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Abstract

In this report we describe our e�orts to parallelize the VGRIDSG unstructured sur-

face grid generation program. The inherent parallel nature of the grid generation algo-

rithm used in VGRIDSG has been exploited on a cluster of Silicon Graphics IRIS 4D

workstations using the message passing libraries Application Portable Parallel Library

(APPL) and Parallel Virtual Machine (PVM). Comparisons of speed up are presented

for generating the surface grid of a unit cube and a Mach 3.0 High Speed Civil Trans-

port. It was concluded that for this application, both APPL and PVM give approxi-

mately the same performance, however, APPL is easier to use.

1. Introduction

For many engineering applications, using distributed computing and a cluster of high per-
formance work stations is a cost e�ective alternative to using a supercomputer. Historically,
engineering applications were coded to run in serial mode on supercomputers because only
a supercomputer could provide the large amounts of memory and fast computational speed
required to perform such simulations. Due to the heavy work load of most supercomputers
today, the elapsed time to perform a simple analysis can be far greater than the CPU time
to perform the required computations. In distributing computing, programs are designed to
execute the time consuming portions of the computations in parallel across one, or more,
computers. In recent years, high performance workstations have become available that can
provide the memory, inter-machine communication and computational speed required to
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perform such computations. Furthermore, high performance workstations can be obtained
at a fraction of the cost of a supercomputer. Our principal objective in the present work
is to investigate the use of distributed computing to perform surface grid generation for a
realistic con�guration.

In this report we describe our work on parallelizing the VGRIDSG unstructured surface
grid generation program. Two software packages, APPL and PVM, are used to distribute
the program over a cluster of Silicon Graphics IRIS (SGI) 4D workstations. Each package is
described and performance results are given for generating the surface grid for a unit cube
and a Mach 3.0 High Speed Civil Transport (HSCT). In addition, recommendations for using
each message passing library are reported.

This report is organized as follows: Sections 2 and 3 contain an overview of APPL and
PVM respectively. Section 4 is a description of the distributed architecture used. Section 5
contains a description of the VGRIDSG unstructured surface grid generation program. Sec-
tion 6 brie
y describes the modi�cations to the serial code in order to distribute the program.
section 8 contains grid generation timing results and Section 9 compares the two software
packages. Section 10 contains concluding remarks.

2. Description of APPL

Application Portable Parallel Library (APPL) is a message passing library developed by
the Internal Fluid Mechanics Division at the NASA Lewis Research Center. The purpose of
the software is to provide a basic set of portable subroutine calls for message passing over
a variety of MIMD (Multiple Instruction Multiple Data) architectures. The software is free
(subject to NASA's conditions for software distribution) and can be obtained by sending
e-mail to Angela Quealy at fsang@kira.lerc.nasa.gov. The results presented in this report
are for version 2.2, last updated March 31, 1992. The documentation provided with APPL
consists of a nine page ASCII README �le and several detailed man pages.

By using APPL, the user can access the local processors of a machine and/or homogeneous
processors over a network of connected workstations. These independent parallel processes
communicate only through message passing. For a multiple processor shared memory ma-
chine, such as a SGI 440, APPL will use semaphores to block access to memory locations.
The use of semaphores creates the illusion of a distributed memory architecture. This is an
important portability issue since many massively parallel machines have distributed mem-
ory. For example, the Intel iPSC/i860 Hypercube consists of processors that have their own
private memory and thus must exchange data by message passing.

Messages can be sent either synchronous or asynchronous. When using synchronous
messages, the process will wait until the message has completed before executing the next
instruction. An asynchronous message will immediately execute the next instruction without
waiting for the message to complete. The syntax for a synchronous message in Fortran is
call ssend(msgtype, msg, length, proc id) where msgtype is an integer to specify the message
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type, msg is the message being sent, length is the length of the message in bytes and proc id
is the process number to which the message is being sent. To receive a synchronous message,
the routine call srecv(msgtype, msg, length) is used. The syntax for an asynchronous message
is call asend(msgtype, msg, length, proc id). Similarly, the routine call arecv(msgtype, msg,
length) should be used to receive asynchronous messages. Synchronous messages must be
received synchronously and asynchronous messages must be received asynchronously. APPL
also has routines for getting message information, global operations and timing.

