VA n)gdr

o

(3.27)



BecauseV¢ is continuous across the cut amd points in
opposite directions along the top and bottom boundaries of
the cut, we can write

/ A(Vé-n)dr = / (X" =7

T+B Cut

) (w? . n)dr (3.28)

If we assume tha¥ X is continuous across the cut, then we
can write

/ (VX-n)ddr =T / VA-ndr (3.29)

T4B
If we use (3.28), (3.29), and (3.22b-d), then equation (3.27)
can be written as

&'V F = / 2(¢ — o)

Cut

VY V4. tdo

V1 —|—y

V¢ - tdo

—./ 2(¢—¢o)\/ﬁ—y2

L
+ / (6 — go)? 2P g5 4 / 26 — do)ddo
U+L

. 1+42
U+4L
+/ div(V)$dQ
- / AV(§V6 - 1) - ido + /(w n)ddo
UtL

—AB) (V<5~n)dr+f‘ / VA-ndr

Cut

UtL

AVO - n dr—i—/(V)\ n)ddr

~ (3.30)
If we substitute forl' from (3.23) and rearrange, then (3.30)
becomes

AIVLF = [ 206 — g0) =2 V4.1
- /2(¢—¢0)\/%V¢'td0

L
+ /(¢_¢0)2 YxYaz d

. 1493
U+L

+ / ' div(VA)gd
J

- /W(gw 1) -ido

U4L

+ / [VA- 1+ 26 — do)|ddo

UtL

(35— )| [ vanar— X [ave. dr)
(o=t ) [ yomie L oo
/(VA n)pdr — / (AT—)\B)<V<5.n)dT

Cut

(3.31)
We chooseX such that
div(VA) =0 in©Q
VA n+2(¢—¢o) —Té(zx —ate)=0 onl
VA n+2(¢—¢o)+T6(x —a4e)=0 onU

VAin=0
AT —AB =0

in the far field

along the cut
(3.32)

where

T = /VA ndr - — /we ndr (3.33)

Cut

andé denotes the Dirac delta functiohd. stands for trailing
edge of the airfoil). Equations (3.32) are the adjoint equation
and its boundary conditions (also called the costate equations).
These equations are similar to the linearized state equations.
The size of the system is the same as the size of the state
equations and can be solved with the same technique used to
solve the state equations.

Becausediv(VA) = 0 in 2, we obtain the following
from the divergence theorem:

/ VA ndr =0 (3.34)

Therefore, for (3.32) to have a solution, we can show that

/ (¢ — ¢o)do =0 (3.35)

UGL
Equation (3.16) clearly shows that a constant can be added to
¢. We can choose this constaft such that

[ (645~ énio=0 (3.36)
UL
Therefore, i
J (¢ = o)do
__U4L
¢c = Tdo (3.37)
U+4L

3.6 The Gradient of F
If (3.32) is substituted into (3.31), then it reduces to

&IV F = / 26 — do) \/+_yw tdo
—./ 2(¢—¢o)\/T—y%V¢'th
b  uei (3.38)
+ / (¢ — ¢o) mda
U+L
- / AV(§V6 - 1) - ido
UL

If we integrate the last integral by parts, then we get

- / AV(§V6 - 1) - ido

UlL

U+L U+L

g
= [ —L (VA -n+ VA-)Ve-td
[ o
U
+/L(yxw.n —VA-t)Vé-tdo
J /1492

L

" YoYzal

+ / o 2>\V¢ tdo

U+L

(3.39)



If (3.39) is substituted into (3.38) and rearranged, then we
can write

&'v.r
= [16= 605 4 AV6 - tri] {2t
U
+b/[ (6= do)a = Vo + V1) 22
# [ 16 = 605+ X6 s T2t
L
L/[ (¢ —do)ya — VA -ny + V- t];fT—tid

(3.40)
If we substitute fory from (3.11), then (3.40) can be written as

where
V= [ 16— 6000, +AV6 -t 12
U
Vo-tfy
+ /2 z — VA -nys + V-t —==d
U/ (¢ — o)y ny ]m s
(3.42)
and
k= [ 106 = 0020, +AV6 - tuse fi] 2o
L
_ V- tfy
L/ (¢ — ¢o)ya — VA -ny, + V- t]imda
(3.43)

Equations (3.42) and (3.43) are the components of the gradient

of F. When ¢ satisfies the state equations (3.16) and

is used to relax the state and adjoint equations. At the end
of one or several multigrid cycles, the optimizer is called and
the design variables are updated. In this process, the design
variables are updated only on the finest grid. A schematic of
this strategy is shown in Figure 4.

OO’

A
Relax state equation
Relax adjoint equatiol

Optimizer

C ComputeV,F )

satisfies the costate equations (3.32), then the components

of the gradient off' can be evaluated with (3.42) and (3.43).
BecauseV, F' = 0 at the minimum, we can clearly see that

pi =0

3.44
nk =0 (3.44)

} for k=1,2,. .K

3.7 A Design Strategy

Figure 3 shows a typical design strategy. In this process,

at some initial conditions the state and adjoint equations are cgarse

solved, and the gradient df is computed. If the gradient is

equal to 0, then a minimum has been reached and the iteration

is terminated; otherwise, the new descent directioand the
step size: are computed, and the design variables are updated.

