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Summary

An (_xperimental and lh(x)rctical design study has

been made of a generic family of lifting body con-

figurations. The configurations all had a 75 ° sw('pt

delta planforln with a rounded nose, but they had dif-

f(,rcnt ut)t)er an(t lower surface camber shapes. The

camber shapes varied in thickness and in the loca-
ti(m of the maximmn thickness. The study con-

sisted ()f models with a flat t)ottom and ut)t)er sur-

fat(' camber variations, mo(lels with a fiat t.op and.
lower surfac(' camt)er variations, and models with

variations in both upper and lower surface cam-
bet. The ext)('rim(,ntal results were ot)tainc(t in the

Langley Unitary Plan Wind Tunnel at Math mini-

bets from 2.30 to 4.62 for angles of attack fi'om -10 °

to 53 ° and inchMed 1)oth hmgitudimd and latcral-

(lir('('tional a(wo(tymmfi(: ('haract(wistics. The theo-
retical results w('re ohtaine<l through the use of the

Aero(lylmmic Preliminary Analysis System II.

The results show that changes in the camt)er de-
sign cause (tistin(:t chang(_s in the acro(tynamic char-
act eristics that should be c(msid(,re(t in the selection

of a lifting-body shat)e. In gen(!ral, the fiat-bottom

(tesigns with lq)per surface camber t)rovidcd greater

(h'ag ti)r r('tar(tati(m at high angles of attack, but they
ver(' (x)nsi(teral)ly ()ul of trim longitudinally for the

chosen moment r(q'(w(_nce center. Th(' flat-to t) designs

with lower surface camber, on the ()t.her hand, pro-

vided less drag at high angl('s of attack but could t)e

more easily trimmed longitudinally.

The generally goo(t agr(_em(mt between the the-

oretical anti exp(Mm(mtal results in(licales thai the
calculativc techniques used h('r('in shouhl be a valu-

abh_ aid in th(' design t)r()c('ss ()f lifting b()(lies in the

SUl)ersoni(' speed range.

Introduction

Lifting bodies are of interest_ for t)ossible use as

sl)a(:c transportation v(_hicles because they have the

volmne required for significant t)ayloa(ts and the aero-

(tynamic capa|)ility to negotiate the transition from
high angles of attack to lower angles of attack (for

cruise flight) and thus safely re(rater the atmost)here

and perform conv(mtional horizontal lan(lings. The

tmrt)ose of the t)rescnt pat)or is to (liscuss the efl'e(:ts

of camber variations on the a('ro(lynamic characteris-

tics of s()mc generic lifting-body designs in the tran-
sit.ion region from high to low angles of attack at.

supersonic spe(,(ts an(t to compare th(, theoretical re-

sults with the experinmntal results. All experimental

data presented her(fin were selecte,,t from rcference 1

and are inchuh'(t in this pal)('r f()r the conveni('nce of
the reader. An abbreviated version of this paper was

also presented in a confereIme (ref. 2).

Symbols

b planform span

CD drag coefficient, Drag/qS

CL lift coefficient, Lifl /qS

CI rolling-moment coefficient,
Rolling tnoment/qSb

CI_ effective dihedral parameter (rolling
moment due to sidestit))

Cm pitching-moment coefficient.

Pitching moment /qSl

C'_ yawing-moment coefficient,

Yawing momcnt/qSb

(,I_._ directional stability t)aramcter
(yawing moment due to si(teslip)

CV side-force coefficient, Side force/qS

C_ side-force parameter (side force due
to sideslip)

c chor(t

c.g. center-of-gravity location, perc('nt

body length

L/D lift-drag rat, i()

l body length

51 Math mmfi)er

q free-stream dynamic pressure

S planform area

t thickness

V volllllle

X longitudinal distance from mo(M

II()SC:, ill.

Z vertical distance from model center-

line, in.

