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Abstract

A capability to calculate surface heating rates has
been incorporated in an approximate three-dimensional
inviscid technique.
from the inviscid solution, and the axisymmetric analog

Surface streamlines are calculated

is then used along with a set of approximate convective-
heating equations to compute the surface heat trans-
fer. The method is applied to blunted axisymmetric and
three-dimensional ellipsoidal cones at angle of attack for
the laminar flow of a perfect gas. The method is also ap-
plicable to turbulent and equilibrium-air conditions. The
present technique predicts surface heating rates that com-
pare favorably with experimental (ground-test and flight)
data and numerical solutions of the Navier-Stokes (NS)
and viscous shock-layer (VSL) equations. The new tech-
nique represents a significant improvement over current
engineering aerothermal methods with only a modest in-
crease in computational effort.

Nomenclature

A, B,D,J geometric factors

e;s, efr tangential unit vectors on body surface

ez, er,e4 unit vectors of cylindrical coordinate system

e¢,es,e, unit vectors of shock-oriented coordinate
system

eg,e3,e;  unit vectors of streamline coordinate system

f shock radius

f body radius

he, hg scale factors of shock-oriented coordinate
system

hg, bz scale factors of streamline coordinate system
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Mach number

coordinate normal to shock
coordinate normal to body
static pressure
heat-transfer rate

ey BanlieS :\zg

radius of curvature
, W velocity components of shock-oriented
coordinate system

<

Vv velocity magnitude

A% velocity vector

x,r, cylindrical coordinate system
x, Y,z Cartesian coordinate system
e angle of attack

, shock angle relative to freestream velocity
, body angle relative to freestream velocity

o shock angle in circumferential direction
(§¢ body angle in circumferential direction
7 stream function ratio, ¥ /¥,
6 inclination angle of surface streamlines
K¢, Kg shock curvatures
N shock coordinates
&8 streamline coordinates
P density
o shock angle, ¢ — 64
o body angle, ¢ — (§¢
DU stream functions
Subscripts
b body
s shock
w wall
00 freestream conditions

Introduction

The thermal design of hypersonic vehicles involves
accurately and reliably predicting the convective heat-
ing over the surface of the vehicle. Such results may
be obtained by numerically solving the Navier-Stokes
(NS) equations,! or one of their various subsets such as



the parabolized Navier-Stokes (PNS)? and viscous shock-
layer (VSL) equations®* for the flowfield surrounding the
vehicle. However, due to the excessive computer stor-
age requirements and run times of these detailed ap-
proaches, they are impractical for the preliminary design
environment where a range of geometries and flow pa-
rameters are to be studied. On the other hand, engineer-
ing inviscid-viscous methods®~® have been demonstrated
to adequately predict the heating over a wide range of
geometries and aerothermal environments. Various ap-
proximations in the inviscid and boundary-layer regions
reduce the computer time needed to generate a solution.
This reduction in computer time makes the engineering
aerothermal methods ideal for parametric studies.

Two of the simpler engineering aerodynamic heating
methods that are currently used are AEROHEAT®S and
INCHES.” Both use the axisymmetric analog concept®
which allows axisymmetric boundary-layer techniques to
be applied to three-dimensional (3-D) flows provided the
surface streamlines are known. AEROHEAT calculates
approximate surface streamlines based solely on the body
geometry. INCHES uses an approximate expression for
the scale factor in the windward and leeward planes which
describes the spreading of surface streamlines. Circum-
ferential heating rates are then generated by an empirical
relation. Another area of approximation is the surface
pressure distribution employed by the engineering meth-
ods. AEROHEAT assumes modified Newtonian theory
which is inaccurate for slender bodies, while INCHES
uses an axisymmetric Maslen technique.!® The deficien-
cies and limitations of these approximations to the surface
streamlines and pressures in the engineering aerothermal
methods, along with their corresponding effects on the
surface heat transfer, have been documented in Refs. 11
to 13.