The iteration is repeated until the gradient vanishes. The cost 4

of this strategy can be estimated as follows. Let the cost of
solving the state equations be equakKtoThe cost of solving
the adjoint equation is at most equal Ko Let the number

of design iterations required b¥. Therefore, the total cost
of doing the optimal design is approximatelKI®2 with N,

at best, equal to the number of design variables. In practice,

especially for nonlinear problemi,is many times the number

of design variables. A factor of 100 is not unrealistic. One
way to bring the total design cost down is to reduce the
magnitude oK. One of the most practical and proven ways of
achieving this is by using multigrid. Here, a multigrid scheme

Figure 3. A design strategy flowchart.

Fine

h
o [Refaxg.]
an
e [Relaxg.]

E—

One multigrid cycle

Figure 4. A multigrid strategy.

THE ONE-SHOT METHOD

The One-Shotmethod goes one step further by embed-
ding the design process within the multigrid cycles. This
method essentially makes = 1. Thus, the cost of optimal
design is approximately equal t&2In this method, high ef-
ficiency is obtained by exploiting two key phenomena. The
first one is the ability of multigrid to efficiently reduce high-
frequency components of the error due to a perturbation, and
the second one is the nature of propagation of perturbations
in a flow field. These phenomena are explained below.



4.1 Multigrid Efficiency Consider the small-disturbance potential equation in the

. ) ) half-spaceld < y < o0, —o0 < & < oco. If the flow is
In any relaxation (smoothing) process, the high- incompressible, the governing equation is
frequency error components of the space discretization op-

erator of the differential equation under consideration are V24 =0 (4.3)
generally damped in a few iterations. The low-frequency

components are the slowest to be damped. Consider a one-ang the boundary condition applied @t= 0 is
dimensional domain of lengtlh discretized intoN cells of

uniform grid spacingh = L/N, where the grid index ranges d¢ _ of (4.4)
from 0 to N. This grid will be referred to as thk grid. If dy ~ dx ’

we assume periodic boundary conditions, then the error at the

nth grid point can be written in Fourier series as wheref(z) is the shape of the boundary over which the flow

must be determined. #f+4 is the potential due to a change in

N shape tof + f, the governing equation for change in potential
en= Y Agetm 4.1) éis
Jj=—N
Vi =0 (4.5)
whereA; is the amplitude of thgh harmonic and = /—1.
The phase anglé can be written as and the boundary condition gt= 0 is
JT d¢ _of

8 = A (4.2) 9y~ o0 (4.6)
The phase angle covers the domdinx, =) in increments Let -
of #/N. The value|#| = = corresponds to the highest af — W 4.7
frequency that is visible on this grid, namely the frequency dz

of wavelength2h. If a coarse grid Kl grid) is constructed by wherew is the frequency of the perturbation. A solution to the
removing every other grid point of tHegrid, then the highest ~ governing equation (4.5) that satisfies the boundary condition
frequency that is visible on this grid correspond$tio= /2 is .

(i.e., the frequency of wavelengtth = 2H). Therefore, the §=e Il (4.8)
frequencies that correspond g2 < |6| < = and are visible
on theh grid cannot be represented on thegrid. These
frequencies are considered to be high frequencies on ghniel
and the relaxation scheme can damp these frequencies in a few
iterations. The remaining frequencies in the spectrum, which o )
correspond t@ < |8| < =/2 and are well represented on the Figure 5, which is the plot of (4.9) for a few select frequencies,
H grid, are referred to as low frequencies on thgrid. The

frequencies that are visible on thegrid can also be separated

into high and low frequencies, based on how well they are 1.0
represented by the next coarsest grid. The high frequencies
that correspond to thid grid can be damped quickly by a few
iterations of the relaxation scheme on this grid.

In the multigrid method?:*8 high efficiency is obtained
by relaxing the discretized equation on successively coarser
grids, where the high-frequency error components that cor- | $ |
respond to each grid are damped efficiently. In the design 0.4
process, high efficiency is obtained by changing only those
design variables that produce high-frequency perturbations in 0.2
the flow field on any grid. Therefore, the basic premise of . .
the One Shotmethod, on any grid, is tmmake changes in the 0.0 Y FL L T M= S
design variables that produce high-frequency perturbations 0 P 4 6 8 10
the flow field.

The magnitude of is

9] = el (4.9)

"\
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4.2 The Effect of Airfoil Perturbation on the Flow Field . e
Figure 5. )qﬁ' versus y.

The other phenomenon that is exploited by thae-

Shotmethod has to do with the way in which a disturbance is shows that the region Whedéis |arge becomes thinner as the

propagated in a flow field. In a subsonic flow, for example, frequency increases. Let" be a location where is less
a smooth perturbation is propagated through the entire flow than some smalt. That is,

field and a high-frequency perturbation is felt only in a small
neighborhood around the source of the perturbation. That is, )q;(w’ y*)} ce=eF (4.10)
high-frequency components of the perturbation decay rapidly

away from the source. This phenomenon is illustrated in the

following analysis. If we substitute forg, then

eI =P (4.11)