To create a distributed computing environment for APPL, the user must create a proces-
sor description �le. This �le, procdef by default, contains the user's login id (username), the
target machine name (hostname), the working directory (work dir), the number of processes
(num procs) and the executable name of the processes (executables). The following is an
example procdef �le for SGI workstations:

# this is a comment line
# procdef for shared memory architecture
username hostname work dir num procs executables

On SGI workstations, invoking the compute command runs the executables in the procdef
�le. Before ending execution, the last call in the user's APPL program should be pend()
which cleans up the semaphores and environment. If the program terminates abnormally
before calling pend(), the user MUST release the semaphores and shared memory manually.
The resources can be released by executing the following commands (do NOT execute these
commands as root):

ipcs -m j fgrep $LOGNAME j awk 'fprint "ipcrm -m", $2 g' j sh
ipcs -s j fgrep $LOGNAME j awk 'fprint "ipcrm -s", $2 g' j sh

These commands query the allocated shared memory (ipcs -m) and semaphores (ipcs -s).
The pipe, fgrep $LOGNAME, prints only the resources allocated by the user. The pipe,
awk 'fprint "ipcrm -m", $2 g', gets the process id for the resources allocated and uses the
command ipcrm to deallocate the shared memory (ipcrm -m) or the semaphores (ipcrm -s).
Note that the user will need to execute these commands on each machine on which the
processes were running.

3. Description of PVM

Parallel Virtual Machine (PVM) is a heterogeneous message passing library developed at
the Oak Ridge National Laboratory (ORNL). PVM allows the utilization of a heterogeneous
network of parallel and serial computers as a single computational resource. It is a library
(two libraries if you use Fortran) and a daemon process. The idea is to couple together
multiple resources in a parallel fashion to use the best properties of a particular machine for
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an application with moderately large granularity. The results presented in this report are
for PVM version 2.4.1, last updated May 31, 1992. The documentation for PVM consists of
a Postscript �le that must be obtained separately from the software. PVM is free software
and can be obtained by sending the e-mail message send index from pvm to the automated
server netlib@ornl.gov.

The PVM processes communicate through the daemons created on each machine. Over a
heterogeneous network, PVM uses the external data representation (XDR) to send messages
over di�erent architectures. PVM has the capability to recognize a homogeneous network
and will not perform the XDR conversion in these situations (ref. 1).

For PVM, messages are sent asynchronous and received synchronous. A message is sent
in three stages: initializing the send bu�er, putting the message in the bu�er and sending
the message. The syntax for sending a 
oating point Fortran message is:

call �nitsend()
call fputn
oat(msg, length, info)
call fsnd("executable\0", proc id, msgtype, info)

where msg is a 
oating point message, length is the message length, info is an error code,
executable is the name of the executable of the PVM process, proc id is the processor the
message is being sent and msgtype is an integer to specify the message type. To receive this
message, the following routines are used:

call frcv(msgtype, info)
call fgetn
oat(msg, length, info)

The call to frcv will not continue until the message arrives in the bu�er. PVM also allows
messages to be sent in bytes. However, sending bytes will only work if the machines have
the same byte ordering scheme.

PVM contains routines for obtaining information on messages and some synchronization
routines. Unlike APPL, PVM does not have a timing function or global operation routines.

To make a distributed computing environment for PVM, the user must create a �le similar
to the APPL procdef �le. This �le contains the machines in the PVM, the user's login id for
that machine (username) and the location of the PVM daemon (speci�ed by dx = ) (ref. 2).
PVM searches the directory $HOME/pvm/HOST where HOST is the PVM name of the
machine (see ref. 1 for names of machines) for the executable process. The following is an
example of a �le describing the PVM:
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# this is a comment
# an asterisk in the �rst column sets the default
* dx= /tmp/pvm/pvmd
* lo= username
host1
host2

To execute the PVM in batch mode, type the command pvmd host �le &. To run pvmd
interactively, type pvmd -i host �le.

