
High Level Design Proof of a Reliable Computing Platform
1

Ben L. Di Vito

Vigyan, Inc.

30 Research Drive

Hampton, VA 23666-1325

Ricky W. Butler

James L. Caldwell

NASA Langley Research Center

Hampton, VA 23665{5225

Abstract

An architecture for fault-tolerant computing is for-

malized and shown to satisfy a key correctness prop-

erty. The reliable computing platform uses replicated

processors and majority voting to achieve fault toler-

ance. Under the assumption of a majority of proces-

sors working in each frame, we show that the repli-

cated system computes the same results as a single

processor system not subject to failures. Su�cient

conditions are obtained to establish that the repli-

cated system recovers from transient faults within

a bounded amount of time. Three di�erent vot-

ing schemes are examined and proved to satisfy the

bounded recovery time conditions.

Key Words { Fault tolerance, formal methods,

correctness proofs, majority voting, modular redun-

dancy.

1 Introduction

NASA has initiated a major research e�ort towards

the development of a practical validation and veri-

�cation methodology for digital
y-by-wire control

systems. Researchers at NASA Langley Research

Center (LaRC) are exploring formal veri�cation as

a candidate technology for the elimination of design

errors in such systems. In a detailed technical re-

port [1], we put forward a high level architecture for

a reliable computing platform (RCP) based on fault-

tolerant computing principles. This paper presents

initial results of applying formal methods to the ver-

i�cation of a fault-tolerant operating system that

schedules and executes the application tasks of a dig-

ital
ight control system.

The major goal of this work is to produce a ver-

i�ed real-time computing platform, both hardware

and operating system software, which is useful for

a wide variety of control-system applications. To-

1
Second International Working Conference on Dependable

Computing for Critical Applications. Tucson, Arizona, USA.

February 18-20, 1991.

ward this goal, the operating system provides a user

interface that \hides" the implementation details of

the system such as the redundant processors, voting,

clock synchronization, etc. We describe an abstract

model of the architecture, a �rst level decomposition

of the model towards a physical realization, and a

proof sketch that the decomposition is an implemen-

tation of the model.

2 Design of the Reliable Com-

puting Platform

Traditionally, the operating system function in
ight

control systems has been implemented as an execu-

tive (or main program) that invokes subroutines im-

plementing the application tasks. For ultra-reliable

systems, the additional responsibility of providing

fault tolerance makes this approach untenable. We

propose an operating system that provides the appli-

cations software developer a reliable mechanism for

dispatching periodic tasks on a fault-tolerant com-

puting base that appears to him as a single ultra-

reliable processor.

Our system design objective is to minimize the

amount of experimental testing required and maxi-

mize our ability to reason mathematically about cor-

rectness. The following design decisions have been

made toward that end:

� the system is non-recon�gurable

� the system is frame-synchronous

� the scheduling is static, non-preemptive

� internal voting is used to recover the state of a

processor a�ected by a transient fault

A four-level hierarchical decomposition of the reli-

able computing platform is shown in �gure 1.

The top level of the hierarchy describes the oper-

ating system as a function that sequentially invokes

application tasks. This view of the operating system

will be referred to as the uniprocessor model, which

is formalized as a state transition system in section 5

and forms the basis of the speci�cation for the RCP.

124

Uniprocessor Model

j

Fault-tolerant Synchronous Replicated Model

j

Fault-tolerant Asynchronous Replicated Model

j

Hardware/Software Implementation

Figure 1: Hierarchical Speci�cation of the Re-

liable Computing Platform.

Fault tolerance is achieved by voting results com-

puted by the replicated processors operating on the

same inputs. Interactive consistency checks on sen-

sor inputs and voting actuator outputs requires syn-

chronization of the replicated processors. The second

level in the hierarchy describes the operating system

as a synchronous system where each replicated pro-

cessor executes the same application tasks. The exis-

tence of a global time base, an interactive consistency

mechanism and a reliable voting mechanism are as-

sumed at this level. The formal details of the model,

speci�ed as a state transition system, are described

in section 6.

At the third level, the assumptions of the syn-

chronous model must be discharged. Rushby and von

Henke [11] report on the formal veri�cation of Lam-

port and Melliar-Smith's [6] interactive-convergence

clock synchronization algorithm. This algorithm

can serve as a foundation for the implementation

of the replicated system as a collection of asyn-

chronously operating processors. Elaboration of the

asynchronous layer design will be carried out in

Phase 2 of our research e�ort.

Final realization of the reliable computing plat-

form is the subject of the Phase 3 e�ort. The research

activity will culminate in a detailed design and pro-

totype implementation. Figure 2 depicts the generic

hardware architecture assumed for implementing the

replicated system. Single-source sensor inputs are

distributed by special purpose hardware executing a

Byzantine agreement algorithm. Replicated actua-

tor outputs are all delivered in parallel to the actua-

tors, where force-sum voting occurs. Interprocessor

communication links allow replicated processors to

exchange and vote on the results of task computa-

tions.

. . .
??

?

Interactive Consistency

Distribution Network

. . .

Interprocessor

Communication Link

Interprocessor

Communication Link
Processor
Replicate

R

Processor
Replicate

1

Actuators

Sensors

Figure 2: Generic hardware architecture.

3 Previous E�orts

Many techniques for implementing fault-tolerance

through redundancy have been developed over the

past decade, e.g. SIFT [2], FTMP [3], FTP [5],

MAFT [12], and MARS [4]. An often overlooked

but signi�cant factor in the development process

is the approach to system veri�cation. In SIFT

and MAFT, serious consideration was given to the

need to mathematically reason about the system. In

FTMP and FTP, the veri�cation concept was almost

exclusively testing.

