
1

A Distributed Computing Environment
for Multidisciplinary Design

R. P. Weston* and J. C. Townsend*

NASA Langley Research Center, Hampton, VA 23681-0001

T. M. Eidson†

High Technology Corporation, Hampton, VA 23666

R. L. Gates‡

Computer Sciences Corporation, Hampton, VA 23666

* Research Scientist, AIAA Member,

† Research Scientist

Copyright © 1994 by the American Institute of Aeronautics and Astro-

U.S. Code. The U.S. Government has a royalty-free license to exercise

‡ Computer Scientist

Multidisciplinary Design Optimization Branch

All other rights are reserved by the copyright owner.

nautics, Inc. No copyright is asserted in the United States under Title 17,

all rights under the copyright claimed herein for government purposes.

Abstract

The Framework for Interdisciplinary Design Opti-
mization (FIDO) project has the goal of developing a
general distributed computing system for executing
multidisciplinary computations on a networked hetero-
geneous cluster of workstations and vector and mas-
sively parallel computers. The concept being used for
FIDO is course-grained parallelism, with instances of
disciplinary codes (aerodynamics, structures, etc. for an
airplane design problem) running on separate processors
(including fine-grain parallel computers), under control
of an executive on another processor, and exchanging
data through a centralized data manager (on yet another
processor). To allow the user to monitor the progress of
the design iterations, the system includes a graphical
user interface (which tracks the execution of codes per-
forming the design iterations) and a separate process,
called Spy, which allows a user to extract and plot data
produced during current and previous design cycles, and
then to steer the design process by changing appropriate
control data. The software is written in modular form to
ease migration to upgraded or completely new prob-
lems. In its current state of development, FIDO is being
applied to a highly simplified case of a High-Speed
Civil Transport design, involving a simplified problem
with very few design variables. However, it has already
demonstrated the ability to coordinate multidisciplinary
computations and communications in a heterogeneous
distributed computing system.

Introduction

Established as a part of NASA’s contribution to the
national High Performance Computation and Communi-
cation Program (HPCCP)1, the Langley Framework for
Interdisciplinary Design Optimization (FIDO) project
has as its goal the development of a general program-

ming environment for distributing a multicomponent
computational problem across a networked system of
heterogeneous computers. A multidisciplinary airplane
design process was chosen for the development of the
programming environment because of the interest in
improving the efficiency of that process.

The FIDO system provides a means for automat-
ing the design process. It facilitates communication and
control between components of the system, which
include the diverse discipline computations involved in
a design problem and the system services that facilitate
the design. The computers used can include worksta-
tions, vector supercomputers, and parallel-processing
computers, although only UNIX®-based workstations
are used currently. Each computational task can be done
by the computer type most appropriate for it. All of the
computers involved are networked together, have access
to centralized data, and work on their parts of the
design, simultaneously whenever possible, under the
coordination of a master code.

The following sections describe the model prob-
lem, conceptual environment, communications library,
task control, user interface, data management, discipline
segment functionality, and the data interrogation seg-
ment.

FIDO Model Problem

A simple model of a High-Speed Civil Transport
(HSCT) design problem was chosen for the initial
implementation of the FIDO system2. This problem
illustrates the type of computational problem envisioned
for the FIDO system; however, the scope is much
reduced so that the focus can be specifically on compu-
tational system issues rather than on the design problem.
Figure 1 is a view of the overall optimization loop for
this simplified design problem. A particular design cycle
(one counter-clockwise circuit of the loop) begins with
the choice of the flight conditions, base aircraft geome-
try, and the values of the design constraints and the
design variables, as shown at the top of the figure.

2

For the FIDO model problem, four disciplines are
involved in the analysis of the aircraft: aerodynamics,
structures, performance, and propulsion. In each cycle
of the design, these disciplines are invoked to analyze
the current definition of the aircraft as specified by the
current values of the design variables. The results of the
analyses provide a set of system responses that corre-
spond to the current design variables. The optimizer
program uses these responses plus the derivatives of the
system responses with respect to the design variables.
At the current stage of FIDO’s development, these
derivatives are obtained by finite differences using mul-
tiple analyses on a perturbed set of design variables. In
the future, they may be obtained by other methods, such
as automatic differentiation3 within the discipline codes.