An approximate 3-D inviscid method!*'® has been
developed that is more accurate than modified Newto-
nian theory and has a wider range of applicability than
the axisymmetric Maslen technique. The inviscid tech-
nique uses two stream functions that approximate the
actual stream surfaces in the shock layer and a modified
form of the Maslen second-order pressure equation.'® The
method has been shown to calculate the inviscid flowfield
about 3-D blunted noses as well as 3-D afterbodies reason-
ably accurately and much faster than numerical solutions
of the inviscid (Euler) equations.!?

In this paper, the approximate inviscid technique em-
ploys the axisymmetric analog to predict laminar and
turbulent surface heating rates using the approximate
convective-heating equations of Zoby et al.'” Both perfect
gas and equilibrium-air flows are considered. Improved
surface streamlines are calculated based on both the body
geometry and surface pressure distribution. Surface heat-
ing rates are presented for spherically-blunted and asym-
metric ellipsoidal cones at angle of attack. Comparisons
are made between results of the present technique, VSL
and NS solutions, and available experimental data to
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Figure 1. Shock wave geometry: side view.

demonstrate the accuracy and capability of the present
engineering technique.

Analysis

This section describes the 3-D inviscid technique, the
procedure for computing inviscid surface streamlines, and
the application of the axisymmetric analog. Approxima-
tions and coupling issues are also discussed.

Inviscid Method

Since a detailed description of the approximate 3-D
inviscid method has been presented previously,!*1% only
a brief outline of the inviscid method is given here.

Coordinate Systems

The three-dimensional shock surface can be repre-

sented by
rs = f(l‘, ¢) (1)

where (#,7,¢) are wind-oriented cylindrical coordinates
with corresponding unit vectors (eg, e, ey). The z-axisis
aligned with the freestream velocity vector and is normal
to the shock surface at the origin. Two angles, §4(x, ¢)
and | (z,¢), describe the shock wave shape and are de-
fined as

l@_f tan —6—fcos6
f 00 N i

’ Ox
An additional angle is given by ¢ = ¢ — 64. All angles
are shown in Figs. 1 and 2. For the special case of ax-
isymmetric flow, r, = f(z),, =, (¢), 8§ =0, and 0 = ¢.

(2)

tandy =

Next, a shock-oriented curvilinear coordinate system
(&,8,n) is defined where £ and f represent coordinates of
a point on the shock surface and n is the inward distance
normal to the shock. Differential arc lengths along each
coordinate direction at the shock are hed¢, hs d@, and
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Figure 2. Shock wave geometry: rear view.

dn where hg and hg are scale factors for the correspond-
ing coordinates. This coordinate system is well-suited for
hypersonic flow (Me > 1) and thin shock layers.

The unit vectors, e; and eg, are tangent to the shock
surface and are chosen such that e is in the direction of
the tangential velocity just inside the shock surface. The
unit vector eg is then defined to be perpendicular to e
and e,. In cylindrical coordinates, the unit vectors of the
curvilinear coordinate system are given by

e = o8, € +sin, (cosdy e, —sindy ey)
ez = sindy e, + cosdy ey (3)
e, = sin, e, —cos, (cosdy e, —sindy ey)

Although this curvilinear coordinate system is orthogo-
nal at the shock surface; it is nonorthogonal within the
shock layer for a general three-dimensional shock. How-
ever, for thin shock layers, orthogonality may be assumed
everywhere.

The velocity is defined in terms of the unit vectors
at the shock as

(4)

From the definition of e; and eg, the crossflow velocity
component at the shock, ws, is equal to zero.

V = ue; + ve, + weg

Governing Equations

The governing equations for 3-D inviscid flow are
simplified by assuming that the velocity component w
is equal to zero not only at the shock but throughout the
shock layer. This yields two stream functions, & (which
is equal to § here) and ¥, which approximate the actual
stream surfaces in the shock layer. The stream function
¥ is analogous to the Stokes stream function for axisym-
metric flow.