Among previous e�orts, only the SIFT project at-

tempted to use formal methods [9]. Although the

SIFT operating system was never completely veri�ed

[10], the concept of Byzantine Generals algorithms

was developed [7] as was the �rst fault-tolerant clock

synchronization algorithm with a mathematical per-

formance proof [6]. Other theoretical investigations

have also addressed the problems of replicated sys-

tems [8].

4 Application De�nition

We present a method for specifying an operating

system workload that characterizes the interface be-

tween the application software and the operating sys-

tem. The speci�cation consists of a generic set of

mathematical de�nitions serving as a schema. For

an actual application, these de�nitions would be in-

stantiated with appropriate values.

125

4.1 Tasks

Let T1; . . . ; TK be the application tasks. Assume

each task produces either actuator output or data

values drawn from some domain. These data values

may be provided as inputs to other tasks or serve

as long term state variables. Tasks have no persis-

tent state variables; the e�ect of persistent state is

achieved by recirculating task outputs.

Let S1; . . . ; Sp be the sensors and A1; . . . ; Aq be

the actuators. Let these symbols also stand for the

sets of values received from the sensors and sent to

the actuators. Also let Di be the set of data values

produced as output by task Ti. These values may

be structured objects such as arrays, records, etc.

Thus, if Ti is an actuator task, Di = Aj for some

j. Note that this precludes an actuator task from

producing non-actuator data in addition to actuator

output. Let D =
S
iDi.

Task Ti computes a function fi on a set of input

values. Inputs may be taken from sensor data or the

outputs of other tasks. Tasks are prohibited from

having side e�ects; their only e�ects are their explicit

outputs.

4.2 Schedules

Application tasks are scheduled via a �xed, deter-

ministic sequence of task executions. A complete,

repeating task schedule comprises a cycle.

::: Cyclei�1 Cyclei Cyclei+1 :::

Cycles are repeated inde�nitely and the task exe-

cution sequence of one cycle is identical to the others.

A cycle is divided into M frames of equal duration.

Frame0 ::: F rameM�1

j � � �� Cycle ��� �! j

The frame length is a fundamental unit of time

for the application (typically � 50 ms). The sensors

are read at most once per frame and actuators are

written at most once per frame. Each frame is di-

vided into subframes of variable length. The number

of subframes is variable also.

Subframe1 ::: SubframeMi
====

j � �� �� � Framei � �� �� �! j

The number of subframes for the ith frame is given

byMi (distinct fromM , the number of frames). The

time from the end of the last subframe until the end

of the frame is slack time for performing OS overhead

...

|

|

|

1

0

M-1 T6

T5T2T4

T4

T1

T1T3T2

T7

T1

T1

Figure 3: Structure of a task schedule.

functions and dispatching pre-emptable, non-critical

tasks.

The schedule for an entire cycle would assign task

executions to each subframe (�gure 3). We refer to

each site in a task schedule as a cell. A cell is denoted

by the pair (i; j) for the ith frame and jth subframe.

A schedule is then given by a mapping from cells into

the scheduled task:

ST : f0::M � 1g � nat! f0::Kg

ST (i; j) gives the task index of the scheduled task for

cell (i; j), and 0 for j > Mi (nat denotes the natural

numbers).

Now consider the binding of input values for task

execution. For task Ti, we must supply inputs for

the arguments of fi. Each input must come from

a prior task execution or be taken as sensor input.

So the designation of a task input will be a triple

(i type; i; j) where i type 2 fsensor; cellg with the

meaning:

sensor value from sensor i in current

frame

cell value from task output in cell

(i; j) of current or previous cycle

A task may get input from a prior task output

up to one cycle length in the past (M frames). By

convention, if the task in cell (k; l) receives input

from the task in cell (i; j) where

i > k _ (i = k ^ j � l)

then the input comes from (i; j)'s task execution dur-

ing the previous cycle.

A mapping from cells into sequences of triples de-

�nes the assignment of input values to task execu-

tions.

TI : f0::M � 1g � nat! sequence(triple)

126

TI(i; j) = [(t1; i1; j1); :::; (tn; in; jn)]

for a task with n inputs. Let TI(i; j) = [] when

j > Mi or the task at (i; j) has no inputs.

The functions ST and TI need to be supplemented

by a binding of task outputs to actuators for \actu-

ator" tasks:

AO : f0::M � 1g � nat! f0::qg

AO(i; j) = a to designate that the output of the

task at cell (i; j) should go to actuator a. As before,

AO(i; j) = 0 if j > Mi or the task at (i; j) does not

produce actuator output.

Provided the functions TI and AO satisfy certain

well-formedness constraints, they su�ce to uniquely

characterize a task schedule. AO may not allow mul-

tiple outputs to the same actuator within a single

frame.

Since task results may be carried forward from one

cycle to the next, it is necessary to account for the

\previous" cycle at system initialization. The ap-

plication must de�ne what these previous-cycle task

outputs should be for the �rst cycle to use as suitable

task inputs. A function

IR : f0::M � 1g � nat! D

is used to characterize the initial task results values.

5 Top Level Speci�cation

The top level OS machine speci�cation captures the

behavior of the application tasks running on an ideal

computer. It de�nes the net e�ect of task execution

as seen by the control application. All details of the

replicated system implementation are hidden.

5.1 OS State and I/O Types

The state of the ideal OS consists of a frame counter

and task outputs produced in the current and previ-

ous cycle. Thus an OS state is a pair:

OS state = (frame : f0::M � 1g;

results : cycle state)

where cycle state : f0::M � 1g � nat! D:

OS:frame denotes the frame counter while

OS:results(i; j) denotes the task output at cell (i; j)

during the current or previous cycle.

The application de�nition needs to provide the ini-

tial state values for the results portion of the state.

The initial OS state is given by the pair (0; IR),

where IR de�nes the initial results state values.

The following data types represent vectors of sen-

sor inputs and actuator outputs.