In order to derive new values for the design vari-
ables, the optimizer uses an objective function (which in
this case is the minimization of the aircraft’s gross
weight for the specified range and payload) along with
the current system responses and derivatives. These new
values are fed back into the design loop until the process
converges.

FIDO Environment

The conceptual environment in which the various
discipline and service codes run is illustrated in figure 2.
Each of the discipline codes (Aerodynamics, Structures,
Performance, Propulsion) runs on a separate worksta-
tion, and they communicate with each other by sending
and receiving information through a central data-man-
ager code, which may run on a separate workstation.
Because the role of the data manager is only to move
information and manage its storage, a separate code
called the interdisciplinary interface code (Interface)
performs any computations necessary to convert data
from one discipline into a form suitable for another dis-
cipline. (An example is the integration of aerodynamic
pressures to provide structural forces.) Likewise, this
code sends and receives its data from the data manager.
A master program (Master) controls the order in which
the various discipline codes run. An executive program
initializes the FIDO communication network (COMM
Network), which forms the backbone of the system.

The discipline, data-manager, executive, and mas-
ter codes, along with the optimizer code (Optimization),
comprise the primary computational segments(
described in the next section) of the FIDO network. To
provide a means of looking at the data as the design pro-
cess proceeds, an auxiliary segment called ‘Spy’ is
added. The Spy segment can be started while computa-
tions are underway, with multiple instances of Spy being
allowed. With proper permissions, these can run on any
workstation connected to the network, which allows

remote consultants to view results as they are produced
and to give timely advice.

An independent program (Setup) can be invoked
by the problem designer to pick the flight conditions, the
base aircraft geometry, the initial design constraint val-
ues, and the initial values of the design variables from a
range of previously stored possibilities.

FIDO Communication Library

The FIDO communication library (in the middle of
figure 2) is designed to be used as the communication
backbone of a system of codes executed in a heteroge-
nous, distributed network of computers. The modules in
this library, as well as the overall concept for FIDO,
were developed by the third author. The various compu-
tational tasks (and codes to do these tasks) must be
sorted into groups (called segments) for COMMLIB.
Each of these tasks is targeted for a different computer.
The segments are further sorted into those that are pri-
mary and those that are auxiliary. The primary segments
are those that perform functions essential to a run; each
requires a driver or server to be started at the beginning
of the run. The auxiliary segments are those that do not
perform essential functions and so can connect with the
COMM Network at any time via a user request. Even
for the primary segments, not all the executable code
must be loaded with the server; it can be executed later
via a forked or remote process if that is more efficient.

The collective execution of the primary segments
on a set of computers linked together by a physical net-
work forms a distributed execution system. The part of
that system that consists of the communication library,
the selected computers, and the physical network is
referred to as the COMM Network. The segments use
the COMM Network for various communication chores
by making calls to COMMLIB.

Although any two segments can directly transfer
messages via COMMLIB, a more conservative
approach for transferring data is to use a single data
manager. The library includes a special set of message-
passing functions that communicate with a data man-
ager segment, which runs in parallel in a service mode
while the other segments execute tasks. Thus, the sys-
tem can be programmed so that nearly all global data
(data used by multiple segments) are sent to and
retrieved from the data manager. Both direct messages
and data-manager messages can be used as the system
designer determines best. Additional special calls are
available to send profile information to the profile ana-
lyzer segment (currently the data manager) and to send
event signals to the monitoring graphical user interface
(GUI).

3

The communication library is merely a tailored
interface to a low-level message-passing library (cur-
rently the PVM system from Oak Ridge National
Labs*). It is tailored to provide the necessary functional-
ity in a simple interface format that supports a distrib-
uted execution system like that described above. Each
call in COMMLIB can actually send multiple messages
to conduct a complex handshaking communication pro-
tocol between two segments, which allows the user-
level calls to be simple. In addition, this approach pro-
vides improved portability and generality to the execu-
tion system because only COMMLIB itself needs to be
modified if the low-level message-passing software is
changed.