Approximate expressions for the pressure and nor-
mal velocity component are then obtained by transform-
ing the normal momentum and continuity equations to
streamline coordinates and evaluating the flow variables

at the shock. Along a line normal to the shock, these
expressions are

()
(6)

ps+p(n—1)4pa(n?=1)
vs+ v (n—1)

v(n)
where
W ug kg
hs
Y, v, tan,
2hgs
W, v,
hg cos,

(ke + Kp)

vo= (ke +Kp)

and
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Defining ¥ = 0 to be the body surface gives n = 1 on
the shock and # = 0 on the body. Note that Eq. (5)
reduces to Maslen’s second-order pressure equation!® for
axisymmetric flow if the scale factor hg is equal to the
shock radius r;.

Method of Solution

Since the inviscid method 1s an inverse one, the shock
shape must be varied until the correct body shape is pro-
duced. The resulting iteration procedure is handled dif-
ferently in each region of the flow.

In the stagnation region of a blunt body traveling
at hypersonic speeds, the flow is subsonic and the shock
shape for the entire subsonic-transonic region must be
determined globally. A 3-D shock given by longitudi-
nal conic sections blended in the circumferential direction
with an ellipse is assumed. The parameters describing the
shock are iterated until the body shape (¥ = 0) generated
by the approximate inviscid method matches the actual
body shape at several discrete points. In this study, six
shock parameters are varied until the calculated body is
matched to the actual body at six locations.

Once past the transonic region, the inviscid flow is
totally supersonic and a marching scheme is well posed.
The shock surface from the transonic region forms a start-
ing solution for the marching procedure. The shock vari-
ables are extrapolated in ¢ along a number of constant
(4 lines which circle the shock. On each line; the shock
curvature ¢ is locally iterated until the calculated body
shape matches the correct body. The shock variables are
then advanced downstream to the next &-location and the
process repeated.

Axisymmetric Analog

The 3-D boundary-layer analysis is simplified by us-
ing the axisymmetric analog” as is done in most engi-
neering aerothermal methods. The 3-D boundary-layer



equations are first written in a streamline coordinate sys-
tem. The crossflow velocity component tangent to the
surface but normal to the streamline is then assumed to
be zero. This simplification reduces the 3-D boundary-
layer equations to the axisymmetric form provided the
distance along the streamline is substituted for the surface
distance and the scale factor describing the divergence of
the streamlines is interpreted as the axisymmetric body
radius. Axisymmetric boundary-layer methods can then
be employed in the existing 3-D inviscid technique.

Inviscid Surface Streamlines

Before applying the axisymmetric analog, inviscid
surface streamlines are computed from the approximate
inviscid solution. Inviscid surface streamlines may be
calculated from the surface pressure distribution® or
from the velocity components.® The approximate inviscid
method!®'® used here predicts accurate surface pressures,
but the direction of the velocity on the surface is not ac-
curate. Therefore, in the present method, streamlines are
calculated from the surface pressures.

A streamline coordinate system® (¢, 3,n) is defined
where ¢ and # are coordinates of a point on the body
surface and 7n is the distance normal to the body. The
bars indicate the variables apply to the body and not
the shock. Differential arc lengths along each coordinate
direction at the body are hg dé, hs df3, and dn where hg
and hj are scale factors for the corresponding coordinates.
If the body surface is represented by 7, = f(x,¢) in wind
axes with the axial coordinate parallel to the freestream
velocity and passing through the stagnation point, the
unit vector normal (outward) to the body surface is given

by
(7)

The body angles are defined in the same fashion as the
shock angles and are
_ 1af _ _
tan by = == tan, = ——cosd
*T T gr ¢
The tangential unit vectors at the surface, ef and eg, are
similar to the tangential unit vectors at the shock. From
Ref. 5, they are given as

e = —sin, e, + cos, (cosby e, —sindy ey)

(8)

e; = cosf es + sinf ey (9)
ez = —sinf es + cosf ef (10)
where
es = cos, e, +sin, (cos&z, e, — sin&, es) (11)
e = sin&, e, + cos&z, ey (12)

and the angle @ represents the orientation of the surface
streamlines. Note that the vectors, e; and ez, are identi-
cal in form to the unit vectors, e, and eg, defined at the

shock.