Therefore, 4.3 The Shape Functions

« —In
y = |w|( ) (4.12) As presented earlier (section 3.3), the airfoil is repre-
sented as follows:
Equation (4.12) clearly shows that as the frequency of the
perturbationw increaseg* decreases. Table 1 show’ for UL £ UL
a few select frequencies when= 10~*. For the discrete y =) oy ful(w) (4.14)
k=1
Table 1. y* versus v wherea andok are the design variables ayfid are the shape

functions. As explained in the previous two sections, to ob-

w 1/4 1/2 1 2 4 tain high design efficiency, the changes in the design variables
i 27 6 13.8 6.9 35 17 on a grid should produce nonsmooth (high-frequency) pertur-
Y : : i i i bations in the flow field. This is achieved by using a set of

orthonormal functions as shape functions. Orthonormal func-
problem, (4.9) can be written as tions are increasingly oscillatory. Each of them is assigned
to a grid where a change in the amplitudes causes nonsmooth
S (el uh) _ —lel=1) o perturbations in the flow field. Often, basis functions that cor-
)‘75' =¢ =¢ (=12..J+1) respond to some known airfoil shape must be used. If these
(4.13) functions are not orthonormal, the corresponding orthonor-
wherer/J < ¢ < = is the frequency scaled to the grid spac- mal functions can then be determined by a Gram-Schmidt
ing k. Figure 6 shows the response to different frequencies procesd® A Gram-Schmidt procedure for orthonormalization
for the discrete problem. Table 2 shows the grid locajibn  can be developed with the property of orthonormal functions,
beyond which|é| < 10~*. It shows that the high frequency namely,
perturbations are significantly damped by about the fifth grid
point ( = 0 is the first grid point). 1
/ fm(@) fa(z)dz =0 (m#n)

0 (4.15)

[ Fawae =1

Let g«(z) be the functions that are not orthonormal. First, the
orthogonal setfx(z) is found from the following relations:

|21 1 i
. fi(z) = g1(2)
] fo(2) = g2(2) + az1 fi(x)
10 ] i ] (4.16)
j fe(2) = gr(z) + Zakmfm(ib')
m=1
Figure 6. )q;' versus j.
where .
[ 9k (@) fn () d
Table 2. j* versus pm = — (4.17)
J fa(w)da
9 x4 | 72 | 37/4 ™ 0
" Finally, the orthonormal functions are found by normalizing
J 8.8 4.4 2.9 2.2 fr(z) as follows:
In theOne-Shotnethod, a shape function is perturbed on fi = G (4.18)
a grid where it produces high-frequency error components. As [1 72(c)de
described above, these errors penetrate only a small distance ok v

into the flow field. Hence, they can be quickly damped
by a few relaxations of the discrete equations in a small The Gram-Schmidt process described above can be pro-
neighborhood around the airfoil. grammed in symbolic language to find the expressiongfor
or it can be implemented by numerical integration, in which
case the shape functions are defined as an array of numbers.

10



As an example, consider the NACA 0012 airfoil, defined
by

4
’U_ X &
y —;ﬁkgk() (0<z<1) 4.19)

=—y

where 3, and g, are given in Table 3. The NACA 0012
shape has been slightly modified to ensure that it closes at the

trailing edge. The same shape can be expressed in terms of

the orthonormal functions as

4
’U_ o T &
y —; k fr(@) (0<z<1) 4.20)

=—y

where the orthonormal functionf of the basis functions and
their corresponding amplitudes, are given in Table 4. The
orthonormal shape functions are shown in Fig. 7. Note that
the number of zeros of; is equal tok + 1.

Table 3. Shape Functions and
Amplitudes of NACA 0012

k B gk

1 0.17814 VT —w
2 0.10128 s(1— 1)
3 —0.10968 2(1 - )
4 0.06090 (1 — )

Table 4. Orthonormal shape functions
and amplitudes of NACA 0012

k|l apx10t Ir
1| 439.474 5.47723¢;
2| 28.2339 14.7573(g2 — .928571¢1)
3| —s5.85699 54.7884(gs — .901236¢;
+.432099¢1 )
213.472(ga — 1.27406 g3
4 2.85283 +.504011g2 — .164439¢1)

11

fa

0.4 0.6 0.8

Figure 7. Orthonormal shape
functions of NACA 0012 airfoil.

4.4 The One-ShotDesign Strategy

In the One-Shotmethod, the optimizer is embedded
within the multigrid cycle as shown in Figure 8. The de-
sign variables are updated on a level where the correspond-
ing shape functions produce high-frequency error compo-
nents. In general, the low-frequency shape functions are
updated on coarse levels, and higher frequency functions
are updated on finer grids. For example, the design vari-
ables oY and oY are updated on the coarsest gi@;
oV ad, of, of, o o}, o, anda} are updated on the
next finest griddh. Some overlap of the design variables is
permitted. Thuspy, anda} are updated on gridh also.
None of the design variables are updated on the finest grid
h. The cost of solving the state or the adjoint equations on a
coarse grid is only one-fourth of the cost of solving them on
the next finest grid. Because the shape functions are perturbed
only on levels where they generate high-frequency errors, a
local relaxation around the airfoil is sufficient to damp out the
errors, which reduces computing costs. Therefore, the overall
cost of the design is dominated by the cost required to solve
the state and adjoint equations on the finest grid. The total
cost of the design process is approximately two to three times
that of one analysis.

UL

gh

Coarse One multigrid cycle —

Figure 8. The One-Shot strategy.