Task Control

The master segment (Master in figure 2) is respon-
sible for the overall control flow of the primary seg-
ments in the execution system. A major exception is
when multiple tasks (and, thus, segments) are started by
the master in parallel; any synchronization needed
between the parallel tasks must be done via traditional
parallel-programming barrier calls.

The primary segments of the execution system
operate in a host/slave mode. The executive code acts as
the host and is initiated first. This code sets up the
COMM Network, based on configuration files (ASCII
data files that provide user-configurable system specif-
ics). Specifically, it first runs a procedure to start a com-
munication server on each computer. The executive
code next distributes and starts all primary segments on
the appropriate computers via the communication
library (COMMLIB). The master code is then begun,
which executes control tasks via COMMLIB within
each of the primary segment servers as necessary to
complete the appropriate sequencing of work for a run.
Finally, the segment servers and the COMM Network
are shut down.

Data Management

The purpose of the FIDO data manager (Data
Manager in figure 2) is to provide a centralized access
service for the storage and retrieval of data during a run
of the FIDO system. For a given design problem, the
definition of the data to be handled during a run is pre-
pared by the problem designer during the setup phase,
which results in several configuration files that define
the data in a standardized format and contain initial val-
ues for appropriate data. On start-up, the data manager

* PVM information is available by sending the e-mail
message “send index from pvm3” tonetlib@ornl.gov

reads and internally stores the information in these files
and then enters into a service mode; in this mode, data
values are stored and retrieved upon request via COM-
MLIB calls during a run, and data files are moved
among FIDO work and archival directories at the appro-
priate times. A detailed and a summary report file are
generated to document the data-management activities
during a run.

One of the files generated in the setup phase,
which contains information about the atomic data ele-
ments, provides the basic description of the managed
data. In this file, numeric codes are assigned to individ-
ual integer, floating point, and character string data ele-
ments or to arrays of these. An include file contains
corresponding mnemonic macros for each of the
numeric codes. These mnemonic macros are used in the
discipline driver codes to reference the corresponding
data values. Additional information provided for each
atomic data element includes the name, type, units, a
short description, usage rules, and array length, where
appropriate.

Another file identifies the groups of atomic data
elements that comprise the actual data packages sent
and received by the data manager. This grouping of
character strings and integer and floating point numbers
results in more efficient use of the message-passing sys-
tem. By using configuration files for all the data struc-
tures, the data manager code itself is kept generic and
does not need any special coding for a new problem.

Discipline Segments

The discipline segments are represented by the
blocks labeled Aerodynamics, Performance, Optimiza-
tion, Interface, Propulsion, and Structures around the
lower part of figure 2. Each functionally consists of two
parts. One part is the set of codes that perform the disci-
pline computations; the other is a driver that handles the
discipline communications via COMMLIB and calls on
the discipline codes as needed.

The discipline codes generally are established For-
tran codes with well-known characteristics and proven
reliability. These are the codes that do the actual analy-
sis, which may be computationally intensive. A mini-
mum of changes are made within these codes to prepare
them for use with the FIDO system. These changes are
those necessary to put these codes into what can be con-
sidered subroutine library form. That is, these codes are
changed to make them callable as subroutines with com-
putation and input/output control managed through sub-
routine arguments.

This control of output from the discipline codes is
helpful in providing an orderly function of the FIDO

4

system. By applying appropriate control, a summary log
of the multiple analyses can be kept and the data that are
needed can be correctly passed from one discipline to
another. Data to be kept (including complete output
files) are managed by the FIDO system, and the Spy
segment is able to retrieve data interactively for display
as requested during a run.

The discipline drivers are written in C; the disci-
pline codes are called as subroutines. Each driver con-
tains several blocks of code that are invoked by the
master as needed to handle the start, analysis, gradient,
and exit phases of the problem. Each block contains
sub-blocks of code for computation, normal completion
tasks, and error-handling tasks. The discipline drivers in
the FIDO model problem can serve as templates or
examples for more complex problems.