(_ angle of attack. (leg

3 angle of sideslil), deg

Ahhreviat ions:

max maximum

OSU Ohio State University

tad. radius



Model designations:

IJ

LF

U

UF

body lower surface

body with fiat lower surface (fiat bottom'

body upper surfa('e

body with fiat. upper surface (flat top)

Models and Tests

The geometry of the test models is shown m

figure 1. The models all had a 75 ° delta tflanform

with a rounded nose and, with the exception of the

fiat-top and flat-bottonl bodies, had elliptical cross

sections with varied upper and lower surface camber

shapes. The coordinates of the caInber shapes at

the model centerline are given in table I, and the

volumes of the test models are given in table II. A

balance housing was attached to the models in such

a way that the balance inottlent reference center was

vertically offset from the horizontal reference platte.

For the flat-bottom models, the balance housing was

imbedded in the upper surface (fig. l(a)). The flat-

bottom models were inverted to provide the flat-

top models, which then had the balance housing

imbedded in the lower surface. For models with both

upper and lower surface canlt)er, the balance housing

was imbedded in the upper sm'face (figs. l(b) l(d)).

The model designations are given in chart A.

Chart A

Desiglmt ion

UF

LF

U3010

U3020

U5020

L3010

L3020

L5020

L7010

L7020

_urf_tce

Upper

Lower

Upper

Upper

Upper

Lower

Lower

Lower

Lower

Lower

_lt!.Xillllllll

tic location,

])er(:clI[ (:

Flat

Flat

30

30

5O

3O

3O

5O

7O

7O

t/_

0

0

10

2O

2O

10

2O

20

10

2O

A six-component strain gauge balance was

mounted in the balance housing with the balance

moment reference center located longitudinally at

53 percent of the bo(ty length and displaced verti-
J

cally from the horizontal reference plane by 4 percent

of the body length. Tests were nmde in the Langley

Unitary Plan Wind Tunnel at Mach numbers of 2.30,

2.96, 3.95, and 4.62 for angles of attack from -10 °

to 53 ° at angles of sideslip of 0 ° and 3 ° (ref. 1). Only

selected data from reference 1 are repeated in this

paper (primarily for M = 4.62 and 2.30). The test

Reynolds number was 2 x 106 per foot. Gross drag

values are presented with no corrections applied for

base or balance chamber drag. The angles of attack

and sideslip have been corrected for sting and balance

deflections and tbr tunnel flow angularity.

Accuracy

The estimated accuracies, based on instrument

calibration and data repeatability, are given in

chart B.

Chart B

C L ..................... 0.(}020

CD ..................... 0.0020

C,,_ ..................... 0.0040

Ct ..................... 0.0015

(7,7_ ..................... 0.0010

(7,y . .................... 0.0020

M ...................... 0.05(I

(_, deg ..................... 0.10

d, deg ..................... 0.10

Discussion

Experimental Results

Comparison of ffat-_op and fla_-bottom de-

signs. A comparison of the longitudinal characteris-

tics at M = 4.62 for L5020 (flat top) and U5020 (flat

bottom) is shown in figure 2. In this comparison

the cambered surface had t/c = 0.20 located at 0.50c

with the result that the volmnes were equal. At high

angles of attack (representative of a reentry attitude),

the flat-bottom design produces significantly high lift

and drag but also displays large negative values of

pitching moment that require trimming. The fiat-

top design produces somewhat lower values of lift

and drag at the higher angles of attack but displays

positive values of pitching moment that improve trim

characteristics. Tim results indicate that at an an-

gle of attack of 0 ° the flat-bottom design has nega-

tive lift and a negative pitching moment, whereas the

fiat-top design has positive lift and a positive pitch-

ing moment. This effect is probably caused by the

impact pressure on the forebody. The initial values

of pitching moment result in trim characteristics that

are adverse for the flat-bottom design and favorable

for the flat-top design throughout the angle-of-attack



range. Hence, the differences ill L/D shown ill the

lower cruising angle-of-attack range would be likely

to change when t,rinuned; the fiat-top design would

show some improvement and the flat-b()ttomdesign

would show some inlpa.irm,mt..

