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Automated multidisciplinary design of aircraft and
other 
ight vehicles requires the optimization of complex
performance objectives with respect to a number of design
parameters and constraints. The e�ect of these indepen-
dent design variables on the system performance criteria
can be quanti�ed in terms of sensitivity derivatives which
must be calculated and propagated by the individual dis-
cipline simulation codes. Typical advanced CFD analysis
codes do not provide such derivatives as part of a 
ow so-
lution; these derivatives are very expensive to obtain by
divided (�nite) di�erences from perturbed solutions. It
is shown here that sensitivity derivatives can be obtained
accurately and e�ciently by using the ADIFOR source
translator for automatic di�erentiation. In particular, it
is demonstrated that the 3-D, thin-layer Navier{Stokes,
multigrid 
ow solver called TLNS3D is amenable to au-
tomatic di�erentiation in the forward mode even with its
implicit iterative solution algorithm and complex turbu-
lence modeling. It is signi�cant that, using computational
di�erentiation, consistent discrete nongeometric sensitiv-
ity derivatives have been obtained from an aerodynamic
3{D CFD code in a relatively short time, e.g. O(man-
week) not O(man-year).
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Energy, under Contract W-31-109-Eng-38.

2This work was supported by the National Science Foundation
under Cooperative Agreement Number CCR-9120008.

1 Nomenclature

CD Wing drag coe�cient
CL Wing lift coe�cient
CM Wing pitching moment coe�cient
D Generic sensitivity derivative
I Identity matrix
J Jacobian matrix
M Free stream Mach number
P Preconditioner matrix
R Residual vector for 
ow equations
Re Reynold's number (mean chord)
S Seed matrix
x Design variable
y Discrete mesh coordinates
z Local 
ow (state) variable
� Angle-of-attack
� Spectral radius

Subscripts

AD Automatic di�erentiation
DD Divided di�erence
m Iteration index
x Partial derivative w.r.t. x
y Partial derivative w.r.t. y
z Partial derivative w.r.t. z
� Root of R = 0 or iteration-�xed-point

Superscripts
0 (prime) Total derivative w.r.t. x
~ (tilde) Approximate operator

2 Introduction

In the past, design of 
ight vehicles typically required
the interaction of many technical disciplines over an ex-
tended period of time in a more or less sequential manner.
At present, computer-automated discipline analyses and
interactions o�er the possibility of signi�cantly shorten-
ing the design-cycle time, while simultaneous multidisci-
plinary design optimization (MDO) via formal sensitivity
analysis (SA) holds the possibility of improved designs.
Recent topical conferences 3 [1{8], [10, 12, 34, 35, 54, 55]
for example, attest to the interest in these possibilities
for improving aerospace vehicle design processes and pro-
cedures. Advances in computer hardware and software,
electronic communications, and discipline solution algo-
rithms and codes will individually contribute; however,
true synergisms may be required to make it all feasible.
This paper addresses one such synergism for computa-

3Those without published proceedings include the 1992
AIAA/AHS/ASEE Aerospace Design Conference, Feb. 1992, and
the AIAA Aircraft Design Systems Meeting, Aug. 1992.
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tional science and computational 
uid dynamics (CFD)
algorithm technologies.

Procedures for MDO of engineering systems have been
addressed by Sobieski [65]. He proposes a uni�ed sys-
tem SA guided by system sensitivity derivatives (SD);
the optimizer code or algorithm that uses these SD is the
outermost loop of the entire design process. The objec-
tive and constraint functions are now generally composed
of output functions from several disciplines. Each single-
discipline analysis code is then to supply not only the
output functions required for the constrained optimiza-
tion process and other discipline analysis inputs, but also
the derivatives of all of these output functions with re-
spect to its input variables. These variables include not
only the MDO variables, but also output functions from
other disciplines that implicitly depend on the MDO vari-
ables.

Thus, a key technology required for MDO procedures
is the capability to calculate the SD of outputs from the
various analysis codes with respect to a set of design vari-
ables. However, a certain degree of 
exibility and au-
tomation is needed, since the envisioned 
ight vehicle con-
cept determines which objectives, constraint functions,
MDO design variables, and discipline analysis codes are
required to model the pertinent physical aspects through-
out the 
ight regime (i.e., the particular MDO problem).
Current technology cannot be counted on to deliver reli-
able and fast derivatives for large computer codes such as
advanced 3-D CFD codes. Divided di�erences (DD) may
not be accurate and are obtained too slowly, symbolic ap-
proaches do not appear to be feasible, and hand coding of
derivatives is impractical. This situation has dire conse-
quences, in particular, for very large scale computer mod-
els, as they are to be run on tera
ops machines. Since DD
errors tend to grow with problem complexity, larger mod-
els will have to deal with ever-more-inaccurate deriva-
tives, even though a faithful modeling of their complex
nonlinear behavior requires very accurate derivatives. In
addition, the cost of DD will restrain the magnitude of
problems that can be done in practice.

Automatic di�erentiation (AD) addresses this need by
providing a scalable technology that computes derivatives
of large codes accurately, irrespective of the complexity of
the model. This paper discusses and documents the initial
application of an AD system to advanced CFD codes in
order to obtain SD typical of those required in an MDO.
The general ideas and direction of this work, including a
sample result, have been outlined in [56] and [18]. As will
be seen, the initial results given here are both signi�cant
and encouraging; but challenges remain.

The organization of this paper is as follows: �rst, brief

reviews of advanced CFD codes with SD calculations and
AD of Fortran codes (ADIFOR); then, discussion of the
application of ADIFOR to CFD codes; and �nally, com-
ments on the future directions of this work.