If the PVM daemons are successful in starting, the message pvm is ready appears. If
the PVM returns a message pvmd garbled response or expected pvmd but got `', this usually
means that PVM can not read the password �le. To remedy this situation, try using the pw
option in the host �le of checking your .rhosts �le.

Once the daemons are ready, it is convenient to start the PVM processes using a host
program, otherwise each process must be started individually on each machine. After the
PVM processes have completed, the PVM daemons can be killed. When in interactive mode,
the user can query the daemons on running processes. If one of the daemons in the PVM
network abnormally terminates, then all of the PVM processes will be killed by PVM. Unlike
APPL, the user does not need to clean up resources.

I/O in PVM is redirected to the user home directory. Therefore, the user should specify
full path names of �les. PVM does not have the capability to specify a working directory,
as does APPL.

4. Hardware

The VGRIDSG program has been distributed over �ve SGI workstations located at the
NASA Langley Numerical Geometry Laboratory (GEOLAB). The distributed computer con-
sisted of the following workstations: an IRIS 4D/440, two IRIS 4D/420 and two IRIS 4D/320.
These workstations are Ethernet connected on a inner hub of the Langley Computer Network
(LaRCNET). The table below shows the expected performance of the workstations. In the
table, DP Linpack is a double precision Linpack benchmark which utilized multiple CPU's
on machines with more than one CPU (ref. 3).

CPU's Clock DP Linpack Memory
4D/440 40 MHz 42 MFLOPS 96 MB
4D/420 40 MHz 23 MFLOPS 64 MB
4D/320 33 MHz 20 MFLOPS 48 MB

For this study, the FORTRAN compiler used was f77 version 3.4.1 and the operating system
used was IRIX release 4.0.1.
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5. Overview of VGRIDSG

VGRIDSG is an unstructured surface grid generation program developed at GEOLAB
(ref. 4). The code is based on the surface grid generation routines contained in VGRID3D
(ref. 5) but has been modi�ed to use a surface de�nition de�ned by networks of bi-cubic
Hermite patches. Using the bi-cubic patches results in a much smoother surface than could
be obtained with VGRID3D, but also required substantially more CPU time to compute
the surface grid. To compute the surface grid for the HSCT used in this study (over 12,000
triangles) requires about 10 minutes of CPU time (serial mode) on the SGI 4D 440 worksta-
tion.

VGRIDSG generates the surface grid using an advancing front method which has a large
degree of inherent parallelism. In the advancing front method, the grid points are �rst placed
on the curves that constitute the edges of the surface patches. After discretizing all of the
edge curves, the interior of the patches are �lled with triangles. Note that the interior of a
patch can be �lled with triangles independently of the other patches. Thus, it is possible
to compute the interior triangles of the surface patches in parallel. Because generating the
surface triangles is the most time consuming portion of the computations in serial mode,
we have focused our parallelization e�orts only on this procedure. In the future, it may
be possible to investigate parallelizing other portions of the code in order to achieve even
greater improvements in the overall program speed up.

6. Modi�cations to VGRIDSG

To parallelize VGRIDSG required modifying the main body of the program and two sub-
routines, frontuv and bsegad. Subroutine frontuv is the main driver for computing the surface
patches. Subroutine bsegad is called by frontuv after generating the surface triangles for a
patch, and is used to store the coordinates and element connectivity of the new triangles
into global arrays. The changes in the main program and frontuv are minor in comparison
to the required changes to bsegad because bsegad contains all of the interprocessor commu-
nication that occurs in VGRIDSG. A �le containing a detailed description of the changes to
the source code can be obtained upon request from the authors.

The basic changes made to the main body of the program are: adding work arrays, initial-
ization of the distributed computer, redirecting output through processor zero and passing
processor information to the subroutines. The work arrays were needed for communication
purposes. In addition, in our implementation all I/O is directed through processor zero.

The modi�cations to subroutine frontuv were rather minor. The changes include having
new arguments passed in from the main body of the program, parallelizing the do-loop that
controls the generation of the surface triangles in each surface patch, passing arguments to
subroutine bsegad and getting timing information for each patch for load balancing.
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The changes to subroutine bsegad were quite extensive. In our parallel implementation,
the interior triangles for the surface patches are computed on separate processors. Hence,
each processor calculates only a portion of the total data. In subroutine bsegad, the data
from the separate processors is collected and stored into global arrays. Thus, all of the
interprocessor communication takes place in bsegad. Because APPL and PVM pass messages
di�erently, the APPL and PVM versions of this subroutine are quite di�erent.