Sin = vector([1::p]) of
S
i Si

Aout = vector([1::q]) of
S
iAi

5.2 State Transition De�nitions

Transitions correspond to the execution of tasks for

a single frame. The state variable OS:frame gives

the number of the frame to be executed by the next

transition. After the M th state transition of the cur-

rent cycle, OS:frame is reset to 0. After the ith state

transition of the current cycle, OS:results(i; j) con-

tain the results of the latest task executions. Later

cells of OS:results still contain the results of the

prior cycle's task executions.

Since the frame number is incremented by one,

with a wrap-around when it reaches M , we use the

shorthand notation de�ned as follows.

x� y = (x+ y) modM

x	 y = (x+M � y) modM

The function OS de�nes the state transition.

OS : Sin �OS state! OS state

OS(s; u) = (u:frame�1; �i; j: new results(s; u; i; j))

The result of the function is a pair (f; r) containing

the new frame counter and results state. The subor-

dinate function new results is de�ned below.

new results(s; u; i; j) = if i = u:frame

then exec(s; u; i; j)

else u:results(i; j)

To refer to the execution of tasks within the cur-

rent frame, the function exec(s; u; i; j) gives the re-

sult of executing the task in the ith frame and jth

subframe, i.e., at cell (i; j) in the schedule. Because

the tasks in a frame may use the outputs of prior

tasks within the same frame, which are computed in

this frame rather than found in the result state, the

de�nition involves recursion through the task sched-

ule. Details can be found in [1].

5.3 Actuator Output

Since actuator outputs are always taken from task

outputs, which are recorded as part of the OS state,

we �nd it convenient to de�ne actuator outputs as

a function only of the OS state, as in a \Moore"

style state machine. To cast actuator outputs into a

functional framework, we must account for the case

of an actuator not being sent an output value in a

given frame. We assume an actuator may be sent

commands as needed by the application, which may

127

choose not to sent output during some frames. Let

us denote by the symbol � the null actuator out-

put, i.e., an output value � indicates the absence of

anything to send to the actuator. Then we de�ne

actuator outputs as a function of the OS state using

the function UA.

UA(u) = [
q

k=1 Act(u; k)]

We use the notation [mi=1 ai] to mean [a1; . . . ; am].

The function Act is used to de�ne the output for

each individual actuator.

Act(u; k) =

8<
:

u:results(u:frame 	 1; j)

if 9j : AO(u:frame 	 1; j) = k

� otherwise

Because of the application restriction that at most

one task output may be assigned to an actuator, the

axiomabove leads to a well-de�ned result. The frame

count is decremented by one because UA is applied

to the new state after a transition, where the frame

count has already been incremented.

6 Second Level Speci�cation

The replicated OS machine speci�cation represents

the behavior of the OS and application tasks run-

ning on a redundant system of synchronized, inde-

pendent processors with a mechanism for voting on

intermediate states. Let R be the number of redun-

dant processors. We use f1; . . . ; Rg as processor IDs.

Each processor runs a copy of the OS and the appli-

cation tasks. The uniprocessor OS state is replicated

R times and this composite state forms the repli-

cated OS state. Transitions for the replicated OS

cause each individual OS state to be updated, al-

though not in exactly the same way because some

processors may be faulty.

6.1 Faulty Processors

The possibility of processors becoming faulty re-

quires a means of modeling the condition for speci�-

cation purposes. We adopt a worst case fault model.

In each frame, a processor and its associated hard-

ware is either faulty or not. A fault status vector is

introduced to condition speci�cation expressions on

the possibility of faulty processors.

Voting intermediate results is the way a previ-

ously faulty processor recovers valid state informa-

tion. The voting pattern determines which portions

of the state should be voted on each frame. A state

variable that is voted will be replaced with the voted

value regardless of what its current value is in mem-

ory. We will vote the frame counter on every frame

and hence, will not include it in the voting pattern

de�nition.

Let the predicate V P represent the voting pattern.

V P : f0::M � 1g � nat � f0::M � 1g ! fT; Fg

V P (i; j; n) = T i� we are to vote OS:results(i; j)

during frame n.

Since processors may be faulty and the values of

their state variables may be indeterminate, we in-

troduce a special bottom data object to denote ques-

tionable or unknown data values. The symbol \?" is

used for this purpose. We regard it as a special data

object distinct from known \good" objects. This us-

age is intended to model the presence of potentially

erroneous data.

Voting is the primary application for ?. We use

the function

maj : sequence(D [f?g)! D [f?g

to denote the majority computation. It takes a se-

quence of data objects of type D and produces a

result of type D. If a majority does not exist, then

maj(S) = ?; otherwise, maj(S) returns the value

within S that occurs more than jSj=2 times.

6.2 The Replicated State

The replicated OS state is formed as a vector of

uniprocessor OS states:

Repl state = vector([1::R]) of OS state

Thus, if r is a Repl state value, then r[k] refers to

the OS state for the kth processor. The OS state

de�nition is identical to that of the top level OS

speci�cation. The state variable r[k]:frame gives

the number of the frame to be executed by the next

transition within processor k. To refer to a results

element of a replicated OS state we use the notation

r[k]:results(i; j).

The initial state of the replicated OS is formed by

merely copying the uniprocessor initial state R times.

Thus, we have:

Initial Repl state = [Rk=1 (0; IR)]

where IR denotes the initial results state values as

provided in the application task de�nitions.

Inputs to the replicated processors come from the

same sensors as in the uniprocessor case. The act of

distributing sensor values via some kind of interac-

tive consistency algorithm is assumed to produce R

128

values to present to the replicated system. There-

fore, we introduce a vectorized data type to use for

input variables in the functions below.

ICin = vector([1::R]) of Sin

Thus, if c is an ICin value, then c[k] refers to the

sensor inputs for the kth processor.