The lat(_ral-(lireetional results for these fiat-

bottoIn an(1 flat-top designs are presented in figure 3.

The results show the directional instability that must

})e over('ome is generally greater with the flat top

(eaml)ered lower surface) than with the flat t)ottom

(ealllbered upper surface). Because the side force is

greater for the fiat-top (lesign, it is apt)arent that the
lateral center of tu'essure ix farther forward for the

cambered lower surface than for the cambered upper
surface. The vertical location of the lateral center of

pressure also affects the rolling moment because the
effective dihedral t)arameter at lower angl(:s of attack

ix positive (unfavorablt,) with the cand)ered upper

surfaee and negative (fiworable) with the cambered
lower surface. The test models had nt) directional

stal)iliry surfitces, and the addition of such surfaces
woul(t change the directional stability as well as the
effect ivc dihedral.

Lower surface camber variations with the

fiat top. The longitudinal characteristics at
31 = 4.62 are presented in figure 4 for the flat-top (le-

sign with variations in the lower surfa(:e ('amt)er. The

camber shapes are labeled 121010, L3020. and L502{}
DAI(t inchtde a thickness change at a c(mstant ehor(t

station and a chor(t station chang(_ for a constallt
thickness. These results indicat(' that the longitudi-

nal aerodynamic eharaet('ristics are sensitive to the

shape of the lower suifaee eanll)(_r. The thinner shape

(L3010), which has a higher lift-curve slope and a
higher maximum L� D, has the least volume. A posi-

tive increment in pitching moment at an angh, of at-

lack of 0° provides a self-trimnfing characteristic for
each of the designs. Increasing the thickness to 0.20c

results in a decrease in the lift-curve slope and ill

the nmxinmm value of L/D, but a positive shift oc-

curs ill t;he pitching lnoment that increases the self-

trinuning capability. The results of tile test of L5020
indicate that shifting tile maximum thickness point

aft changes the lift and drag ratio. However, the

most significant change is in the pitching moment,

which provides the highest trim angle of attack of

the threeshapes. Even though the volumes are about

the same for L3020 and L5020, the L5020 design pro-

vides a higher maximunl value of L/D and better

self-trimming characteristics.

The lateral-(tireetionat results for these designs

(fig. 5) show an increase in the side force, which

should be expected as the thickness ix increased. The

attendant increase in directional instability ix great-

est for L3020, the design with the most forwar(t max-
innlm thickness location. The effective dihedral is fa-

vorable for all three (tesigns: howtwer, it ix reduce(l

by the increase in lower surface thickness because of
the increased side force St,low the roll axis.

Lower surface camber variations with up-

per surface U3010. The longitudinal charac-
teristics at .1I = ,1.62 are t)resented in figure 6 fl)r

the U3010 upper surfa(:(' with three h)wer surface

shat)es, L3020. L7020, and L7010. For the lower
surface thickness of 0.20c, a rearward shift in the

maxinmm thickness h)eatioIL from 30 t() 70 percent c

(L3020 to L7020) results in little ('hange in vohtme

(table II). However, this shift results in a sul)stan-
tial increa.sc in the high angle-of-attack trim t)omt,

an increase ill drag at high angles of attack (repre-

sentative of the reentry attitu(te), anti an increase in

L/D at lower angles of attack (rei)resentative of the

cruise attitude). Wh(m th(' h)wer surfa('e thi(:kness

at the 70-per(!(,nt-ch()r(l l()('ati(m (I,7020 to L7010) ix
reduee(t and the volume decr(,ases, the high angle-of-

attack trim point (teereases but the L/D in llw h)wer

angle-of-attack cruise reginm increases.