The present interest and work have been stimulated by
two research programs related to incorporating advanced
CFD capabilities in MDO. The NASA Langley Research
Center High-Speed Airframe Integration Research (Hi-
SAIR) project [32, 29, 28] is focused on the High-Speed
Civil Transport (HSCT) design activity in order to de-
velop a methodology and computational environment for
multidisciplinary analysis and design. The emphasis is on
including most of the required disciplines and interactions
at a su�ciently advanced level of analysis to demonstrate
improved engineering design methodology. The second
stimulus is the NASA ComputationalAerosciences (CAS)
grand challenge of the High Performance Computing and
Communications (HPCC) Program [45, 55], where one
of the applications is the HSCT. The two major thrusts
in this latter program are enhanced simulations via mul-
tidisciplinary formulations and improved computational
e�ciency via massively parallel hardware. In both pro-
grams, the primary NASA Langley approach being pur-
sued is MDO via SA.

3 Advanced CFD with SD

The application of advanced CFD codes to provide aero-
dynamic analyses within an MDO via SA is severely ham-
pered by the sheer magnitude of the computational task
if these SD must be obtained by DD. Recent interest
and progress have focused on quasi-analytical (QA) or
\adjoint-related" techniques to get these SD. The most
recent references [13, 22, 33, 37, 38, 39, 47, 50, 52, 56,
62, 63, 66, 70] from several groups engaged in this re-
search indicate the current status and cite many refer-
ences to earlier works. A number of other aerodynamic
design methods have been proposed, developed, and dis-
cussed [23, 36, 48, 49, 53, 58, 60, 68, 73]. Typically these
methods have been developed to solve \single-discipline"
design problems, that is, problems in which the cost, or
objective and constraint functions, depend only upon the
aerodynamic solution output. One then has the liberty
to combine the optimization or iterative design variable
search with the 
ow analysis solution(s) at several di�er-
ent degrees of implicitness. Generally the computational
e�ciency gets better with more implicitness, whereas the

exibility to handle modi�ed problems gets worse. It ap-
pears that use of these more e�cient implicit methods in
MDO would require some suboptimization at the disci-
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pline level or an implicit formulation of all the relevant
discipline analyses. Note that one should be able to ob-
tain the SD of the aerodynamic design from the \adjoint-
related" methods. As can be seen from the cited ref-
erences, there are only a handful of applications of any
method to 3{D aerodynamic con�gurations.

Three major issues for obtaining SD from 3{D CFD
codes concern: (1) the form of the the linear sensitivity
equations; (2) the means for di�erentiating the various
terms which appear; and (3) the method for solving the
resulting large systems of sensitivity equations. Direct
matrix solution methods have generally been used in 2{
D problems; however, their use in 3{D problems appears
highly unlikely as a viable approach. In [52] and [56] an
incremental iterative technique for e�ciently obtaining
consistent, discrete aerodynamic SD for advanced CFD
codes was proposed, demonstrated, and discussed. The
studies concluded that: (1) the linear sensitivity equa-
tions should be cast into an incremental (correction or
delta) form; (2) one should use AD or symbolic manipu-
lation to obtain the needed derivatives; and (3) the result-
ing large system of sensitivity equations should be solved
iteratively, using the same operator form (i.e., code) as
originally used to solve the nonlinear 
ow equations. The
incremental form allows for approximate operators of con-
venience (stability, convergence acceleration, simplicity,
parallel processing, etc., since only convergence is re-
quired) while maintaining consistent discrete derivative
solutions. The iterative solution aspect allows for exten-
sion to large 3{D problems, which presently cannot be
solved by direct means because of storage and/or run-
time limitations. A very brief discussion of the funda-
mental equations from [52] and [56] is given in the next
paragraph.

The steady-state nonlinear 
uid-
ow equations repre-
senting conservation of mass, momentum, and energy can
be written symbolically as

R(z; y; x�) = 0 ; (1)

where R, the residual vector at each mesh point, is a
function of the local 
ow (state) variables z, the mesh
coordinates y and the design parameters x�. Both y and
z are implicit functions of x�. An iterative solution for
the 
ow variables z of (1) can be written symbolically as

�

�
~Rz

�
m
� (zm+1 � zm) = R(zm; y; x�) ; (2)

where m is the iteration index, Rz denotes @R=@z and the
tilde means some approximation of the operator. Sensi-
tivity derivatives of various 
ow solutions with respect to

the design parameters x� are calculated in the QA meth-
ods as functions of dy=dx� and dz=dx�, denoted respec-
tively as y0 and z0. In order to remain on the solution
surface, then

R0(z; y; x�) = Rzz
0 + Ryy

0 +Rx = 0 : (3)

It is assumed that y0, the mesh sensitivity with respect
to x, is obtained from the grid generation code or grid-
movement algorithm [61, 64, 69]. Thus, (3) is a linear
equation in z0; which has been called the standard form

�Rzz
0 = Ryy

0 + Rx : (4)

Equation (4) can also be solved in an iterative fashion,
written symbolically as

�

�
~Rz

�
m
� (z0m+1 � z0m) = R0

m(z�; y; x�): (5)

The signi�cance of the incremental iterative solution
forms, (2) for z and (5) for z0, is that the LHS operators
can be approximate; the RHS, a zero at convergence, is
the condition to be satis�ed. Consistent discretization for
the RHS of both produces consistent z and z0. Solution
of the standard form (4) for consistent z0 requires exactly
Rz as the LHS operator. For many CFD codes, Rz is not
very well conditioned and cannot be directly inverted in
practice for large (i.e., 3{D) problems. In most advanced
CFD codes, grid generation is not part of the code; an
array of mesh coordinates, denoted before as y, is read
as input. For sensitivity analysis, the potentially much
larger arrays of mesh sensitivities y0 also need to be ob-
tained and given to the 
ow sensitivity code.
The Jacobians Rz; Ry; and Rx are generally not com-

puted, much less identi�ed, in most CFD codes. To ob-
tain them \by-hand", as has been done in the past for 2{D
problems, is a very tedious, time-consuming, error-prone
job, hardly practical for complicated 3{D CFD codes.
A more-or-less painless, automatic, and robust means to
generate them is highly desirable and appears to be real-
izable in AD. In fact, the straightforward application of
AD to the entire iterative solution process (2) generates
z0, without having to identify and construct the terms in
(4) or (5). The next section discusses AD in all of these
aspects.