6.3 Replicated System Transitions

Transitions correspond to the execution of all tasks in

a single frame for all replicates. Since the replicated

OS state is a vector of uniprocessor OS states, we

can �rst decompose the Repl state transition into R

separate cases.

Repl : ICin�Repl state�fault status! Repl state

Repl(c; r;�) = [Rk=1 RT (c; r; k;�)]

RT is the function used to de�ne the OS state tran-

sition for each replicate.

The additional argument � is used to supply as-

sumptions about the current fault status of the repli-

cated processors.

fault status = vector([1::R]) of fT; Fg

�[k] is true when processor k is faulty during the

current frame. Various speci�cation functions take

� arguments as a way to model assumptions about

fault behavior and show what the system response is

under those assumptions.

To de�ne RT we must take into account whether

the processor is faulty and apply voting at the ap-

propriate points. Because voting incorporates values

from all the processors, the entire Repl state is re-

quired as an argument to RT even though it only

returns the OS state for the kth processor.

RT (c; r; k;�) = if �[k]

then ?

else (frame vote(r;�);

Repl results(c; r; k;�))

If processor k is faulty, we regard its entire OS state

as suspect and therefore assign it the value ?.

RT requires the frame counter be voted on every

transition. All processor frame counters are input to

a majority operation. Voting for a frame is based on

values computed during that frame. Consequently,

the incremented frame counter values are used in the

speci�cation.

frame vote(r;�) = maj([Rl=1 FV l])

where FV l = if �[l] then ? else r[l]:frame� 1

Because some of the r[l] may be faulty, we assume

their frame counters are questionable and produce ?

as their votes.

For the results state variables, we need to incorpo-

rate selective voting. The V P predicate determines

when and where to vote.

Repl results(c; r; k;�) =

�i; j: if V P (i; j; r[k]:frame)

then results vote(c; r; i; j;�)

else new results(c[k]; r[k]; i; j)

The function new results is de�ned in the unipro-

cessor OS speci�cation. It gives the value of the task

results part of the state after a state transition.

De�ning the vote of task results is similar to that

for the frame counter.

results vote(c; r; i; j;�) = maj([Rl=1 RV l])

where RV l =

if �[l] then ? else new results(c[l]; r[l]; i; j):

As before, some of the processors may be faulty so

some r[l] may have value ?. We assume task execu-

tion on faulty processors produces ? as well.

Note that voting within a frame occurs after all

computation has taken place. In particular, the

voted value of a task's output is not immediately

available to a later task within the same frame.

6.4 Replicated Actuator Output

As in the uniprocessor case, outputs from the repli-

cated processors go to the actuators. Each processor

sends its own actuator outputs separately. There-

fore, we introduce a vectorized data type to describe

the replicated system outputs.

RAout = vector([1::R]) of Aout

Thus, if b is an RAout value, then b[k] refers to the

actuator outputs for the kth processor.

The actuator output variables are updated accord-

ing to the application function AO in the same man-

ner as the uniprocessor OS. We use the OS function

UA to extract the actuator outputs for each proces-

sor in the replicated system.

RA : Repl state � fault status ! RAout

RA(r;�) = [Rk=1 RAk]

where RAk = if �[k] then ? else UA(r[k])

RA produces a vector of actuator outputs, one for

each processor. Faulty processors are assumed to

produce indeterminate output (?).

129

7 Replicated System Proofs

We develop a methodology for showing that the repli-

cated OS is a correct implementation of the unipro-

cessor OS. Previously presented concepts are put

together with a framework for the replicated and

uniprocessor state machines. Su�cient conditions

based on commutative diagram techniques are de-

rived for showing correctness. Issues stemming from

real-time considerations are not included in the fol-

lowing. In subsequent work we will address require-

ments such as having adequate real time to execute

the task schedule and OS overhead functions.

7.1 Fault Model

In each frame, a processor is either faulty or not. A

function

F : f1::Rg� nat! fT; Fg

represents a possible fault history for a given set of

redundant processors. F(k; n) = T when processor

k is faulty in frame n, where n is the global frame

index (n 2 f0; 1; . . .g). Let fault fn be the type

representing the signature of F .

Faults are often distinguished as being either per-

manent or transient. A permanent fault would ap-

pear in F as an entry that becomes true for a proces-

sor k in frame n and remains true for all subsequent

frames. A transient fault would appear as an entry

that becomes true for several frames and then returns

to false, indicating a return to nonfaulty status.

Application task con�gurations and voting pat-

terns determine the number of frames required to

recover from a transient fault. Let NR represent this

number (NR > 0). We de�ne a processor as working

in frame n if it is nonfaulty in frame n and nonfaulty

for the previous NR frames. We use a functionW to

represent this concept.

W : f1::Rg� nat� fault fn! fT; Fg

W(k; n;F) =

(8j : 0 � j � min(n;NR) � � F(k; n� j))

The number of working processors is also of interest:

!(n;F) = jfk j W(k; n;F)gj

A processor that is nonfaulty, but not yet working,

is considered to be recovering.

Finally, the key assumption upon which correct

state machine implementation rests is given below.

De�nition 1 The Maximum Fault Assumption for

a given fault function F is that !(n;F) > R=2 for

every frame n.

"

"

6 6

-

�
��3

�
��3

6

?

-

AS

U

R

U

R

BC

maj maj

maj

RA

UA

OS

Repl

IC

Figure 4: Commutative diagram for UM and

RM .

Set Type Description

S Sin Uniprocessor sensor inputs

A Aout Uniprocessor actuator

outputs

U OS state Uniprocessor OS states

C ICin Replicated sensor inputs

B RAout Replicated actuator outputs

R Repl state Replicated OS states

Table 1: Sets of inputs, outputs, and states.