The design variable values, file names, and other
data are passed through the discipline drivers as argu-
ments to the discipline codes. According to the problem
requirements, more than one discipline code may need
to be called by a driver. An example is the aerodynamics
discipline, which calls separate codes to obtain the
induced, wave, and friction drag components in comput-
ing total drag for the model problem. The interfaces
between the discipline codes and their drivers must be
accurately specified in order to provide proper commu-
nications. In addition, the user needs to specify what the
output files from the code are and how they are to be
used by Spy.

For the FIDO model problem, the principal disci-
plines are aerodynamics, structures, propulsion, and per-
formance. Functionally, the optimizer and
interdisciplinary codes are also treated as discipline
codes within the system. Because the emphasis in FIDO
has been on developing the system, the discipline codes
were chosen for speed rather than accuracy. They
include linear aerodynamics codes and an equivalent
plate structures code4; these are considered “low fidel-
ity” codes but run in a few minutes on a workstation. In
the future they will be replaced with medium- or high-
fidelity codes (Euler or Navier-Stokes aerodynamics,
finite-element structures), which will take minutes or
hours to run on parallel or vector supercomputers.

Graphical User Interfaces

A graphical user interface has been developed to
display the state of the FIDO system at all times from
start-up to completion of a run. An example of this dis-
play is shown in figure 3, which illustrates the overall
FIDO user interface concept. After initiating the FIDO
system, the problem designer monitors the progress of
the computations using the GUI windows shown on the
leftmost screen. The upper left window displays current

run parameters and contains pull-down menus for set-
ting various options. The right window displays a sim-
plified problem diagram and indicates which parts are
starting up, active, inactive, or shutting down by chang-
ing the color of appropriate parts of the diagram. The
color key is displayed in the lower left window. Addi-
tional detail of the system state can be obtained by
selecting the boxes with a 3-D appearance. Doing so
brings up an associated window (not shown) that dis-
plays sub-detail for the computations represented by
that box. The level to which this nesting is continued is
determined by the problem designer and specified in a
GUI configuration file.

Spy Segments

The FIDO Spy segment (Spy in figure 2) is
designed to provide secondary services to system codes
that use COMMLIB. These services allow users of the
FIDO system to retrieve results while the computations
are in progress and display them as text or graphics. In
addition, the principal user can alter the values of
selected variables in order to provide guidance to the
design process.

Four types of data are available: problem defini-
tion, cycle status, cycle history, and profile data. The
problem definition data consist of the fixed problem
parameters, initial values of some variables, and miscel-
laneous descriptive information. The cycle status data
contain the current cycle number, phase, and task; a list
of data that is available in Data Manager and Spy; and
miscellaneous timing information. The cycle history
data consist of selected scalar values and selected data
arrays (on the computational grids) for each completed
cycle. Finally, the profile data consist of the execution
time histories of the various computational tasks. These
data can be displayed on the screen as text or in graphi-
cal format. Current graphical formats include line plots
(e.g., cycle history of the objective function, as shown in
the middle screen of figure 3) and contour plots of dis-
tributed data (e.g., surface pressures, stresses, or deflec-
tions, as shown in the righthand screen of figure 3).

Multiple instances of the Spy code can connect to
and communicate with the COMM Network that is used
by a set of primary segments. Thus, the master/slave
paradigm is augmented to include multiple (but limited)
masters. The Spy connections can be initiated at any
time while the FIDO system is running a problem. In the
current implementation, new Spys become active only
at the beginning of a new design cycle; future imple-
mentations will allow activity to begin within a cycle.

Actually, two types of Spy segment exist. One is
designated as the ‘Master Spy’ and has special proper-
ties. It can be invoked only by the user who is running

5

the FIDO problem (the “designer”); only this user is
allowed to change the current values of design variables,
constraints, and initially-set parameters. This capability
provides some measure of manual control over the
design process. Because the problem designer may need
advice during the design process (perhaps from a
remotely located expert in one of the disciplines
involved), the other type of Spy segment is provided.