4 AD of Large Programs

Automatic di�erentiation [59] is a chain-rule-based tech-
nique for evaluating the derivatives of functions de�ned
by computer programs with respect to their input vari-
ables. In contrast to the approximation of derivatives
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by DD, AD does not incur any truncation error so that,
at least for noniterative and branch-free codes, the re-
sulting derivative values are usually obtained with the
working accuracy of the original function evaluation. In
contrast to fully symbolic di�erentiation, both operations
count and storage requirement can be a priori bounded
in terms of the complexity of the original function code
for all modes of AD. In many cases, the calculations initi-
ated by an AD tool for the evaluation of derivatives mirror
those of a carefully handwritten derivative code. A com-
prehensive collection on the theory, implementation, and
some earlier applications can be found in the proceedings
[43].

There are two basic modes of automatic di�erentia-
tion, which are usually referred to as forward and re-
verse, respectively. The results reported in this paper
were obtained with a variant of the forward mode. As
discussed in [41] the reverse mode is closely related to
adjoint methods and has as intriguingly low operations
count for gradients. However, its potentially very large
memory requirement has been a serious impediment to
its application in large-scale scienti�c computing. When
there are several independent and dependent variables
the operations count for evaluating the Jacobians may
be lowest for certain mixed strategies [44] rather than
the forward or reverse mode. AD can also be extended
for the accurate evaluation of second and higher deriva-
tives [27, 42, 26, 17]. Second derivatives might eventually
be useful for the application of higher order optimization
methods in MDO. For a recent review of AD techniques
and tools in the context of engineering design see [11].
An introduction to the Fortran tool ADIFOR and some
preliminary numerical results on a 2{D small-disturbance
model of transonic 
ow are given in [18].

4.1 An Advanced FORTRAN Tool

ADIFOR (Automatic Di�erentiation of Fortran) [15, 19,
16, 14] provides automatic di�erentiation for programs
written in Fortran 77. Given a Fortran subroutine (or
collection of subroutines) describing a \function," and an
indication of which variables in parameter lists or com-
mon blocks correspond to \independent" and \depen-
dent" variables with respect to di�erentiation [20], AD-
IFOR produces Fortran 77 code that allows the compu-
tation of the derivatives of the dependent variables with
respect to the independent ones. ADIFOR employs a hy-
brid of the forward and reverse modes of automatic dif-
ferentiation [43]. That is, for each assignment statement,
code is generated for computing the partial derivatives of
the result with respect to the variables on the right-hand

side, and then employed in the forward mode to propagate
overall derivatives. The resulting decrease in complexity
compared to an entirely forward mode implementation
usually is substantial.

In contrast to some earlier AD implementations [51]
the source translator ADIFOR was designed from the
outset with large-scale codes in mind. It uses the fa-
cilities of the ParaScope Fortran environment [24, 25]
to parse the code and to extract control 
ow and de-
pendence 
ow information. ADIFOR produces portable
Fortran 77 code and accepts almost all of Fortran 77|
in particular, arbitrary calling sequences, nested subrou-
tines, common blocks, and equivalences. The ADIFOR-
generated code tries to preserve vectorization and paral-
lelism in the original code, and employs a consistent sub-
routine naming scheme that allows for code tuning, the
use of domain-speci�c knowledge, and the exploitation
of vendor-supplied libraries. It should be stressed that
ADIFOR uses the data 
ow analysis information from
ParaScope to determine the set of variables that require
derivative information in addition to the dependent and
independent ones. This approach allows for an intuitive
interface, and greatly reduces the storage requirements of
the derivative code.

ADIFOR-generated code can be used in various ways.
Instead of simply producing code to compute the Jaco-
bian J , ADIFOR produces code to compute J � S, where
the \seed matrix" S is initialized by the user. Therefore,
if S is the identity, ADIFOR computes the full Jacobian;
whereas if S is just a vector, ADIFOR computes the prod-
uct of the Jacobian by a vector. \Compressed" versions
of sparse Jacobians can be computed by exploiting the
same graph coloring techniques [31, 30] that are used for

DD approximations of sparse Jacobians. The runtime
and storage requirements of the ADIFOR-generated code
are roughly proportional to the number of columns of S.
Hence, the computation of Jacobian-vector products and
compressed Jacobians requires much less time and stor-
age than does the generation of the full Jacobian matrix.
For example, in a wing design optimization sketched be-
low, typically only a relatively small number of geometric
design variables determine the shape of the wing. On
the other hand, hundreds to millions of mesh coordinates
enter into the aerodynamic or structural analysis code.
Provided that the grid generation process is smooth, one
can determine for each mesh coordinate a comparatively
short vector representing its gradient with respect to the
design parameters. Declaring the mesh coordinates as the
independent variables of the analysis code and initializ-
ing the rows of the seed matrix with the mesh coordinate
gradients, one can run the ADIFOR-generated code to
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compute the gradients of the resulting 
ow or displace-
ment �eld with respect to the design parameters. This
approach is much cheaper than �rst performing a full SA
on the analysis code and then multiplying the resulting
large Jacobian J by the matrix S representing the grid
sensitivities.

Currently ADIFOR does not provide for the automatic

transfer of derivative data via �les. Therefore, combin-
ing the mesh-generation process and the CFD code in a
multidisciplinary SA based on AD has not yet been done.
When both programs are available as Fortran source, the
exchange of derivative information is not very hard and
will be automated in future versions of ADIFOR. How-
ever, in general the exchange of sensitivity information
between single discipline codes of di�erent origin and on
various platforms will remain a di�cult challenge. An-
other challenge stems from the tacit assumption that
the outputs of all single disciplinary components depend
smoothly on their input parameters. For grid-generation
algorithms of eventual interest, such as adaptive unstruc-
tured grids, that assumption is probably not satis�ed.