All theorems about state machine correctness are

predicated on this assumption that there is a ma-

jority of working processors in each frame.

7.2 Framework For State Machine

Correctness

Mappings are needed to bridge the gap between the

two state machines. Let us refer to the uniprocessor

state machine as UM and the replicated state ma-

chine as RM . We map fromRM to UM by applying

the majority function. We map from UM to RM by

distributing data objects R ways.

For sensor inputs, we assume an interactive consis-

tency process is used in the system, so the net e�ect

is that sensor data is merely copied and distributed.

IC : Sin ! ICin IC(s) = [Ri=1 s]

The majority mapping on replicated states and actu-

ator outputs captures the notion that a majority of

the processors should be computing the right values.

Relationships among the various entities for the

two state machines are characterized by the commu-

tative diagram in �gure 4. Table 1 summarizes the

sets involved.

Assume the inputs to UM are drawn from an in-

�nite sequence of sensor values S = [s1; s2; . . .]. Fur-

ther assume UM will have states [u0; u1; u2; . . .] and

130

outputs [a1; a2; . . .]. Similarly, the inputs to RM are

drawn from the in�nite sequence C = [c1; c2; . . .],

and RM will have states [r0; r1; r2; . . .] and outputs

[b1; b2; . . .].

De�nition 2 The state machines UM and RM are

de�ned by initial states u0 and r0, and state transi-

tions that obey the following relations for n > 0:

un = OS(sn; un�1)

an = UA(un)

rn = Repl(cn; rn�1;F
R
n)

bn = RA(rn;F
R
n)

where FRn = [Rk=1 F(k; n� 1)]:

Not shown in �gure 4 is the fault status vector argu-

ment to the functions Repl and RA.

7.3 The Correctness Concept

Our approach to the correctness criteria is based

on state machine concepts of behavioral equivalence,

specialized for this application. In essence, what we

want to show is that the I/O behavior of RM is the

same as that of UM when interpreted by the map-

ping functions IC andmaj. We say that the machine

RM correctly implements UM i� they exhibit match-

ing output sequences when applied to matching in-

puts sequences and the Maximum Fault Assumption

holds.

De�nition 3 RM correctly implements UM under

assumption P i� the following formula holds:

8F ; P(F) � 8S; 8n > 0 : an = maj(bn)

where an and bn can be characterized as functions of

an initial state and all prior inputs.

We parameterize the concept of necessary assump-

tions using the predicate P. For the replicated sys-

tem, it will be instantiated by the Maximum Fault

Assumption:

P(F) = (8m : !(m;F) > R=2):

De�nition 3 provides the formal means of compar-

ing the e�ects of the two machines and reasoning

about their collective, intertwined behavior. It fo-

cuses on the correctness of the actuator outputs as

a function of the sensor inputs; this is what matters

to the system under control.

We now introduce the usual su�cient conditions

for correctness based on commutative diagram tech-

niques. The following criteria can be understood as

showing that two subdiagrams of �gure 4 commute:

one for the state transition paths and another for the

output function paths. Although the second subdi-

agram is a nonstandard form for commutative dia-

grams, since it does not depict a homomorphism, it

is nevertheless useful for characterizing the relation-

ship between the two machines' output values.

De�nition 4 (RM Correctness Criteria) RM

correctly implements UM if the following conditions

hold:

(1) u0 = maj(r0)

(2) 8F ; (8m : !(m;F) > R=2) �

8S; 8n > 0;

OS(sn;maj(rn�1)) =

maj(Repl(IC(sn); rn�1;F
R
n))

(3) 8F ; (8m : !(m;F) > R=2) �

8S; 8n > 0;

UA(maj(rn)) = maj(RA(rn;F
R
n))

The conditions of De�nition 4 are shown to imply

the correctness notion of De�nition 3 in [1].

8 Design Proofs

Proving replicated system correctness for a particu-

lar voting pattern can be simpli�ed by �rst estab-

lishing some intermediate su�cient conditions. The

following treatment is based on the formulation of

a Consensus Property, which relates the state of

working processors to the majority of the replicated

states. We use this property to prove the RM Cor-

rectness Criteria. This proof is independent of a par-

ticular voting pattern; it need be done only once.

Similarly, the Consensus Property can be established

by introducing a Replicated State Invariant. Then

we construct a proof of the invariant based on the

Full Recovery Property, whose statement is generic,

but whose proof is di�erent for each voting pattern.

Adopting this methodology creates the following

general proof structure.

RM Correctness Criteria

*

Consensus Property

*

Replicated State Invariant

*

Full Recovery Property

*

Voting Pattern

131

8.1 Consensus Property

The Consensus Property relates certain elements of

the replicated OS state to the majority of those ele-

ments. It asserts that if the pth processor is working

during a frame, i.e., not faulty and not recovering,

then its element of the replicated OS state equals

that of the majority, both before and after the tran-

sition. This re
ects our intuition that if a processor

is to be considered productive, it must have estab-

lished a state value that matches the consensus and

will continue to do so after the computations of the

current frame.

De�nition 5 (Consensus Property) For F sat-

isfying the Maximum Fault Assumption,

W(p; n� 1;F) �

rn�1[p] = maj(rn�1) ^ rn[p] = maj(rn)

holds for all p and all n > 0.

Having stated a generic Consensus Property, we

assume its truth to prove the RM Correctness Cri-

teria hold. See [1] for a detailed proof of the following

result.

Theorem 1 The RM Correctness Criteria follow

from the Consensus Property.