The lateral-dire(:tional characteristics (fig. 7) in-

(tieate the greatest directional instal)ility when the
maximum thickness is the most forwar(t (L302(1).
When the lower surface maxinmm thi('kness mt)ves

rearward (L3020 to L7020), the lateral ('enter of pres-
sure shifts rearward and the (lireetional instability ix

reduce(1. Decreasing the thickn('ss (I_701()) results in

a further reduction ill the instability because of a tie-

crease in the side force. The roiling moment due to

sideslip is positive for the 20-t)ercent-thiek lower sur-

face eamt)er shat)es, presumal)ly because the lateral
center of pressure ix t)eh)w the roll axis. Decreasing

the lower surface thickness to 10 percent causes the

center of pressure to move ut)ward and the rolling

monmnt due to sideslip to shift negatively.

Upper surface camber variations with

lower surface L3020. The longitu(lmal charae-
teristics at _lI = 4.62 are pi'(_sente(t in figure 8 for

the L3020 lower surface with the two upper surface

shapes UF and U3010. The et%ets of these upper

surface changes were relatively small. A corot)ari-
sen of the eaml)ered upper surfa(:e with the fiat uI)-

per surface shows inerea.sed vohlme in the upper sur-
face but indicates a (tecrease in L/D in the lower

angle-of-attack cruise regime.

The lateral-directional characteristics for these

designs (fig. 9) indicates that changing from the fiat

upper surface (UF) t.o the cambered upper surface
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(U3010)movesthe effectivelateralcenterof pres-
sureforwardand downwardsothat the directional
instabilityisincreasedandtherollingmonmntdueto
sideslipbecomespositive.It shouldberemembered
that forthiscomparisonthebalanceroll axisisbelow
themodelreferenceplanefor thefiat top andabove
thereferenceplanefor thecambereduppersurface.

Upper surface camber variations with

lower surface L7010. The longitudinal charac-
teristics at M--4.62 are presented in figure 10 for

the LT010 lower surface with the three upper sur-

face shapes U3010, U3020, and U5020. These upper

surface changes had little effect on the longitudinal

aerodynamic characteristics except for the increase

in L/D ill the lower angle-of-attack cruise regime
for the thinner U3010 camber. However, this shape

has an attendant vohmm decrease compared with the

other two upper surface shapes shown. Little differ-

ence in the longitudinal characteristics exists between

the U3020 and U5020 shapes, and although the cam-
ber shapes are different, the vohnnes are about the
sante.

The lateral-directional characteristics for these

designs are shown in figure 11. Little difference oc-

curs in the rolling-moment paranmter as the upper
surface canlber changes, thus indicating that this pa-

rameter is primarily influenced by tile lower surface.
The side force increases as the thickness increases.

The lateral center of pressure is apparently farthest

forward for tile U3020 shape because this shape has

the greatest directional instability.

Sensitivity to the center-of-gravity location.

Tile test results presented herein are referenced to

an arbitrary moment center or center of gravity

(c.g.) located at 53 percent of the body length. Be-

cause the longitudinal stability level is dependent
on the moment center location, the effect of mod-

erate changes in the c.g. location on the longitu-

dinal stability and trim characteristics was exam-
ined, and exalnples are shown ill figure 12 for the

U3010/L7020 and UF/L3010 designs. The results

for the U3010/L7020 design with a test moment ref-
erence point of 53 percent of the body length indi-

cate a high self-trimmed angle of attack that is desir-

able for reentry but an unstable variation of pitching

moment at lower angles of attack. Figure 12 shows

that positive longitudinal stability can be achieved

over the entire test angle-of-attack range with a re-
location of the c.g. from 53 to 46 percent of the body

length; however, the trim angle of attack would be
lowered.

The results for the UF/L3010 with a moment ref-

erence point of 53 percent of the body length in(ti-

cate positive longitudinal stability over the entire test

angle-of-attack range even though the self-trimmed

angle of attack is relatively low. A substantially

higher trim angle of attack can be obtained with a re-

h)cation of tile e.g. from 53 to 67 percent of the body

length, })lit longitudinal instability occurs at angles
of attack below about 25 ° .