Advanced CFD codes pose several other principle chal-
lenges and uncertainties regarding the automatic genera-
tion of sensitivities. By far the most important di�culty
is that the 
ow equations for all nontrivial geometries and

stream conditions must be solved iteratively. The itera-
tive 
ow solvers may take hundreds of steps and often
involve discontinuous adjustments of solution operators,
grids, shock waves, or free boundaries. The prospect of
obtaining accurate solution sensitivities by simply di�er-
entiating the whole iterative process may appear dubious
for multigrid methods. These are now the state of the art
in 3-D CFD codes (for example [71]), despite the lack of
a convergence theory under realistic assumptions. In the
following section, some theoretical results from a forth-
coming paper [21] are summarized; these theoretical con-
siderations make the numerical observations of Section 5
at least plausible, even though they do not apply directly
to multigrid methods in their current form.

4.2 Di�erentiating Implicit Functions

Large-scale codes in scienti�c computing frequently em-
body iterative solution schemes. That is, for given x�, a
nonlinear system

R(z; x�) = 0 (6)

is solved to �nd the value z� = z(x�) of the function
implicitly de�ned by R. The question is under what
circumstances an AD version of the code implementing
this root�nding process computes the desired derivatives
z0� = dz

dx
jx=x� . Often, iterative schemes perform discon-

tinuous adjustments of step multipliers and precondition-
ers, so that the iterates themselves are very unlikely to
be di�erentiable in the input parameters.
For the sake of discussion, assume that our iteration

for solving (6) has the generic form

for m = 1; : : : do
evaluate R(zm; x�) and stop if it is small
compute a suitable preconditioner Pm
update zm+1 = zm � PmR(zm; x�)

end for

This iteration must locally converge if one can ensure that

jjI � PmRz(zm; x�)jj � � < 1 (7)

The notation Rz (Rx) is shorthand for @R
@z

(@R
@x

). New-
ton's method, for example, is a particular instance of this
scheme with Pm = (dR

dz
jz=zm )

�1.
The implicit function theorem tells us that at the �xed

point (z�; x�), one has

Rzz
0
� +Rx = 0: (8)

In fact, the so-called quasi-analytic (QA) approach for ob-
taining z0 is to compute (or approximate by DD) Rz(x�)
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and Rx(x�) and to solve the resulting linear system (8)
for z0. However, the reliability of this approach depends
greatly on the conditioning of Rz(x�), as well as the accu-
racy of Rz and Rx. In the following discussion, a \prime"
notation (such as z0) always denotes total di�erentiation
with respect to x. Applying AD to the generic iteration
above, we obtain the derivative iteration

for m = 1; : : : do
evaluate Rm � R(zm; x�) and
R0
m � Rz(zm; x�)z

0
m +Rx(zm; x�)

if (Rm and R0
m are small enough) stop

compute Pm and its derivative P 0
m

update zm+1 = zm � PmRm and
z0m+1 =z

0
m � P 0

mRm � PmR
0
m

end for

Given zm and z0m, one can obtain the derivative residual
R0
m at a cost roughly equal to that of evaluating R mul-

tiplied by the number of design parameters (i.e., compo-
nents in x). In particular, this derivative evaluation does
not require the calculation of the Jacobian Rz, which may
contain very many elements. Note that the stopping cri-
terion based solely on Rm has been replaced by one that
also requires R0

m to be small. While it is natural to do so,
an automatic tool cannot be expected to spot the stop-
ping criterion in a potentially complicated code without
some user intervention. Conceptually, one may remove
the stopping criterion completely to obtain in�nite se-
quences of iterates zm and derivative approximations z0m,
which have been shown in [21] to converge R-linearly in
that

kzm � z�k+ kz0m � z0�k � �m ! 0 :

This result was originally obtained by Gilbert [40] and
Christianson [26] for the case of Newton's method and
similar smooth �xed point iterations.
Recently, we have been able to extend these results

(see the forthcoming paper [21]) to quasi-Newton meth-
ods, where the derivatives P 0

m may grow unbounded but
P 0
mRm still tends to zero, because of the superlinear rate

of convergence. Whenever the iterates themselves con-
verge superlinearly there is the danger that the R-linearly
convergent derivative approximations may lag behind.
For such methods, it is particularly important that the
stopping criterion enforce a signi�cant reduction of kR0

mk.
In large scale applications, a reasonable linear rate is of-
ten the best one can achieve, so that the asymptotic rate
of convergence is likely to be the same.
For even more general preconditioners Pm, it is shown

in [21] that the simple setting P 0
m = 0 ensures conver-

gence to the desired derivative value z0� at the same R-
linear rate, provided condition (7) is satis�ed. In con-
trast to the previous black-box approach, the precondi-
tioner Pm is treated here as a constant and hence the term
P 0
mR(zm; x�) is dropped in the update of z0m+1. This ap-

proach makes intuitive sense since in the end R(zm; x�)
will converge to zero anyway, thereby annihilating any
contribution of P 0

m. Also, P 0
m is likely to involve higher

derivatives that (according to the implicit function the-
orem) play no role in the existence of z0�. This latter
procedure is the incremental iterative form of equation
(5). The implications of this observation for the speed
of derivative computations are noteworthy. For example,
in a Newton iteration, one saves the work of di�erentiat-
ing through the matrix factorization process, which is by
far the dominant work of the iteration process. Exploita-
tion of this result does require some user intervention to
indicate stopping criteria and variables containing pre-
conditioners. Depending on code modularity, this may or
may not be easy to do. We are experimenting with \de-
activation" concepts that would support the user in this
task. Techniques such as this one, which build on AD
techniques but require some understanding of the code,
we call computational di�erentiation techniques.