8.2 Full Recovery Property

We introduce a predicate, rec, that captures the

concept of a state element having been recovered

through voting. It is a function of the last faulty

frame, f , and the number of frames, h, a processor

has been nonfaulty.

rec(i; j; f; h; e) =

if h � 1 then F

else (V P (i; j; f � h) ^ e) _

if i = f � h

then
V

jTI(i;j)j

l=1 RI(TI(i; j)[l]; i; j; f; h)

else rec(i; j; f; h� 1; T)

RI(t; i; j; f; h) =

(t:type = sensor) _

if t:i = f � h ^ t:j < j

then rec(t:i; t:j; f; h; F)

else rec(t:i; t:j; f; h� 1; T)

By recursively following the inputs for the sched-

uled task at cell (i; j), rec(i; j; f; h; e) is true i�

results(i; j) should have been restored in frame f�h,

provided the processor has been nonfaulty for h

frames and f was the last faulty frame. The boolean

argument, e, indicates whether the recovery status

applies at the end of the frame or sometime before

computation is complete. This is necessary to ac-

count for the block voting that occurs at the end of

a frame.

The conditions for rec can obtain if (i; j) is voted

in frame f�h, or it is computed in frame f�h and all

inputs have been recovered, or it is not computed in

frame f �h and was recovered by frame f � (h� 1).

Thus, cell (i; j) is not recovered if it results from

computations involving unrecovered data, or it has

not been voted since the last faulty frame f .

De�nition 6 (Full Recovery Property) The

predicate rec(i; j; f;NR; T) holds for all i; j; f .

This de�nition equates full recovery with the pred-

icate rec becoming true for all state elements (i; j)

after NR frames have passed since the last fault.

8.3 Replicated State Invariant

As a practical matter, it is necessary to prove the

Consensus Property by �rst establishing an invariant

of the replicated OS state. Such an invariant relates

the values of the nonfaulty processor states to the

majority value of replicated OS states. To do so, it

is necessary to identify the partially recovered values

of OS states for recovering processors.

Expressing the invariant below requires a means of

determining how many consecutive frames a proces-

sor has been healthy (without fault). Let H(k; n;F)

give the number of healthy frames for processor k

prior to the nth frame. In an analogous way, let

L(k; n;F) give the last faulty frame for processor k

prior to the nth frame.

The Replicated State Invariant states that if the

pth processor is nonfaulty during a frame, i.e., work-

ing or recovering, then its frame counter after the

transition equals that of the majority. It also relates

this processor's results state values to the majority

if they have been recovered, as determined by the

function rec.

De�nition 7 (Replicated State Invariant)

For fault function F satisfying the Maximum Fault

Assumption, the following assertion is true for every

frame n:

(n = 0 _ � F(p; n� 1)) �

rn[p]:frame = maj(rn):frame = n modM ^

(8i; j : rec(i; j;L(p; n;F);H(p; n;F); T)�

rn[p]:results(i; j) = maj(rn):results(i; j)):

Theorem 2 The Replicated State Invariant follows

from the Full Recovery Property.

132

Theorem 3 The Consensus Property follows from

the Replicated State Invariant and the Full Recovery

Property.

Again, complete proofs of these theorems can be

found in [1] along with de�nitions for H and L.

9 Speci�c Voting Patterns

With the general framework established thus far, the

replicated system design is veri�ed on the premise

that the Full Recovery Property holds. This property

depends on the details of each voting pattern and

must be established separately for each. Following

are three voting schemes and their proofs. The last

one is the most general and constitutes the goal of

this work; the other two can be seen as special cases

whose proofs are simpler and instructive.

9.1 Continuous Voting

We begin with the simplest case, namely when the

voting pattern calls for voting all the data on every

frame. Clearly, this leads to transient fault recov-

ery in a single frame. Although the entire state of

a recovering processor is restored in one frame, our

formalization of rec assumes one frame is used to re-

cover the frame counter, so the conservative assign-

ment NR = 2 is used.

De�nition 8 The continuous voting version of the

replicated OS uses the assignments V P (i; j; k) = T

for all i; j; k, and NR = 2.

Theorem 4 The continuous voting pattern satis�es

the Full Recovery Property.

Proof. Since V P (i; j; k) holds for all i; j; k, and

NR = 2, expanding the de�nition of rec shows that

rec(i; j; f;NR; T) reduces to T for all i; j; f .

9.2 Cyclic Voting

Next we consider a more sparse voting pattern,

namely voting only the data computed in the cur-

rent frame. Only the portion of r:results(i; j) where

i = r:frame is voted; the other M � 1 portions are

voted in later frames. This leads to voting each part

of the results state exactly once per cycle and there-

fore leads to transient fault recovery inM+1 frames.

(One frame is required to recover the frame counter.)

The proof in this case is only slightly more di�cult.

De�nition 9 The cyclic voting version of the repli-

cated OS uses the assignments V P (i; j; k) = (i = k)

for all i; j; k; and NR = M + 1.

Theorem 5 The cyclic voting pattern satis�es the

Full Recovery Property.

Proof. Since V P (i; j; f � h) reduces to i = f � h,

the de�nition of rec becomes

rec(i; j; f; h; T) =

if h � 1 then F

else i = f � h _ rec(i; j; f; h� 1; T):

Thus, it follows that

rec(i; j; f;NR; T)

= rec(i; j; f;M + 1; T)

= (i = f � 2) _ . . ._ (i = f � (M + 1))

Because the modulus of � is M this expression eval-

uates to T .

9.3 Minimal Voting

The last case is concerned with the most general

characterization of voting requirements. Minimal

voting is the name used to describe these require-

ments because they represent conditions necessary

to recover from transient faults via the most sparse

voting possible.

Central to the approach is the use of task I/O

graphs, constructed from the application task speci-

�cations embodied in the function TI. Nodes in the

graph denote cells in the task schedule and directed

edges correspond to the
ow of data from a producer

task to a consumer task. Sensor inputs and actuator

outputs have no edges in these graphs. Associated

with edges of the graph are voting sites that indicate

where task output data should be voted before being

supplied as input to the receiving task.