4.5 The Discretization and Solution Procedure 5. THE RESULTS

Test Case 1

The State Equations As our first test problem, we recover the NACA 0012

airfoil shape using the potential distribution obtained from

The computational domain is discretized with an O type the analysis of NACA 0012 at an angle of attacko8fand
of grid. The governing equation and its boundary conditions M« = 0 as the target potentiabo. Figure 9 shows the
cast in curvilinear coordinates are discretized with the finite- computedC, distribution obtained from the analysis run.
volume approach. The Gauss-Seidel line-relaxation schemeA five-level W-cycle multigrid with 128x 64 cells on the
is used to form the tridiagonal systems of equations in both finest grid was used. The FMG process was used to obtain
curvilinear coordinate directions. These systems are solved & good initial approximation for the finest grid. The analysis
with the Thomas algorithm. Note that the tridiagonal system converged to machine zere (10~'%) in 10 multigrid cycles.
is periodic in the direction that is around the airfoil. A FAS -0.5 —
multigrid scheme is used to accelerate the convergence rate of
the solution. The FMG process is used to obtain a good initial J
solution on the finest grid. The details of the discretization,
the relaxation, and the multigrid acceleration are given in 0.0 —
Appendix B.

The Adjoint Equations 0.5~ n

The adjoint equations are discretized and solved in the | | | |
same manner as the state equations. As in the case of the state 1.0 =— : : : :

equations, a FAS multigrid scheme and the FMG process are

used to accelerate the convergence rate of the solution.
Figure 9. Computed C,, distribution for NACA 0012.

The Gradient of F'

The gradient of the cost function involves only quantities The design run was similar to the analysis run. During
on the airfoil. These quantities are discretized in a manner the design process, both the state and costate equations were

that is consistent with the discretization of the state and adjoint relaxed at any multigrid level. The shape functions used were
equations. The gradient is transferred to the coarse grid in athe orthonormal functions based on the NACA 0012 shape

EAS manner. functions. The design variables were distributed such that on
the coarsest level (& 4) only oY anda} were updated. On
the next finest level (16 8), all the design variables{'5; ,)
were updated. None of the design variables were updated on
the next three levels, including the finest level. Thus, most of
the design overhead was limited to the two coarsest grids. The
During the design process, the grid is updated by moving FMG process was used to obtain a good initial approximation
only the grid points close to the airfoil and linearly decaying of the shape for the finest grid. Figure 10 shows the results
the change at the airfoil in this neighborhood. The outer of this run. The residuals of the state and costate equations
boundary of this region is determined as follows. Let and the gradient of the cost function reached machine zero
in 12 multigrid cycles. The cost function at convergence was
equal to 3x 101, which indicates that NACA 0012 was

Updating the Grid

Ymax = 7 max (e§) (4.23) indeed recovered.
o0 — Initial shape
wherer is an arbitrary constantj; = 10 in this study. Among ' Final shape
0.05

the grid lines that go around the airfoil, the one that is nearest
to the ymax location is taken to be the outer boundary of the ¥ 0.00
region within which the grids are changed. The entire grid is  -0.05
regenerated at the beginning of each FMG stage also. With -o0.10 ‘ ‘ ‘ ‘ ‘ ‘
this approach, by the time the FMG process reaches the finest
grid, only a few lines around the airfoil must be moved.

,,,,,,,,,, Target shape
0.10 : p

Final shape
0.05
Yy 0.00
-0.05
~0.10 | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

x

Figure 10. Test case 1.
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Test Case 2

For test case 2, we selected the airfoil FX 60-126/1,
a cambered airfoil whose coordinates are tabulated in Ref.
19. Figure 11 shows thé’, distribution for this airfoil at
an angle of attack 06° and /., = 0. This airfoil is not
smooth, which is reflected in the computégl distribution.
Using this solution as the target, we tried to recover the shape
with the NACA 0012 shape functions. Figure 12 shows the
resulting shape. Although the designed shape did not fall

-1.0

-0.5

0.5

Figure 11. Computed C}, distribution for FX 60-126/1.

right on top of the target shape, the residuals of the state and
costate equations and the gradient of the cost function reached
machine zero, which indicates that a minimum was reached.

The cost function reached a value ofx6107°.

Initial shape

0.10 = —— Final shape
0.05 =
y L
0.00
005 ! I ! ! ! |
0.0 0.2 0.4 0.6 0.8 1.0
x
""""" Target shape
S e . — Final shape
0.05 — )
Yy R A
0.00 |~ - T
—0.05 | T | | | |

Figure 12. Test case 2.

Next, an experiment was done to see how well the FX
60-126/1 airfoil can be represented with the NACA 0012
shape function. Figure 13 shows the result. The NACA
0012 shape functions clearly do a good job everywhere except
near the trailing edge. The reason why the optimum shape
in the previous experiment does not correspond to the shape

13

obtained from the shape fitting is not clear; one reason may be
the poor quality of the grid because the airfoil is not smooth.

FX60-126/1
—— Fitted with NACA 0012 shape functions

0.10
0.05
0.00
—0.05
Figure 13. Shape fitting with
NACA 0012 shape functions.
Test Case 3

A third test was done; this time the fitted airfoil was
used to generate the target potential. This shape is very close
to the FX 60-126/1 airfoil and is smooth because it is based
on smooth shape functions. The result of the design is shown
in figure 14. As expected, the final shape fell on top of the
target shape. The residuals of the state and costate equations
and the gradient of the cost function are shown in figure 15.

Initial shape
—— Final shape

0.2
———————— Target shape (Based on NACA 0012 shape functions)

—— Final shape
0.10

Figure 14. Test case 3.
O —
L —— State
R N N Adjoint
S -5k AR N Gradient
e .
g
(O]
~ |
kS
W10
—
715 1 l 1 l 1 ‘
0 5 10 15
Multigrid cycles
Figure 15. Convergence history.