Another point worth mentioning is that it does not
make sense to start the derivative iterations until the iter-
ations for R(z; x�) = 0 have essentially converged. Obvi-
ously, the derivatives z0� will not settle in until the \func-
tion value" z� itself has. Again, this is not automatic and
requires user intervention, but the potential savings are
signi�cant. It is important to recognize that the cost of
evaluating R0

m for a given z0m is the same whether the
zm have converged to z� or not. Since Rz(z; x�) is not

explicitly formed, one cannot exploit its constancy when
z = zm = z� for several iterations.

5 Application of AD to CFD

Numerical results reported here show that even the naive
application of ADIFOR to multigrid solvers viewed as a
black-box program can produce accurate sensitivity infor-
mation at tolerable costs. In fact, all calculated deriva-
tives could be reproduced with several digits agreement
by carefully evaluated DD. Moreover, the implicit func-
tion theorem yields a constructive test on the accuracy
of the derivative approximation, which suggests that, in
most cases, at least six digits were correct. In the 2{D
quasi-analytical SD code [52], the turbulence model was
deemed too complicated for di�erentiation by hand; its
treatment as constant led to sizable relative errors in some
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resulting global sensitivities. Nevertheless, it was found
here that for a Baldwin-Lomax model the results pro-
duced by ADIFOR agree quite well with DD and there-
fore convey meaningful sensitivity information even for
the turbulent case.

5.1 2-D Transonic Small Disturbance

The �rst iterative code to which ADIFOR was applied
for evaluating derivatives of an implicitly de�ned function
was the 2{D transonic small disturbance code TAMRF of
Elbana and Carlson [37]. The grid used by that code is
stretched Cartesian and does not change with shape vari-
ations; such modi�cations are re
ected in the 
ow bound-
ary conditions. Therefore, in regard to the mechanics of
ADIFOR, derivatives with respect to both shape (geo-
metric) and stream (nongeometric) parameters could be
treated exactly the same. This particular code was se-
lected because it had been di�erentiated \by hand" to
obtain SD and because it had many characteristics typi-
cal of nonlinear CFD codes. All of the 
ow cases reported
in [37] have been recomputed to obtain SD via one-sided
DD at 10�6 independent variable increments and via AD
using the generic derivative iteration.

Table 1: Computation Time for Five 2-D SD

NACA 1406 Airfoil; TSDE Inviscid Flow

Solution Number Time (sec)�

Procedure Solutions Subs. Trans. Supers.

DD 6 Nonlinear 13 36 64

QA 1 Nonlinear, 40y 38y 37y

5 Linear

AD 1 Nonlinear, 12# 25# 35#

5 Linear
� All calculations performed on a CRAY Y-MP.
y Average time for several matrix solution methods.
# kR0

mk converged below 10�3.

Table 1 shows typical timing results for �ve SD (CL
with respect to M ,�, maximum airfoil thickness, max-
imum camber and its location) for subsonic, transonic,
and supersonic 
ow cases. In all these cases AD and DD
agreed to more than four signi�cant digits. For subsonic
and transonic 
ows this agreement extended also to the
results obtained by the original QA method of Elbanna
and Carlson.
In Figure 1, three convergence history plots for the

norms of the residuals Rm and their total derivatives R0
m

with respect to the �ve parameters mentioned above are
shown. In all three subsonic, transonic, and supersonic
cases, the code was run without any derivative calcula-
tions until the norm of the residual Rm was reduced below
10�7 times its initial value. The resulting base-line solu-
tions were then used as initial points for a second phase
of the iterative process, which was fully di�erentiated in
the black-box sense discussed in the previous section. For
these numerical experiments, the iterations were contin-
ued until the norm of the derivative residual R0

m was re-
duced below 10�8. In all three cases it appears that the
asymptotic rate of convergence for the R0

m is very close
to that for the Rm and that the latter have been driven
down to the noise level. Some studies have been made on
the accuracy achieved as a function of the convergence of
R0 (initially about 102). These results are shown in Table
2. It is seen that the AD time relative to the DD time is
still small for rather good SD agreement.

Table 2: Computing Time and Accuracy for Five 2-D SD

NACA 1406 Airfoil; TSDE Inviscid Transonic Flow

AD
Converg.y

10+1 100 10�1 10�2 10�3 10�4

AD/DD
Agreement#

2 3 4 4+ 4+ 4+

AD Time/ 0.18 0.26 0.36 0.50 0.69 0.92
DD time

QA Time/ 1.08 1.08 1.08 1.08 1.08 1.08
DD Time

y Norm of R0 = dR=dx, # Number of signi�cant digits.

5.2 3-D Thin Layer Navier-Stokes

The 3{D thin-layer Navier-Stokes code TLNS3D [71] em-
ploys a multigrid acceleration technique to an explicit
multi-stage Runge-Kutta time-stepping scheme with cen-
tral spatial di�erencing to e�ciently obtain steady state
high Reynolds number turbulent 
ow solutions. It has
been used successfully in a number of applications across
the 
ight speed range from low subsonic to hypersonic
and for a number of 
ight vehicle types. Its forthcoming
multiblock version [72] promises the 
exibility needed for
modeling complex geometric con�gurations. Initial work
has been reported [57, 67] on implementing these codes
on parallel processors. All of these facets tend to enhance
its usefulness in applications to real engineering solutions
and thus MDO problems. Obtaining consistent SD in-
formation is therefore of genuine interest and straightfor-
ward application of ADIFOR appeared to be the most
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direct route for obtaining it. Moreover, the multigrid al-
gorithm operator, used to obtain the 
ow solution vari-
ables z, is an incremental iterative form.