The orientation of the inviscid surface streamlines,
given by 6, is found by applying the momentum equations
along the body surface using the pressure distribution
generated by the inviscid solution. By writing the mo-
mentum equations in streamline coordinates, taking the
scalar product with ez, and substituting the unit vectors,
FEqgs. (9) and (10), this may be expressed as

i@_@__sin?@& 1
hg 0¢

9o L1 10m
hg o€ pbvbz hg ap

(13)

where 6 = ¢ — 5¢. The scale factor hz can be determined
by noting that for an orthogonal curvilinear coordinate
system

0 0
a¢ (haes) = g5 (heee)

Taking the scalar product of this equation with ez and
again substituting the unit vectors, Eqgs. (9) and (10),
yields
1 dlnhg 1 90 sin, 06
hg o hs o8 hs e}
Equations (13) and (14) may be integrated along a
surface streamline to obtain the streamline direction 6
and the scale factor hz. Although the surface stream-
lines can be determined after the inviscid solution has
already been calculated, it was found to be more con-
venient to compute the inviscid solution and the surface
streamlines simultaneously. Before applying these equa-
tions along shock coordinates, transformation operators
relating derivatives with respect to the the streamline co-
ordinates (&;:, B) to derivatives with respect to the shock
coordinates (&, 3) are needed. In the approximate invis-
cid method, the curvilinear coordinate system is assumed
to be orthogonal throughout the shock layer. This as-
sumption simplifies the analysis but does not change the
form of the approximate pressure and velocity relations,
Egs. (5) and (6), since the flowfield variables are evaluated
at the shock where the coordinate system is orthogonal.
However, at the body surface, the correct coordinate di-
rections need to be considered. Following the approach
of Ref. 15 and using the nonorthogonal directions at the
surface, the transformation operators are

(14)

’;7_53% = (Bes'eﬁ_pef'eﬁ)hl_ga%
+ (—De§~e§+.,4e§~e@)%% (15)
and
%% = (Beﬁ'ef_peﬁ'eﬁ)hl_ga%
+ (—Deﬁ~e§+.,4eﬁ~eg)é% (16)
where

A =

1-— npke
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These operators can be used to calculate the pressure
derivative in Eq. (13) as well as allow Eqs. (13) and (14)
to be integrated with respect to the shock coordinate &.

Boundary-Layer Method

The axisymmetric analog allows any axisymmetric
boundary-layer method to be applied along an inviscid
surface streamline. In this study, a set of approximate
convective-heating equations developed by Zoby et al.!”
is used for the boundary-layer solution. Laminar and tur-
bulent heating rates may be calculated from these rela-
tions for both perfect gas and equilibrium-air flows. Ap-
proximate expressions for the boundary-layer thickness at
both laminar and turbulent conditions are also given in
Ref. 17. Results using this technique have been shown to
compare favorably with more detailed methods for wind
tunnel and flight conditions.'®~2% Boundary-layer edge
conditions are found by interpolating in the approximate
inviscid solution a distance away from the wall equal to
the boundary-layer thickness. This approach has been
demonstrated to approximately account for the effects of
entropy-layer swallowing.

Results and Discussion

Surface heating rates are presented at perfect gas and
laminar conditions over spherically-blunted and 3-D ellip-
soidal cones at angle of attack in order to demonstrate the
capability and accuracy of the present technique. A com-
parison with flight data obtained at laminar and turbulent
flow conditions is also presented based on equilibrium-air
calculations.

Spherically-Blunted Cones

Computed laminar surface heating rates are pre-
sented in Figs. 3 and 4 for the windward plane of a 15
deg spherically-blunted cone at angles of attack of b and
10 deg. The freestream Mach number is 10.6 and the
nose radius is 1.1 inches. Results of the present method
are compared with results of an engineering aerothermal
method AEROHEAT®® and experimental data.?! Good
agreement (within 10 percent) between the results of the
present method and the experimental data is shown in
Figs. 3 and 4. The AEROHEAT results fail to predict
the correct magnitude of the surface heating as well as
the local maximum in the heating. These discrepancies
can be attributed to the approximate pressure distribu-
tion and streamlines used in AEROHEAT. Circumferen-
tial heating rates are presented in Figs. 5 and 6 at two
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Figure 3. Comparison of surface heating rates for 15
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Figure 5. Comparison of circumferential surface heating
rates for 15 deg sphere-cone.
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Figure 6. Comparison of circumferential surface heating
rates for 15 deg sphere-cone.
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Figure 7. Comparison of surface heating rates for 5 deg
sphere-cone at o = 3 deg.