The Efficiency of One-Shot Method

Finally, the performance of th®ne-Shotmethod with
respect to pure analysis is presented. The efficiency of a

design method is defined as the ratio of the central processing

unit (CPU) time that is required for the complete design
processp to the CPU time that is required to do one analysis
ta. Figure 16 shows this ratiop /¢4 plotted against the
number of grid cells for the last test case. The figure shows
that as the grid becomes finer the cost of design drops in
comparison with the cost of one analysis. For the finest grid
considered here, this ratio dropped below 4. The efficiencies
for the other cases were similar.

20 —
[ n
16 ® 16 x 8
3 m 32 x 16
12 A 64 x 32
tp & 128 x 64
; L
AS*
4%
ol Ll v L v L v 11y Ixi0*
0.0 02 04 06 08 1.0

Figure 16. Efficiency of the One-Shot Method.

6. CONCLUDING REMARKS

An efficient method for the design of optimal airfoil

shapes has been presented in this paper. This method bringéL4
the cost of the design process to the same order as that of the

analysis problem. It offers great potential in designing optimal
aircraft configurations efficiently at a reasonable computer
cost. However, much work is still required before practical
use can be made of this method.
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Appendix A

The Normal and the Tangent

Let the upper surface of the airfoil be
y—f(z)=0 (A1)
If the unit normaln and the unit tangent are chosen such

that the normal points into the flow field artdx » points
out of the paper, then

V1+ f2
i+ fog

1+ 2

(A.2)



wherez andj are the unit vectors in the- andy-directions,
respectively, andf. = df/dz. From (A.2) the following
inverse relations can be written

t=(—faen +t)/\/1+ f2
i=( n+Lot)/V1+ 2

Let the upper surface be perturbed in tialirection such
that the new shape is

7= f(z) +ef(x) (A.4)

The new normakh and the new tangertcan be expressed as

(A.3)

UL

 —(Berefa)iti
=
~\2
1+(fm+€x> e
it (fatel)d

1+ (fr + Efx>2

With some algebraic manipulation we can show that

V1+ f2

ﬁ:n—efixt—kO(eQ)
+ Ofe

(A.6)
f=tted® _nio()
1+ f2
If the lower surface of the airfoil is given by
y—flz)=0 (A7)

and the normal and the tangent are such thpbints into the
flow andt¢ x n points out of the paper, then
fxl - .7
VI+72)
. . A.8
= i— fu) »8)

R/ ey

From (A.8), the inverse relation can be written as

y =f(x)

n

Figure 18. Normal and tangent on lower surface.

i=( fon—t)/V1+ /2
i=(-n-fit)/V1+[2

The new normal and the tangent on the lower surface (per-
turbed in they-direction) are also given by (A.6).

(A.9)
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The Infinitesimal Segmentic

The infinitesimal segments on the original airfoil can
be written as

do? = da® + dy2

2
=ds’ + (j—f> dz® + h.o.t (A.10)
T

=ds” (14 f2) + hot

The corresponding infinitesimal segméaton the new airfoil
can be expressed as

de? = da® + dy°

L\ 2 A.11
= da? [14— (f$—|—€fx) ] + h.o.t. (A-11)
From (A.11) we can show that
~ fxfx 2
dcr_da<1+€1+f£>+0(5) (A.12)

A.1 The Gradient of the Cost Function
Let the change in the design variable be such that
a— a+ed (A.13)
The resulting airfoll shapgﬁ’ﬁ (Fig. 19) and the correspond-

ing potential¢ that satisfies the governing equation and its
boundary conditions in the new dom&hcan be written as

gﬁ,i(w) = 4" (2) + 5" (2) (A.14)
F=d+ed (A.15)

The cost function on the original airfoil is

Flo, ()] = / (¢ — ¢0)*do (A.16)
ULL
On the new airfoil, the cost function can be written as

Fla+ea, é) = / (6 — ¢0)’do (A.17)

U+L

If we use a Taylor series expansion, the potential on the new

airfoil can be shifted to the original airfoil as follows:

I

B -\ U,L
6= (58] v o)

:¢U,L+€$U,L+€g(v¢.j)U,L+O(E2)

(A.18)

Figure 19. Perturbed airfoil shape.



If we substitute forde from (A.12) and foré from (A.18)
and use (A.3) and (A.9), (A.17) can be written as

Fla+ed, ¢) = Fla,9)
26— d0)—2L_v4.1a
Eb/ (¢ ¢O)m ¢ (o4
6/2(¢_¢0)\/7+—y%v¢~td0'
2 Yoz
/(¢ $0) 1+—2
U+L
—|—€/ 2(¢ — ¢o)pdo + O(£”)
UL

(A.19)
The left-hand side of (A.19) can be expressed as

Fla+ea,d) = Fla,¢)+ea" Vo F +0(%)  (A.20)
where
d¢
VoF = 8a + (E) 3% (A.21)

and V. F' are the components of the gradient of the cost
function. If we compare (A.19) and (A.20), we obtain

aTVLF = /2(¢ — ¢0) V¢ - tdo
U

]

o — Y2y

v - ed (A.22)
+ [ ool

U+L

+ [ 26-d0)éto

UtL

A.2 The State Equations

The Governing Equation

For incompressible flow, the governing equation in the
domain 2 is

div(Vé) =0 (A.23)