Application of ADIFOR to the entire iterative solution
algorithm of the TNLS3D code alone yielded sensitivities
with respect to the (nongeometric) stream variables M ,
�, and Re. The output functions chosen to be di�erenti-
ated were CL, CD, and CM . The primary concern about
the SD was accuracy; i.e., could AD properly handle
the multigrid algorithm and turbulence models? Of sec-
ondary importance, at least for this initial study, were the
memory and runtime requirements of the derivative code
generated by ADIFOR. The TLNS3D code is a highly

Table 3: Accuracy for Six 3{D SD

ONERA M-6 Wing, TLNS3D Inviscid Transonic Flow,
3-Level Multigrid, 97� 25� 17 (M = 0.84, � = 3:06�)

(a) Dead Start:
�
R800

R1

�
DD

� 10�5;�
R500

R1

�
AD

� 10�4 and
�
R0

500

R0

1

�
AD

� 10�3

DAD=DDD CL CD CM
M 0.9999 0.9992 0.9993
� 0.9995 0.9993 0.9992

(b) Restart File:
�
R1800

R1

�
DD

� 10�11;�
R1375

R1

�
AD

� 10�9 and
�
R0

575

R0

1

�
AD

� 3� 10�5

DAD=DDD CL CD CM
M 1.0003 1.0000 1.0002
� 0.9999 0.9999 0.9999

vectorized code and this aspect contributes greatly to its
overall computational e�ciency. ADIFOR inserts loops of
length equal to the number of design parameters to com-
pute \gradient objects" for each intermediate involved in
the function evaluation. Without post-ADIFOR process-
ing, these inner-most short loops prevent the longer outer
loops from being pipelined and thus lead to an inordi-
nately long runtime. Minor code changes and a state-
ment specifying the short vector length allowed the Cray
compiler to automatically unroll these loops. However,
apparently due to the volume of code added by ADIFOR,
there is still some loss of vectorization e�ciency, which is
currently being investigated. Nevertheless, an executable
Fortran derivative code was obtained that converged the
SD adequately, even though it still runs much slower than

anticipated.

Initial accuracy tests were run on coarse grids to ascer-
tain that the di�erentiated code could be run from a dead
start as well as from a restart �le created by a prelimi-
nary TLNS3D run. This two stage procedure represents
the delayed derivative calculation paradigm discussed in
Section 4. It was also determined that the derivative code
generated in a single pass through the ADIFOR success-
fully executed with the inviscid, laminar and turbulent
options. Subsequent detailed veri�cation of the AD re-
sults was done on larger grids (� 97� 25 � 17); by cur-
rent CFD standards for 3{D con�gurations, this is still a
coarse grid.

A simple wing con�guration, the ONERA M-6, was
used in these initial AD veri�cation studies and a sample
C-O mesh about it (25� 9� 9 for clarity) is depicted in
Figure 2. For the inviscid (Euler) mode, six of the nine

Table 4: Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Laminar Subsonic Flow,
2-Level Multigrid, 97� 17� 17 (M = 0:2; Re = 5000)
(a) Zero Angle-of-Attack

DAD=DDD CL CD CM
M * 1.0004 *
� 1.0000 * 1.0000
Re * 1.0000 *

�Numerator of DDD is noise; DAD � O(10
�8) and forDD stepsize

of 10�6, numerator of DDD � O(10
�14)

(b) One degree Angle-of-Attack

DAD=DDD CL CD CM
M 1.0028 0.9998 0.9985
� 1.0000 1.0001 1.0000
Re 1.0000 1.0000 1.0001

nongeometric SD are nonzero. Comparisons of the agree-
ment between the AD and DD (one-sided at increments
of 10�6 times the input value) SD produced are shown in
Table 3 as ratios DAD=DDD. This transonic 
ow case is
for M = 0:84 and � = 3:06�. The results in Table 3(a)
are for a dead start of both the original TLNS3D (for DD
calculations) and the di�erentiated version (for AD calcu-
lations). The convergence levels obtained at the indicated
number of multigrid iteration cycles is shown. It can be
seen that about 3 signi�cant digits agreement is obtained.
In Table 3(b) similar results are shown with both codes
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run from an original TLNS3D baseline restart �le. Again
the convergence levels obtained at the indicated number
of multigrid operations is shown. Agreement to essen-
tially 4 signi�cant digits is obtained.
The relative accuracy for all nine nongeometric SD at

subsonic laminar 
ow conditions, M = 0:2 and Re =
5000, are shown in Table 4. For � = 0�, the resulting
symmetric 
ow produces some very small SD which for
the DD are only noise. However, the larger SD are seen
from Table 4(a) to agree very well. The results for � = 1�

are shown in Table 4(b). Here again the agreement is very
good.

Table 5: Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
3-Level Multigrid, 97� 25� 17
(M = 0:84,� = 3:06�,Re = 11:7� 106)

(a) Mixing-length model

DAD=DDD CL CD CM
M 1.0000 1.0000 0.9999
� 1.0000 1.0000 1.0000
Re 1.0007 1.0000 1.0012

(b) Baldwin-Lomax model

DAD=DDD CL CD CM
M 1.0000 1.0000 1.0000
� 1.0000 1.0000 1.0000
Re 0.9991 1.0000 0.9961

(c) Convergence

�
R1700

R1

�
DD

� 10�12 ;

�
R1300

R1

�
AD

� 5� 10�12 and

�
R0
425

R0
1

�
� 10�4

Similar relative accuracy results at transonic turbu-
lent 
ow conditions, M = 0:84; � = 3:06�, and Re =
11:7 � 106, are shown in Table 5. In Table 5(a) results
are compared for the simple di�erentiable mixing-length
turbulence model [46], whereas in Table 5(b), results for
the Baldwin-Lomax turbulence model [46] are compared.
In both cases 3 to 4 signi�cant digits agreement between
the AD and DD results is obtained. The number of multi-
grid iterations and convergence levels for both models is
shown Table 5(c). An indication of the 
ow �eld resolu-

tion obtained on this (97 � 25 � 17) grid is displayed in
Figure 3, which shows a wing upper surface pressure con-
tour plot. It can be seen that both the swept leading-edge
shock and the almost normal wing-volume shock near the
mid chord are smeared out, as one would expect from
central-di�erence operators on such grids. It is not clear
how much e�ect such shock smearing has on these deriva-
tive comparisons which have been presented; its e�ect is
surely favorable though.