7. To Run The Parallel Code

The Make�le used to compile the program was modi�ed to include the addition of the
APPL and PVM libraries. When using PVM, it is convenient to create a host program to
start the PVM parallel processes. To run the PVM version, compile both the host and node
programs. Then start the PVM daemons using the command pvmd (see section 3). Once
the daemons are ready, then run the host program. To run the APPL version of the code,
simply type compute. The compute command will use the procdef �le to create the parallel
environment.

8. Grid Generation Timing Results

The performance of parallel programs are typically measured in terms of speed up and
e�ciency. Speed up is the ratio of the sequential time to the parallel time. In other words,
the speed up of a program is (ref. 6):

S =
�1

�P
(8:1)

where �1 is the sequential CPU time and �P is the elapsed time for the parallel version.
Perfect speed up is when the speed up S is equal to the number of processors P. The
e�ciency is a measure of how well the processors are being utilized. The e�ciency of the
parallel program is de�ned as (ref. 6):

� =
S

P
(8:2)

From Eq. 8.2, it can be seen that the speed up is directly proportional to the e�ciency.

In this report, each of the performance �gures contains three curves. The �rst is a curve
for perfect speed up, used as a reference. The second curve is the speed up of the subroutine
frontuv, the parallel portion of the code. The third curve is the speed up of the complete
program. This last curve gives the user the expected improvement in run time for of the
parallel program. In our implementation, we have focused on only parallelizing the tasks
performed in subroutine frontuv. Thus, it is expected that the complete program will have
a lower speed up than frontuv due to the additional serial computations that are performed
elsewhere in the program.
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The results presented in this report were taken during dedicated times, in the sense that
no other users are logged onto the machine and no user processes were executing. In reality,
this dedicated scenario does not exist for every day computing, so the reader should realize
that performance can be signi�cantly lower than what is reported in this report. In the
following tests, we always use the faster 400 series workstations before making use of the
slower 300 series workstations (see Section 4). In addition, the speed up calculations are
based on the sequential CPU time for executing the code on a single processor on a 400
series workstation. Last, note that we only present results for using 1, 2, 3, 4, 6, and 12
processors because in our parallel implementation we require that the number of patches be
an integer multiple of the number of processors used. Although this approach does not allow
us to take advantage of all the available processors, it does simplify the code modi�cations
required to alter which processors are used.

To verify the parallel versions of VGRIDSG, our �rst test case was to generate the surface
grid for a simple unit cube (see Figure 1). For this problem, each face of the cube was split
into two patches, resulting in a total of twelve surface patches. In addition, the grid point
spacing was set to a uniform value so that each patch generates approximately the same
number of triangles. Because each patch requires about the same number of calculations,
the cube problem has a near perfect load balance.

Figures 2 and 3 show the speed up versus processors for the cube problem using APPL and
PVM, respectively. Both packages show approximately the same performance. Comparing
the curves for the complete program and subroutine frontuv, it can be seen that, as expected,
frontuv has a greater speed up than the complete program. The performance curves for the
complete program and frontuv approach maximum speed ups of 8.1 and 6.2, respectively.
The curves are linear up to four processors, because all four processors reside on one machine.
The curve is slightly less than linear for the six processor case because the two additional
processors reside on a second machine and this adds some communication overhead. For
the 12 processor test, the e�ciency decreases due to using a combination of processors with
di�erent clock cycles from �ve machines.

Our second test case was to generate the surface grid for a Mach 3.0 High Speed Civil
Transport (HSCT). Here, eighteen patches were used to de�ne the vehicle surface, sting and
far �eld computational boundaries (see Figures 4 and 5). Illustrated in Figures 6 and 7 are
the speed up versus the number of processors using APPL and PVM, respectively, for the
case of not load balancing the surface patches; that is, computing the surface patches in the
order in which they were de�ned. Clearly, there is little gain in calculating the grid in this
manner. To improve the performance, the grid was recomputed by re-ordering the sequence
in which the surface patches are generated in order to obtain better load balancing.