After the airfoil is perturbed, the governing equation in the
new domaing is

div(Vé) =0 (A.24)

where B B
¢=¢+ed

In the region that is the intersection of both domains, we can
write

(A.25)

div(Vé) —div(Ve) =0 (A.26)
From (A.26) we can show that
div(va) = in QNQ (A.27)
Therefore, in the limit ag — 0, we can write
div(vé) = in Q (A.28)
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The Airfoil Boundary Condition

The boundary condition on the airfoil is
Vo -n=0 (A.29)

wheren is the unit normal on the airfoil. If2 is the unit
normal on the new airfoil, then the boundary condition on the
new airfoil can be written as

V(¢s+eq§) =0

With (A.6) and (A.18), the boundary condition on the new
airfoil, shifted to the original airfoil, can be written as

(A.30)

V(¢s+e$+egv¢.j) . <n —e\/%_y%t) +0(e2) =0
(A.31)

If we expand (A.31), substitute (A.29), and neglect the high-
order terms, we can write

\ /1 +y
Note that (A.32) is true on the original airfoil.

With (A.2), (A.3), (A.8), (A.9) and the boundary condi-
tion (A.29) we can show that

Vé-n=-V(§Vé-j)-n+ V¢~t (A.32)

Vo n=V(iVe-t) i— —eV2p onU
N
Ve -n=V(Ve-t) i+ ——uV?p on L
V143
(A.33)
BecausevZ¢ = 0 (the governing equation), we can write
Vé-n=V(§Vé-t)-i on the airfoil (A.34)
The Far-Field Boundary Condition
At the far field,
V¢~n:Uoo~n+2£V®~n (A.35)
T

wheren is the unit normal on the far-field boundary. After
the perturbation, we can write

V(6+ed) n=Un+ F+€FV® n  (A36)
If we subtract (A.35) from (A.36), we obtain
V¢ -n= Lvo.n (A.37)
2w
The Cut
Along the cut
6T —¢® =T (A.38)
where
I'= ¢Ee. - ¢?e. (Asg)
After the perturbation,
T ~\ B ~
(¢+20) —(p+2d) =T+el (A.40)
From (A.38) through (A.40), we obtain
¢t — 48 =T (A.41)
where o B
[=¢i. —die (A.42)



A.3 Summary

From the cost function, we get

V1+y

~ 26— do) =24 1a

' 2 YUz
+ / (¢ — ¢o) mda

&IV F = / 2(¢ — ¢O)L"2v¢ tdo
h X

(A.43)

U+L
+ [ 26-d0)ito
UtL
whereeda are the changes in the design variables &hd
are the components of the gradient of the cost function.

From the state equations, we obtain

div(va) =0 inQ
Vé-n=V(§Vé-t)-i on the airfoil
) i (A.44)
V¢ -n= 2—V® n at the far field
Ky
q;T — QZB =T along the cut
where
['=gic —dte. (A.45)
Because
div(va) =0 inQ (A.46)
then
(A.47)

// div (V&) Q=0
s
If we use the divergence theorem, then we can write
// div(vé)dg = / Vé-ndr=0
fe) T

wherer denotes the boundary 6f. Equation (A.48) implies
that in order for (A.44) to have a solution

(A.48)

zl/ve.ndmL / V(iVé-t)-ido=0 (A.49)
. .
(0]

U4L

These integrals can be easily shown to be equal to 0.

Appendix B

Presented here is the discretization and the solution pro-
cedure for the governing equations and the boundary condi-
tions. Note that the compressible full potential equations are

considered here.

B.1 The Grid

An O type of grid is used to discretize the computational
domain. The grid lines form a set of curvilinear coordinates
(&, m), where

B.1

n=n(z,y) (8.1)
The &-direction is clockwise around the airfoil, and the
direction is radial away from the airfoil. Figure. 20 shows
a coarse schematic of an O type of grid. The cells inghe
direction run from 1 td, and cells in thej-direction run from
1toJ. The grid-linej = 1/2 fromi =1/2toi =1+ 1/2
represents the airfoil. Not shown are the ghost cells around
the boundaries of the domain, where the boundary conditions
are applied.

Figure 20. The grid.

B.2 The Governing Equation

The governing equation is discretized with the finite-
volume approach. The velocity potentialis a cell-average
value and is located at the cell centery). The fluxes at the
cell faces are evaluated with central differences. Hence, this
discretization is effective only for subsonic flows. In the gen-
eralized curvilinear coordinate systé) #), the compressible
full potential equation (3.1) can be written as

H8)-300) e

where

1

-1 NEES
p= [1 — ML (84 6~ 1)] (B3
is the density and

U==¢E s + €y¢y

(B.4)
V=26 + "1y¢y
are the contravariant velocity components; &, 7., and
ny are the metric coefficients; and is the Jacobian of
the transformation. Note that is also used to denote the



outermost cell in thej-direction. The velocity components
¢- and ¢, can be expressed as

bz = ¢elo + Py

(B.5)
by = Pe&y + dnny

If the inverse of the transformation = (¢, n) and y
y(&, n) is known, the metric coefficients and the Jacobian can
be expressed as

gx = Jyﬂ
& = —Juy (B.6)
Ne = —Jye
ny = Jag
J=1/(xeyn — Tnye) (B.7)

Figure 21 shows a typical cell in the flow field. The coor-

O
i, j-1/2
[
X
Figure 21. A cell in flow field.

dinates of the vertices of the cell are known from the grid
generation. That is,
1
+ =
’] 2>

1

c=xli14+ =

T .L(Z 3
11
ylit=,j+=

2
By choosingé¢ = é5 = 1, a finite-volume discretization of
the governing equation (B.2) for the céll j) can be written

as
>+_1 ( >1__1 ( >; +1 ( >; __0
tT 3,7 247 WJT 3 v

( 1
(.9)

Equation (B.9) is a consistent approximation to the integral
form of the full potential equation.