Table 6: Computing Time and Memory for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
Baldwin-Lomax, 3-Level Multigrid, 97� 25� 17

Solution Number Time Storage
Procedure Solutions (sec�) (MW)

DD one-sided 4 Nonlinear 3960 2.47
DD central 6 Nonlinear 5940 2.47
AD 1 Nonlinear, 10290 7.63

3 Linear

� All calculcations performed on CRAY Y-MP.

Convergence histories for the subsonic laminar 
ow (at
� = 1�) and the transonic turbulent (Baldwin-Lomax
model) 
ow cases are presented in Figure 4. Here the
relative residuals for both the original and di�erentiated
(AD) TLNS3D codes are plotted versus work, which, for a
multigrid algorithm, is taken as a unit roughly equivalent
to the computational work of one iteration on the �nest
grid. As can be seen the subsonic laminar results are not
too smooth; perhaps the 
ow would be seen to be un-
steady on a �ner grid. The delayed derivative evaluation
paradigm has been used and, as can be seen, the deriva-
tive code solution (started from an original code restart
�le) commences just beyond 1000 work units. These are
the residual histories for the accuracy results given in Ta-
bles 4(b) and 5(b). An indication of the computational
time and memory requirements for the derivative code in
its current form compared with those for the original code
can be seen in Table 6. These are the runtime statistics
for the results shown in Table 5(b) and Figure 4. The
AD-version code requires about 3 times the memory and
2.5 times more runtime than that needed using the orig-
inal code and DD for the problem considered. However,
these are simply initial results and little has yet been done
to re�ne the iterative derivative paradigm with regard to
just what convergence levels are required. That is, what
is necessary for the residual R convergence level for the
original code baseline solution on the restart �le and also

9



that for R0 in the derivative code?

An indication of the derivative accuracy as a function
of the derivative residual R0 convergence level for the 3-
D TLNS3D code is given in Table 7. As can be seen,
for agreement to 2 signi�cant digits, the AD runtime is
essentially equal to the DD runtime. The accuracy results
given in Table 5(b) are the last column in Table 7. It
appears from comparing Tables 2 and 7 that the number
of signi�cant-digit agreement versus the convergence level
of R0 is essentially the same for the 2-D TSDE code and
the TLNS3D code.

Table 7: Computing Time and Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
Baldwin-Lomax, 3-Level Multigrid, 97� 25� 17

AD Convergencey 10+1 100 10�1 10�1:5

AD/DD Agreement# 2 3 4 4+

AD Time/DD Time 1.01 1.45 2.07 2.59

y Norm of R0 = dR=dx, # Number of signi�cant digits.

It appears that the newest version of ADIFOR is very
easy to use. After a few examples, the NASA person-
nel found that ADIFOR could be applied to a code in a
matter of days. Veri�cation of the resulting derivatives
by DD, however, was often much more time consuming.
As the AD technology matures this extra e�ort will no
longer be necessary.

6 Conclusion and Challenges

Computational di�erentiation of an advanced CFD code
employing ADIFOR in order to obtain SD of output 
ow
properties with respect to nongeometric input variables
has been quantitatively demonstrated. This is a very sig-
ni�cant and encouraging result for several reasons:

(a) The TLNS3D code is an e�cient, complex, state-of-
the-art 3{D CFD code.

(b) The computational e�ciency of TLNS3D is based
upon the rather delicate multigrid acceleration al-
gorithm and the successful application of ADIFOR
yielded similar convergence rates for the SD.

(c) ADIFOR also successfully di�erentiated the
TLNS3D Baldwin-Lomax turbulence model.

(d) Accurate SD were obtained using AD in a relatively
short lead time (O(man-week)), essentially treating
ADIFOR and TLNS3D as black boxes.

While it has been shown that AD can be successfully
applied to advanced CFD codes for nongeometric SD, the
procedures and results need to be improved before sensi-
tivity information on high resolution meshes can be ob-
tained. Also, the SD reported here were restricted to a
single discipline, namely the CFD calculation. However,
experiments applying AD to the combination of the mesh
generation process and the 
ow analysis are under way
and preliminary results are encouraging. This interaction
must be achieved in order to perform the geometric SD,
which is of primary interest to MDO.
It should be stressed that, from a purely mathemati-

cal point of view, the di�erentiation of iterative processes
does not seem to be a problem, despite the fact that the
assumptions of known derivative convergence theorems
have not been veri�ed for the small disturbance code and
are almost certainly not satis�ed by multigrid algorithms.
Since, in the latter case, not even the convergence of
the iterates themselves has been proven under reasonably
general assumptions, attempts to prove the convergence
of their derivatives seem premature. A comparatively
simple, but application and platform dependent, task is
the choice of criteria in the iterative paradigm for the
transition from the undi�erentiated iteration to the more
costly �nal stage, where derivative information is carried
along. As our theoretical studies and numerical experi-
ments indicate, one may assume that both solutions and
derivatives converge at about the same rate once the it-
eration has settled down. This is of signi�cance in design
optimization calculations since the objective function and
its gradient need be obtained with high accuracy only in
the vicinity of the optimal design. Thus, great savings
are possible through less accurate evaluations in the ear-
lier part of the optimization.
A second goal is to avoid the unnecessary di�erentia-

tion of preconditioners and other intermediates that af-
fect only the solution process but not the solution func-
tion and its derivatives. Unless the original code is ap-
propriately structured, \deactivating" such intermediates
\by-hand" is a di�cult task. However, the resulting sim-
pli�ed derivative calculation should be as e�cient as the
incremental iterative form of the QA method. Therefore,
an investigation will be made to determine if and how
ADIFOR can automatically perform deactivation with a
minimum of directives from the user or programmer.
A third goal is improved vectorization and parallelism

of the derivative code, so that their runtime is at worst
equal to that of the original code multiplied by the num-
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ber of design parameters. For standard test problems
[9] ADIFOR achieves and undercuts this bound regularly
on scalar and super-scalar chips but, as in the case of
TLNS3D on a CRAY Y-MP, the situation is currently
much less favorable on vector machines.
It may actually be simpler to maintain e�ciency for the