axial locations on the blunted cone for angles of attack
of 5 and 10 deg. The windward plane is located at ¢ =
0 deg and the side plane is at ¢ = 90 deg. The compar-
ison of the experimental and predicted heating rates is
seen to be good at both axial stations of 4.86 and 10.13
nose radii. This comparison illustrates that the present
technique is capable of computing heating rates off the
windward plane of symmetry.

In order to demonstrate the significant improvement
of the present method over current engineering aerody-
namic heating methods, the surface heating rates in the
windward plane of symmetry are calculated for a b deg
spherically-blunted cone at an angle of attack of 3 deg.
The freestream Mach number is 15 and the freestream
conditions correspond to an altitude of 150,000 ft. The
wall temperature is 2260 deg R and the nose radius is
0.125 ft. Heating rates are computed using the present
technique, AEROHEAT, INCHES,” and a detailed VSL
method.!! The resulting surface heating rates are pre-
sented in Fig. 7. The surface heating rates generated by
AEROHEAT and INCHES differ by as much as 40 per-

cent from the more accurate VSL solution. On the other
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Figure 8. Comparison of surface heating rates with

Reentry F flight data (5 deg sphere-cone at o = 0.14

deg).

hand, the solution of the present method shows much bet-
ter agreement (within 15 percent) with the VSL results
and also predicts the correct trend in the surface heating
rate levels.

The surface heating rates over a b deg spherically-
blunted cone at equilibrium-air and turbulent conditions
are examined next in Fig. 8. Results from the present
method are compared with heat-transfer data obtained
from the flight experiment Reentry F.?? The Reentry F
vehicle was a b deg spherically-blunted cone with a length
of 13 ft and an initial nose radius of 0.1 inches. The
data shown in Fig. 8 correspond to a trajectory point
at 80,000 ft. The freestream Mach number is approxi-
mately 20 and the angle of attack is 0.14 deg. The results
depicted correspond to the leeward plane of the vehicle.
In the present technique, equilibrium air properties are
obtained from Hansen,?® while transition is assumed to
begin at the reported distance.?? The calculated heating
rates in the transition region are based on the Dhawan
and Narasimha?? model. Excellent comparison between
the results from the present technique and the flight lam-
inar and turbulent data is noted.

Ellipsoidal Cones

The perfect gas, laminar solution over a blunted 2:1
ellipsoidal cone is examined next at angles of attack of 0
and 15 deg. The cone angles in the windward and side
planes are 5 and 9.93 deg, respectively. The freestream
Mach number is 10.19 and the nose radius in the side
plane is 1.0 inch. Surface heating rates from the present
technique are compared with results from a NS method,
LAURA,' and experimental data.?®> The LAURA method
1s chosen for comparison purposes because of its ability
to compute the flowfield about a 3-D nose. In addition,
there is an apparent lack of heat-transfer data available
in the open literature on 3-D nose shapes. Thirty-seven
streamlines are used to obtain the solution around the
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Figure 9. Comparison of surface heating rates for 2:1
ellipsoidal cone.