Consider the first term in (B.9). If we substitute from
(B.4) and (B.6), then we can write

(

where

(B.8)

Y

U
7

U
7

v
T

v
T

U

J >Z+LJ :pz+%,j(y”]¢1_1"7i¢y)z+%yj (Blo)

3

(ﬁn)z+%,J =Pl 4t T L -4 (B.11)

The evaluation ofy,, is similar. If we use (B.6), then the
velocity components given by (B.5) can be written as

be = JGnde — JGcdy

B} B} (B.12)
Oy = —JTnde + JTedy

The bars over the metric coefficients and the Jacobian indicate
that they are evaluated with some mean values @ind y.
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To ensure that the numerical discretization satisfies a uniform
flow field identically, (B.12) is discretized as

($e)ipr,; = Pit1s — bus

1
(Dn)iyr,; = 7(Fit1541 = Git1i-1 + Pujis — ij-1)
(B.13)
and

(Te)ig 1, = Trd1y = o0y

_ 1
(En)ip s, = (@141 = Teprgm1 F 0041 = 351
(B.14)

oy Ty )
(B.15)
Evaluation ofy. andy, are similar.J is evaluated as

where

1

1
Ty = g(h—gj—% T irts-4

J=1/(e¢in — TnPe) (B.16)
Similarly, we can write
14
Pz = P4 3(—Yeba + iﬂ&%)z,”% (B.17)
VE &1
where
("l’.tf)z,]-}% :$l+%,j+% _wz—%,j+% (818)

and y, is evaluated similarly. The various pieces of the
velocity components given by (B.12) are discretized as

1
(9e)ij01 = 7(Dit1541 = dimtjts + b1y — dio1j)

(¢7I)z,]+% = Gi g1 — bij
(B.19)
and

i 1
(i”&)z,ﬁ% = Z(wz+1,]+1 — Tim1,541 F Tig1,; — Tiz1,5)

(En)z,ﬁ% = Loj41 — Loy
(B.20)
where z; ; is given by (B.15). Similarly,y. and y, are

evaluated.

B.3 The Boundary Conditions

The boundary conditions are imposed with one set of
ghost cells around the computational domain. For the cells
adjacent to the airfoilz, 1), the metric coefficients except
(T¢)ig1/2,1 @re computed as

(Tn)ig11 =413 Tl

(T)yp=wyp1 -2 11
(E) 1_116 13— %41 1+x_13—T,_11
Mg T oo \Tthz Ttz T Timgs Timgg

(B.21)
Similarly, the corresponding metric coefficients that are func-
tions of y are also evaluated.



The Airfoil

If we use (3.2), (B.4), and (B.6), then we can write that
(on the airfoil)

N4
(Vo -n)\/ (22 +42) = 7= 0 (B.22)
Figure 22 shows a ghost cell adjacent to the airfoil. The
.g\d\\ | © \ ¢
a \\‘ Ghost_ge/“/\lx
Figure 22. Ghost cell adjacent to airfoil.
value of ¢, 0 is set such that
v
— =0 B.23
(J >l 1 (823)
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The Far Field

Figure 23 shows a ghost cell adjacent to the far-field
boundary. Similar to (B.22), we can show from (3.9) that at
the far-field boundary

v

r ;
7= (Uoo ‘n+ §V® . n) (22 +42) (B.24)

The value of¢,, s41 is set such that

(5)
J iJ+1

27

14/(.'1,%4‘3/?)17%‘_%

z,J+5
(B.25)
The value of the circulatiof' is given by (refer to Appendix
C for details)

I'=¢r1—¢11

(B.26)

Figure 23. Ghost cell adjacent to far-field boundary.
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[ ]
. lj
m\ Top side J

Bottom side

Cut

Figure 24. Ghost cells along cut.

The Cut

Figure 24 shows the ghost cells along the top and bottom
sides of the cut. The potential along the cut has a jump
prescribed by (B.26). However, because the gradient of the
potential normal to the cut must be continuous, the potential
in these ghost cells is set as follows:

¢O,] = ¢I,] -Tr

(B.27)
br41,; =¢1,; +T

B.4 The Solution Procedure

The discrete equations are solved with a Gauss-Seidel
line-relaxation scheme. The nonlinearity introduced by the
density p is handled by lagging its value by one iteration.
Two systems of tridiagonal equations, one implicit in e
direction and the other implicit in the-direction, are solved
sequentially with the Thomas algorithm. Note that the tridi-
agonal system implicit in th&-direction is periodic. A full
approximation scheme (FAS) multigrid is used to accelerate
the rate of convergence. Line relaxation is used to avoid the
degradation in the performance of the multigrid scheme be-
cause of the presence of grid cells with large aspect ratios.