ADIFOR generated versions of parallel CFD codes. How-
ever, as in the interdisciplinary case it becomes necessary
to pass derivative objects with intermediate data through
I/O statements and interprocessor messages. While the
size of the data transfers is multiplied by the number of
design variables, the data 
ow structure between various
tasks is preserved so that parallelism is essentially un-
changed. The ADIFOR added code can interfere with
the inner loop vectorization whereas it is not seen in the
outer loop parallelization.
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Figure 1: Iteration convergence histories for subsonic, transonic, and supersonic inviscid 
ow solutions from the 2{D
transonic small disturbance equation code TAMRF for an NACA 1406 airfoil at � = 1�.

Figure 2: Symmetry and back plane traces of the 3-D C-O mesh (25� 9� 9) produced by the grid generation code
WTCO about an ONERA M-6 wing.

Figure 3: Upper surface pressure contour plot on an ONERA M-6 wing for TLNS3D transonic turbulent 
ow solution
at M = 0:84; �= 3:06�; Re = 11:7� 106 with Baldwin-Lomax model on 97� 25� 17 computational mesh.

Figure 4: Iteration convergence histories for 3-D subsonic laminar and transonic turbulent 
ow solutions from the
TLNS3D code for an ONERA M-6 wing.
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Table 1: Computation Time for Five 2-D SD

NACA 1406 Airfoil; TSDE Inviscid Flow

Solution Number Time (sec)�

Procedure Solutions Subs. Trans. Supers.

DD 6 Nonlinear 13 36 64

QA 1 Nonlinear, 40y 38y 37y

5 Linear

AD 1 Nonlinear, 12# 25# 35#

5 Linear
� All calculations performed on a CRAY Y-MP.
y Average time for several matrix solution methods.
# kR0

mk converged below 10�3.
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Table 2: Computing Time and Accuracy for Five 2-D SD

NACA 1406 Airfoil; TSDE Inviscid Transonic Flow

AD
Converg.y

10+1 100 10�1 10�2 10�3 10�4

AD/DD
Agreement#

2 3 4 4+ 4+ 4+

AD Time/ 0.18 0.26 0.36 0.50 0.69 0.92
DD time

QA Time/ 1.08 1.08 1.08 1.08 1.08 1.08
DD Time

y Norm of R0 = dR=dx, # Number of signi�cant digits.
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Table 3: Accuracy for Six 3{D SD

ONERA M-6 Wing, TLNS3D Inviscid Transonic Flow,
3-Level Multigrid, 97� 25� 17 (M = 0.84, � = 3:06�)

(a) Dead Start:
�
R800

R1

�
DD

� 10�5;�
R500

R1

�
AD

� 10�4 and
�
R0

500

R0

1

�
AD

� 10�3

DAD=DDD CL CD CM
M 0.9999 0.9992 0.9993
� 0.9995 0.9993 0.9992

(b) Restart File:
�
R1800

R1

�
DD

� 10�11;�
R1375

R1

�
AD

� 10�9 and
�
R0

575

R0

1

�
AD

� 3� 10�5

DAD=DDD CL CD CM
M 1.0003 1.0000 1.0002
� 0.9999 0.9999 0.9999
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Table 4: Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Laminar Subsonic Flow,
2-Level Multigrid, 97� 17� 17 (M = 0:2; Re = 5000)
(a) Zero Angle-of-Attack

DAD=DDD CL CD CM
M * 1.0004 *
� 1.0000 * 1.0000
Re * 1.0000 *

�Numerator of DDD is noise;DAD � O(10
�8) and for DD stepsize

of 10�6, numerator of DDD � O(10
�14)

(b) One degree Angle-of-Attack

DAD=DDD CL CD CM
M 1.0028 0.9998 0.9985
� 1.0000 1.0001 1.0000
Re 1.0000 1.0000 1.0001
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Table 5: Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
3-Level Multigrid, 97� 25� 17
(M = 0:84,� = 3:06�,Re = 11:7� 106)

(a) Mixing-length model

DAD=DDD CL CD CM
M 1.0000 1.0000 0.9999
� 1.0000 1.0000 1.0000
Re 1.0007 1.0000 1.0012

(b) Baldwin-Lomax model

DAD=DDD CL CD CM
M 1.0000 1.0000 1.0000
� 1.0000 1.0000 1.0000
Re 0.9991 1.0000 0.9961

(c) Convergence

�
R1700

R1

�
DD

� 10�12 ;

�
R1300

R1

�
AD

� 5� 10�12 and

�
R0
425

R0
1

�
� 10�4
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Table 6: Computing Time and Memory for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
Baldwin-Lomax, 3-Level Multigrid, 97� 25� 17

Solution Number Time Storage
Procedure Solutions (sec�) (MW)

DD one-sided 4 Nonlinear 3960 2.47
DD central 6 Nonlinear 5940 2.47
AD 1 Nonlinear, 10290 7.63

3 Linear

� All calculcations performed on CRAY Y-MP.
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Table 7: Computing Time and Accuracy for Nine 3-D SD

ONERA M-6 Wing, TLNS3D Turbulent Transonic Flow,
Baldwin-Lomax, 3-Level Multigrid, 97� 25� 17

AD Convergencey 10+1 100 10�1 10�1:5

AD/DD Agreement# 2 3 4 4+

AD Time/DD Time 1.01 1.45 2.07 2.59

y Norm of R0 = dR=dx, # Number of signi�cant digits.
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