For this test we used a simple, but e�ective, scheme to improve the load balancing. First,
we computed a very coarse version of the surface grid that required only a small fraction
of the time required to compute the desired �ne mesh. Serial timings were made for each
patch and a linear relationship for the the increased amount of time needed to compute the
�ne grid was assumed. The patches were then re-ordered in descending order based on the
estimated CPU times (i.e., compute those patches requiring the most CPU time in parallel).
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Figures 8 and 9 show the e�ect of load balancing the problem for using APPL and PVM,
respectively. The speed up of subroutine frontuv is asymptotic to about 3.4 and the overall
speed up is asymptotic to approximately 3.0.

The test results presented here indicate that performing unstructured grid generation
using VGRIDSGmay not a scalable problem. To a certain extent, this is due to the hardware
con�guration on which these tests were performed. In parallel processing, the measure
of performance is a�ected by the slowest processor of the group. Because the 300 series
workstations are slower than the 400 series workstations, the overall performance is adversely
a�ected. Another aspect e�ecting the scalability of the problem is that in unstructured
surface grid generation the work load amongst the surface patches can be very unevenly
distributed. Based on the desired grid point spacing and type of surface de�nition used,
computing the grid for some patches can require substantially more time than will other
patches. For example, in the HSCT problem approximately 85% of the total execution
time is spent computing only 4 of the 18 patches. Furthermore, there is no simple means to
divide the work load of these four patches amongst multiple processors without substantially
increasing the human e�ort to de�ne the problem. Clearly, many more tests using di�erent
vehicles will be required before making a conclusion on this issue.

9. Comparisons of Using APPL versus PVM

In this report, we found that APPL has some note-worthy advantages over PVM. First,
we found it much easier to implement message passing in APPL. It takes two lines of code
to send and receive a message in APPL, but PVM takes �ve lines to do the same. Second,
APPL has global functions while PVM has none. In addition, APPL allows I/O redirection
but PVM does not. Last, we found it easier to execute (control) the parallel program using
APPL, because to use PVM requires starting of daemons. These properties of PVMmakes it
di�cult to execute batch jobs in UNIX, however, if the Distributed Queuing System (DQS)
is installed on the distributed computer, the batch scripts are signi�cantly easier to write
(see ref. 7).

There are some drawbacks to using APPL. First, abnormal termination of the executing
processes will not release allocated resources. This could cause large portions of the memory
to be allocated to a single user rendering the workstation useless for other users until the
resources have been released. In addition, APPL is limited to a homogeneous environment.

Debugging the parallel code is di�cult in both packages. Though ORNL is developing a
X Window debugger, neither package currently has a debugger.

It should be noted that both APPL and PVM are continuously being upgraded. Cur-
rently, the developers of APPL are considering a modi�cation to allow the utilization of a
heterogeneous network. The next release of PVM, known as PVM 3.0, is scheduled to be
made available by December 1992. It appears that both packages are converging to the same
solution and will o�er the same functionality at some point in the future.
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10. Conclusions

In this report we have presented the results of our work on using distributed computing
to improve the performance of the VGRIDSG unstructured surface grid generation program.
The program was distributed across a cluster of high performance workstations using the
APPL and PVM message passing libraries. For the tests reported here, APPL had approxi-
mately the same performance as PVM. Based on overall ease of use, it was determined that
APPL was the better of the two software packages for this application.
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Figure 1. Coarse unstructured grid for a cube.

10



1 2 3 4 5 6 7 8 9 10 11 12

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

number of processors

sp
ee

d 
up

perfect   

frontuv   

all       

Figure 2. Speed up for cube using APPL.
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Figure 3. Speed up for cube using PVM.
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Figure 4. Surface patch boundaries for upper surface of HSCT.

Figure 5. Portion of HSCT unstructured grid.
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Figure 6. Unbalanced speed up for HSCT using APPL.
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Figure 7. Unbalanced speed up for HSCT using PVM.
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Figure 8. Load Balanced speed up for HSCT using APPL.
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Figure 9. Load Balanced speed up for HSCT using PVM.
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