B.5 The Multigrid Acceleration

A multigrid scheme is used to accelerate the conver-
gence rate of the governing equations. In the multigrid
process, starting with the fine grid, the problem is solved on
a succession of increasingly coarser grids, and the corrections
6¢ from the coarser grids are successively transferred back to
the fine grid to obtain a new approximation to the solution. In
this process, the component of the error that appears as a high
frequency on a grid is damped very quickly by the iteration
on that grid. Thus, low-frequency components of the error
are damped on coarser grids, and the high-frequency compo-
nents are damped on finer grids. This property of the multi-
grid is exploited by theDne-Shotmethod during the design



i ; performed between successive grids is done in various ways.
! ! Two of the more popular methods, V cycle and W cycle,
0 ! olo | 0 are shown in Fig. 26. The V cycle consists of a sequence
77777 *"lj"""ﬁ!"” ~——— O Location of g" of relaxation and transfer to coarser grids with the “exact”
Oro|o!o resolution on the coarsest grid, followed by a sequence of
} ! [0 Location of ¢ relaxation and transfer back to the finest grid. In the Coarser
o'olo!lo levels are visited more often in the W cycle than in the V
,,,,, SRS o, DR AN N N cycle. The W cycle, although 50 percent more expensive
ololo | 0O than V cycle, is more robust.
| |
T :
| |
2h
Figure 25. Location of ¢ in fine and coarse grids. an
process. Because the full potential equations are nonlinear, a g,
FAS multigrid is used. V cycle W cycle
A two grid FAS multigrid algorithm is presented below. O Relaxation
Let the fine grid on which solution is sought be represented 0 Exact resolution
by & and the coarse grid be represented By Also, leth ) o ) )
and H represent grid sizes, whet® > h. A coarse grid Figure 26. Multigrid cycling strategies.

can be built by removing every second grid point from a fine )
grid. This makes{ = 2h. For the cell-centered scheme, this Appendix C
method of coarsening combines four fine grid cells to form a
coarse grid cell. Figure 25 shows the locationyéf and ¢*

on a fine and a coarse grid, respectively. Now, consider the
following problem on gridh:

The Kutta condition states that the circulatibraround
the airfoil should be such that
the velocity is finite and continuous at the trailing edge.

ch (¢h) —Rh (B.28) The value ofl' is determined by requiring that the velocity
that is perpendicular to the trailing edge bisector be equal

. to 0 at the trailing edge. In Fig. 27, let; andu,, be the
where £" (¢") is a nonlinear equation an®” is its right- 9 edg g ¢

hand side. Equation (B.28) represents the discretized full
potential equation or any of the boundary conditions. After
a few relaxations of (B.28) on grid, if we assume that
the remaining error is smooth enough to be approximated
on a coarse grid, thest and its residuals are transferred to
the coarse gridd and an equivalent coarse grid problem is
solved on this grid. The equivalent coarse grid problem can
be written as

LH(¢H) - RY (B.29)

Figure 27. Velocity at trailing edge.

where
velocity components along the cut and perpendicular to the
R =1 [Rh —-L" <¢h)] +L" (Tftﬁh) (B.30) cut, respectively. Let the unit vectors in the corresponding
directions bet and n, respectively. Leté be the angle
andIf andIf are the restriction operators that transfér between the trailing edge bisector and the cut. The veldcity
and its residuals to the coarse grid. Equation (B.29) is solved perpendicular to the trailing-edge bisector, can be written as
on the coarse grid, and the corrections? are transferred

back to the fine gridh to updates” as follows: V = upcoséd + ursin é (C.1)
Pew = G614 + 166" (B.31) where
un = (u,v) - n ©2)
where ws = (u,0) -1 .
8¢ = o™ —Tj " (B:32)

As shown in Appendix B, the Cartesian velocity components
andI% is the interpolation operator that transfers the cor- 4 andv can be expressed as

rections to the fine grid. This process is repeated until the

residual of (B.28) reaches machine zero. = ¢y =~+J(ynde — yedn)
In the two-grid algorithm described above, we assume v = ¢y = —I(znde — e dy) (€.3)
that the solution to (B.29) is accurate. In the multigrid Y mee T e
algorithm, the solution on grid/ is obtained by another two-  5nd the unit vectors can be expressed as
grid iteration, whereH is the fine grid an®H = 4# is the
coarse grid. If this process is repeated this process or2gfid n = (yn/r, —wn/7)
and so on, the “exact” solution is obtained on a very coarse (C.H)

grid. The sequence in which the transfer and relaxation are t=(an/r,yn/r)

20



where

=

\/ o3 +y3

If we substitute (C.2) through (C.5) into (C.1), it can be
written as

(C.5)

cos b

V= [J("ng + yi)¢& — J(wewn + i‘/&i‘/n)an}

sin &

(C.6)

+ ¢y

r
To satisfy the Kutta condition, we require tHat= 0. Thatis,

—J(xexn + yeyn) + tan é

_|_
. (2% + v7)

¢n=0 (€7

If the cut is aligned with the trailing edge bisector, thes 0.
If the grid is orthogonal, thet, &, + yy, = 0. Therefore, if
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the grid is orthogonal and the trailing-edge bisector is aligned
with the cut, then (C.7) reduces to

¢ =0 (C.8)

or

ote — (40, +T) =0

where T and B refer to the top and bottom sides of the cut,
respectively (see Fig. 1) arice. stands for the trailing edge.
The value ofl" is easily obtained from (C.9).

In practice, particularly while designing an airfoil, the
grid is not orthogonal nor is the trailing edge bisector aligned
with the cut. However, numerical experiments have shown
that the effect of the second term in (C.7) is of high order.
Hence, a good approximation for the value bfcan be
obtained from (C.9).

(€.9)