The essence of the Minimal Voting scheme is that

every cycle2 of the task I/O graph should be covered

by at least one voting site. It is possible to place

more than one vote along a cycle or place votes along

noncyclic paths, but they are unnecessary to recover

from transient faults. Such super
uous votes may

be desirable, however, to improve the transient fault

recovery rate.

2
We are using the graph theoretic concept of cycle here, as

opposed to the terminology introduced earlier of a frame cycle

consisting of M contiguous frames in a schedule.

133

De�nition 10 A task I/O graph G=(V,E) contains

nodes vi 2 V that correspond to the cells (i; j)

of a task schedule. Edges consist of ordered pairs

(v1; v2) where ((i1; j1); (i2; j2)) 2 E i� output from

cell (i1; j1) is used as input to (i2; j2).

De�nition 11 A path through the task I/O graph

G = (V;E) consists of a sequence of nodes P =

[v1; . . . ; vn] such that (vi; vi+1) 2 E. A cycle is a

path C = [v1; . . . ; vn; v1]. The frame length of an

edge e = ((i1; j1); (i2; j2)) is given by:

fl(e) =

�
M if i1 = i2 ^ j1 � j2
i2 	 i1 otherwise

The frame length of a path, FL(P), is the sum of the

frame lengths of its edges.

De�nition 12 Let C1; . . . ; Cm be the (simple) cy-

cles of graph G, and P1; . . . ; Pn be the noncyclic paths

of G. De�ne the following maximum frame length

values for cycles and noncyclic paths:

LC = max(fFL(Ci)g)

LN = max(fFL(Pi)g) + 1

Note that noncyclic paths may share edges with cy-

cles in the graph, but may not contain a complete

cycle. LN is increased by one to account for the

frame at the beginning of the path.

De�nition 13 The minimal voting condition is

speci�ed by the following constraint on V P :

8C 2 cycles(G) :

9((a; b); (c; d)) 2 C; 9f :

V P (a; b; f)^ (a = c ^ b � d_ 0 � f 	 a < c	 a)

and the assignment NR = LC + LN +M .

The condition requires at least one vote along each

cycle. There is a caveat, however, on where the votes

may be placed. Because voting occurs at the end of a

frame, a vote site may not be speci�ed on an edge be-

tween two cells of the same frame. Such placements

are ruled out by the condition above. The bound

NR includes a worst case length to restore a state

element, LC + LN , plus an additional M frames to

account for maximum latency due to when the last

fault occurred within the schedule. Note that all cy-

cles must have frame lengths that are multiples of

M .

Figure 5 illustrates the de�nitions above for a

graph embedded in a four frame schedule. The graph

shown has one cycle with frame length four (LC = 4)

and a single vote site. The voting pattern would be

��
����

����
����

��

Q
QQs

Q
QQs

Q
QQs
-

(3; 0)

(2; 0)

(1; 0)

(0; 0)

Vote

3210

Figure 5: Example of task I/O graph.

speci�ed by V P (1; 0; 2) = T to indicate that results

cell (1; 0) is voted in frame 2. The longest noncyclic

path has frame length three (LN = 4). Thus, the

voting pattern meets the Minimal Voting condition

and we assign it NR = 12.

De�nition 14 A recovery tree is derived from the

expansion of the recursive function rec applied to

speci�c arguments. Nodes of the tree are associated

with terms of the form rec(i; j; f; h; e). The tree is

constructed as follows. Associate the root with the

original term rec(i; j; f; h; e). At each node, expand

the rec function. If V P (i; j; f � h) ^ e is true, mark

the node with a T . Otherwise, evaluate the condi-

tional term of the rec de�nition. Create a child node

for each recursive call associated with the appropri-

ate term and repeat the process. If evaluation shows

only sensor inputs are used at a node, mark it with

a T . If evaluation terminates with h � 1, mark the

node with an F . After building the tree out to all its

leaves, work back toward the root by marking each

parent node with the conjunction of its child node

markings.

Thus, construction of the recovery tree for a term

rec(i; j; f; h; e) corresponds to building a complete

recursive expansion of the boolean term. The mark-

ing at the root after the construction process is the

value of the term.

De�nition 15 The frame length of an edge (v1; v2)

in a recovery tree, where v1 = (i1; j1; f1; h1; e1) and

v2 = (i2; j2; f2; h2; e2), is given by jh2 � h1j 2 f0; 1g.

The frame length of a path [v1; . . . ; vn] in the tree is

the sum of the frame lengths of the edges in the path,

which is given by jhn � h1j.

134

��
��

��
��

��
��

��
��

��
��

�
�
�
�

T
T
T
T

rec(0; 0; 2; 2; T)

CF

F C

C

rec(1; 0; 2; 3; T)

rec(2; 0; 2; 4; T)

F

FT

rec(1; 0; 2; 2; T)

rec(1; 0; 2; 1; T)

Figure 6: Recovery tree for the term

rec(2; 0; 2; 4; T).

Figure 6 shows the recovery tree for term

rec(2; 0; 2; 4; T) applied to the graph in �gure 5.

Nodes labeled with a \C" are computation nodes,

i.e., they correspond to state elements in frames

where i = f�h. In this case, the four healthy frames

are insu�cient to recover the value of cell (2; 0); eight

frames are required.

Lemma 1 If all leaves of a recovery tree are marked

T , then the root must be marked T .

Proof. Follows readily by induction on the height

of the tree.

De�nition 16 Let GP (P) map a path P =

[u1; . . . ; um] from a recovery tree into the analogous

path in the corresponding task I/O graph. Form P 0 =

[v1; . . . ; vn] by retaining only those nodes from P

arising from a computation frame (i = f �h). Then

let GP (P) = [(i1; j1); . . . ; (in; jn)] where (ik; jk) is

taken from the rec term of vk.