ellipsoidal cone in the present technique. A grid of 64 cells
in the axial direction, 30 cells around the circumference
of the body, and 64 cells in the normal direction is used
to obtain the LAURA solution. The present technique
requires approximately 200 CPU sec on a Sun workstation
to obtain a solution, while the LAURA solution requires
approximately 4 CPU hrs on a CRAY-2 supercomputer.
No effort was made to optimize the LAURA calculations.
Axial surface heating rates are depicted in Fig. 9 for
the windward (¢ = 0 deg) and side (¢ = 90 deg) planes
at an angle of attack of 0. Good agreement is noted near
the nose and in the side plane downstream. However,
in the windward plane downstream, the results from the
present technique overestimate the results generated by
LAURA by 25 percent. For the ellipsoidal cone, the sur-
face streamlines diverge rapidly from the side plane and
converge towards the windward plane. Unfortunately, in
this inflow region near the windward plane, it appears
that the approximate surface pressures are not accurate
enough to predict reasonable streamline paths. For this
reason, the solution over the ellipsoidal cone at 0 deg angle
of attack is computed using simplified surface streamlines
by setting the streamline angle # equal to zero. Account-
ing for the inflow correctly downstream would reduce the
heating rates near the windward plane. However, at an-
gle of attack, the streamlines are again computed using
the surface pressures since the inflow is reduced.
Circumferential heating rates for the ellipsoidal cone
at 0 deg angle of attack are depicted in Figs. 10 — 13 at
four axial locations on the body. The first is on the 3-D
nose, while the remaining three are downstream on the
3-D afterbody. Excellent agreement (within 10 percent)
is seen at /Ry = 0.4 on the 3-D nose. At z/Ry = 2.2, the
rapid drop in the heating rate away from the side plane
may be attributed to the fact that the approximate invis-
cid solution is based on the shock and tends to smooth
the effects of the discontinuity in body curvature at the
nose-afterbody juncture. The same trend was noted in
the pressure comparisons in Ref. 14. This effect is seen
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Figure 10. Comparison of circumferential surface heat-
ing rates for 2:1 ellipsoidal cone.
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Figure 11. Comparison of circumferential surface heat-
ing rates for 2:1 ellipsoidal cone.
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Figure 12. Comparison of circumferential surface heat-
ing rates for 2:1 ellipsoidal cone.
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Figure 14. Comparison of surface heating rates for 2:1
ellipsoidal cone.

in Fig. 9 around /Ry = 1.0. However, farther down-
stream at #/ Ry = 9.7 in Fig. 13, the surface heating rates
from the present method match the circumferential dis-
tribution of the LAURA solution and the experimental
data except near the windward and leeward planes.

The axial surface heating rates in the windward plane
on the 2:1 ellipsoidal cone at 15 deg angle of attack is
shown in Fig. 14. The agreement between the present re-
sults and the LAURA solution is excellent. As noted pre-
viously, surface streamlines are computed from the pres-
sure distribution at angle of attack. Circumferential sur-
face heating rates are depicted in Figs. 15 — 18 at the
same four axial locations as shown for the 0 deg angle-of-
attack case. The present technique is inappropriate for
calculations in the viscous-dominated leeward region of
a body at angle of attack. For this reason, the solution
is computed in the windward region only (¢ < 90 deg).
Good agreement (within 15 percent) is noted both on the
3-D nose and at the axial stations downstream. There
are some discrepancies between the results from LAURA
and the experimental data at /R, = 9.7. However, these
comparisons not only demonstrate an improved capability
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Figure 15. Comparison of circumferential surface heat-
ing rates for 2:1 ellipsoidal cone.
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Figure 16. Comparison of circumferential surface heat-
ing rates for 2:1 ellipsoidal cone.
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over present engineering methods, but the applications to
3-D bodies significantly enhance current capabilities.

Concluding Remarks

A rapid but reliable engineering aerodynamic heating
method has been developed by coupling an approximate
3-D inviscid technique with the axisymmetric analog and
a set of approximate convective-heating equations. Sur-
face streamlines are calculated using both the body ge-
The method
is applied to the solution over spherically-blunted cones
and 3-D ellipsoidal cones at angle of attack for the laminar
and turbulent flow of a perfect gas and equilibrium air.
The present technique predicts surface heating rates that
compare favorably with experimental data, equilibrium-
air flight data, and numerical solutions of the NS and
VSL equations. It also represents a significant improve-

ometry and surface pressure distribution.

ment over current engineering aerothermal methods with
only a modest increase in computational effort.
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