This Spy type is designated as an ‘Agent Spy’; it is
limited to displaying data, but can exist in multiple
instances. It can be invoked with proper permission
from any location connected to the network (e.g., any-
where on the Internet). Thus, the remote expert’s work-
station can display any of the information available to
the designer (shown schematically in figure 3). In fact,
several users can examine the same or different FIDO
output at different locations at the same time.

Sample Results

A simplified model HSCT wing design problem
has been used in the development of the FIDO system. It
uses three aerodynamic design variables (wing leading-
edge sweep, root chord, and spanwise break location)
and two structural design variables (inboard and out-
board panel thicknesses for the equivalent plate struc-
tural model). Over a run of twenty cycles, the line-plots
in the center Spy screen of figure 3 provide an example
of how the design variables, system responses, and
problem constraints evolved. The design objective of
minimizing the total weight is shown as the top line-
plot. These computations were made on a system con-
sisting of one SGI and six Sun workstations

Concluding Remarks

The Framework for Interdisciplinary Design Opti-
mization (FIDO) is being developed as a general pro-
gramming environment for automating the distribution
of complex computing tasks over a networked system of
heterogeneous computers. The FIDO system facilitates
communications between computational tasks distrib-
uted over a computer network and provides for auto-
matic interactions in multidisciplinary problems, for
example, how to reach a nearly optimal consensus in the
aircraft design process.

In the FIDO system, the computers involved are
networked together, have access to centralized data, and
work on their parts of the design simultaneously in par-
allel whenever possible, under the direction of a master
code. Each computational task can be assigned the com-
puter type most appropriate for it. An auxiliary code,
Spy, is provided for viewing results as they are produced
and for steering the design process. In the viewing

mode, it can be run as multiple instances and from
remote locations. The FIDO software is written in a
modular form in order to ease migration to upgraded or
completely new problems: different codes can be substi-
tuted for each of the current code modules with little or
no effect on the others.

The FIDO system has been designed to be adapt-
able to any distributed computing problem. It has been
demonstrated for a simplified High-Speed Civil Trans-
port (HSCT) aircraft design problem; currently, a more
complex HSCT problem is being implemented.

References

[1] Holst, T. L., Salas, M. D., and Claus, R. W., “The
NASA Computational Aerosciences Program -
Toward TeraFLOPs Computing,” AIAA Paper No.
92-0558, Jan. 1992.

[2] Townsend, J. C., Weston, R. P., and Eidson, T. M.,
“A Programming Environment for Distributed
Complex Computing - An Overview of the Frame-
work for Interdisciplinary Design Optimization
(FIDO) Project,” NASA TM 109058, Dec. 1993.

[3] Carle, A., Green, L., Bischof, C., and Newman, P.,
“Applications of Automatic Differentiation in
CFD,” AIAA Paper No. 94-2197, June 1994.

[4] Barthelemy, J.-F., Wrenn, G.A., Dovi, A.R., Coen,
P.G., Hall, L.E., “Supersonic Transport Wing Min-
imum Weight Design Integrating Aerodynamics
and Structures,” J.Aircraft, Vol. 31, No. 2, pp. 330-
338, Mar-Apr 1994..

Figure 1. FIDO model diagram for HSCT design problem

Figure 2. Schematic of FIDO system interactions.

Figure 3. GUI concept, including designer interaction with consultant through Spy.

Wgt.
Fuel

Deflections
Stresses

Stru.
Wgt.

Equiv. Plate

Analysis
Structural

Figure 1. FIDO model diagram for HSCT design problem

Variables
New Design

Cp

Cd Cl,

Cd

Fuel
Flow

Wgt.
Total

Base
Geometry

Flight
Conditions

Design
Variables

Minimize
Weight

Range Eq.

6

Linear

Engine Deck

Aerodynamic
Analysis

Propulsion
Analysis

Performance
Analysis

Trim

Optimizer

System Responses
& Derivatives