Lemma 2 If a path P from a recovery tree be-

gins and ends with a computation node, then

FL(GP (P)) = FL(P).

Proof. Along the path P , between every pair of

computation nodes there will be fl(e) � 1 noncom-

putation nodes one frame apart, where e is the edge

in the task graph corresponding to this pair. Sum-

ming them all makes FL(GP (P)) = FL(P).

Theorem 6 The minimal voting condition satis�es

the Full Recovery Property.

Proof. To show rec(i; j; f;NR; T), construct the re-

covery tree for this term. Consider each leaf node vi
and its path Pi to the root w. Let Pi be the con-

catenation of three subpaths X;Y; Z, where Y is the

maximal subpath beginning and ending with a com-

putation node. Let u be the �rst node of Y and let G

denote the task graph. By Lemma 2 it follows that

FL(GP (Y)) = FL(Y) and because the maximum

frame separation between computation nodes is M ,

FL(Z) < M .

We show that all leaves are marked with T . The

only way for a vi to be marked F is for FL(Pi) �

NR � 1, causing vi's h � 1.

Case 1. Pi maps to an acyclic path in G. Since

GP (Y) is acyclic FL(Y) = FL(GP (Y)) < LN .

Moreover, NR = LC + LN +M so FL(Y Z) <

NR � 1. In the worst case, u represents a task

with sensor inputs only, X is empty and u = vi.

Otherwise, Y is shorter than the worst case

length and FL(XY) < LN . In either case,

FL(Pi) < NR � 1.

Case 2. Pi covers part of a cyclic path in G. Pi
cannot map to a complete cycle because it would

contain a vote site, terminating the recursion of

rec. The worst case is that X and part of Y

follow a partial cyclic path in G and the rest of

Y is acyclic. Thus, we have FL(Pi) < LC +

LN +M � 1 = NR � 1.

By Lemma 1, it follows that the root is marked with

T and therefore rec(i; j; f;NR; T) holds.

The results presented above are conservative, be-

ing based on a loose upper bound for NR. The actual

NR for most graphs will be somewhat smaller. The

worst case for the graph of �gure 5 is actually 10

frames versus the estimated value of NR = 12. In

addition, for more dense and highly regular voting

patterns such as Continuous Voting and Cyclic Vot-

ing, we can obtain more accurate values and it would

be inadvisable to apply the Minimal Voting bound

to these cases.

An important consequence of the Minimal Voting

result is that if a graph has no cycles, then no vot-

ing is required! In this case the recovery time bound

would be given exactly by NR = LN +M . Although

such a task graph is untypical for real control sys-

tems, there may be applications that could be based

on this kind of design.

135

10 Summary

We have presented a method for specifying and ver-

ifying architectures for fault-tolerant, real-time con-

trol systems. The paper develops a uniprocessor top-

level speci�cation that models the system as a single

(ultra-reliable) processor and a second-level speci�-

cation that models the system in terms of redundant

computational units. The paper then develops an

approach to proving that the second-level speci�ca-

tion is an implementation of the top-level. We have

explored di�erent strategies for voting and presented

a correctness proof for three voting strategies. The

MinimalVoting results o�er real promise for building

fault-tolerant systems with low voting overhead.

Acknowledgements

Comments received from John Rushby, Paul Miner,

and Chuck Meissner during the course of this work

are gratefully acknowledged.

References

[1] Ben L. Di Vito, Ricky W. Butler, and James L.

Caldwell. Formal design and veri�cation of a re-

liable computing platform for real-time control.

Technical Memorandum 102716, NASA, Octo-

ber 1990.

[2] Jack Goldberg et al. Development and analy-

sis of the software implemented fault-tolerance

(SIFT) computer. Contractor Report 172146,

NASA, 1984.

[3] Albert L. Hopkins, Jr., T. Basil Smith, III, and

Jaynarayan H. Lala. FTMP | A highly re-

liable fault-tolerant multiprocessor for aircraft.

Proceedings of the IEEE, 66(10):1221{1239, Oc-

tober 1978.

[4] Hermann Kopetz et al. Distributed fault-

tolerant real-time systems: The Mars approach.

IEEE Micro, 9(1):25{40, February 1989.

[5] J. H. Lala, L. S. Alger, R. J. Gauthier, and

M. J. Dzwonczyk. A Fault-Tolerant Processor

to meet rigorous failure requirements. Techni-

cal Report CSDL-P-2705, Charles Stark Draper

Lab., Inc., July 1986.

[6] Leslie Lamport and P. M. Melliar-Smith. Syn-

chronizing clocks in the presence of faults. Jour-

nal of the ACM, 32(1):52{78, January 1987.

[7] Leslie Lamport, Robert Shostak, and Marshall

Pease. The Byzantine Generals problem. ACM

Transactions on Programming Languages and

Systems, 4(3):382{401, July 1982.

[8] Luigi V. Mancini and Giuseppe Pappalardo. To-

wards a theory of replicated processing. In Lec-

ture Notes in Computer Science, volume 331.

Springer Verlag, 1988.

[9] Louise E. Moser and P. M. Melliar-Smith.

Formal veri�cation of safety-critical systems.

Software{Practice and Experience, 20(8):799{

821, August 1990.

[10] Peer review of a formal veri�cation/design proof

methodology. Conference Publication 2377,

NASA, July 1983.

[11] John Rushby and Friedrick von Henke. Formal

veri�cation of a fault tolerant clock synchroniza-

tion algorithm. Contractor Report 4239, NASA,

June 1989.

[12] C. J. Walter, R. M. Kieckhafer, and A. M.

Finn. MAFT: A multicomputer architecture for

fault-tolerance in real-time control systems. In

IEEE Real-Time Systems Symposium, Decem-

ber 1985.

136