Some effects of Mach number. The effects

of Mach nulnber on the longitudinal stability h)r

the UF/L5020 and U3010/LT020 designs for a e.g.

at 53 percent of the body length are presented ill
figure 13. Tile tow-angh'-of-attaek instat)ility that

occurs at M = 4.62 gradually t)ecomes stat)le at

M = 2.30. Thus, tile high trim angles of attack that
are desiral)le for retardation can t)e maintaine(t an(t

tile configurations automatically become stable at
lower cruise angles of attack as the Mach number

decreases. In addition, both designs have positive

values of pitching moInent at all angle of attack of 0°,

which ilnproves trimming.

Volumetric efficiency. The variations of the

maxinmm values of LID with volume for each of the
test models is presented in figure 14 for M = 2.30

and 4.62. The expected trend of decreasing L/D
with increasing vohlnle is apt)arcnt but some canl-

ber slmpes did not follow the trend. Note that seine

wtriations in L/D occur for constant volume and that

some levels of LID are nmintained even with sllt)-

stantial increases in vohlnle. Att.empts to optimize

the shape for tile inaxinmm LID nlust also consider
characteristics such as the longitudinal trim and tile

lateral-(tirectional stability.

Theoretical Results

Calculations were made using the Aerodynamic

Preliminary Analysis System II aim tile Hypersonic

Arbitrary-Body Aerodynamic Computer Program.
(See refs. 3 5.) Tile methodology used is illustrated

ill tigure 15. In tile impact regions of the main body,

the Dahlem-Buck empirical method was used from
tile nose back to the maximum-thickness location,
and tile modified Newtonian method was use(t aft

of that point. For the shadow regions of the main

body, the Prandtl-Mcyer expansion from free stream

was used. For the balance housing element, tile

tangent wedge method was used in the lint)act region

and the Ohio State University (OSU) hhmt-body
empirical method was used in the shadow region.

The reference enthalpy method wins selected for the

viscous analysis with turbulent flow. When the
calculations were carried out in either the laminar

or transitional modes, the results were the same.



Computer-generated drawings of some of tile de-

signs arc shown in figure 16. A comparison of

the theoretical and ext)crimcntal results for the

U3010/L7010 design is presented in figm'c 17 for

M = 4.62. Thc agreement is quite good, especially

for the nonlinear variations in lift and pitching mo-

ment with angle of attack. A comparison of the

same (tcsign at a Ma.ch number of 2.3() (fig. 18) shows

slightly greater (tifl'crei_ces in thc theoretical and ex-

perimental values, but the n(mlincar variations arc

still predicted reasonably well. It is significant that

thc changc in longitudinal stability with Math nun>

her is predicted. This agreement is partly due to the

cxistcncc of a single shock (bow shock) on these con-

figurations. The boundary layer was well behaved

over the entire sttrfacc |)ccausc of the favorable pres-

sure gradicnt (no separation). The basc pressure

contribution t.o drag was insignificant bccause of the

small tmsc area.

A comparison of the results at. _'11 = 4.62 for the

fiat-bottom anti fiat-top designs with the 5020 cam-

ber shapes is shown in figure 19 (fiat bottom) and

figure 20 (flat top), and the comparison is very good.

Thc accurate prediction of t)oth the shift in pitch-

ing niomcnt at an anglc of attack of 0 ° and the llOll-

linear variations of lift anti pitching moment with

angle of attack arc of t)articular significance. The

latcral-(tircctional characteristics were also calcu-

lated for the UF/L5020 {tcsign, and the results

(fig. 20(b)) arc quite good.

From these comparisons the calculation tech-

niques used herein apI)car to be rcasonably valid

for thc concepts of the lifting body ctmsidercd, and

thes(' tc(:hniques should be useful tools in the (tcsign

pro(R_ss.

Conclusions

The purpose of this paper has been to present

some results that might be useful in the design of

lifting-body configurations tbr l)ossil)]c use as space

transportation vehicles. Such lifting t)odics arc of

interest for possit)lc use as spa(:c transportation vc-

hiclcs because thcy have the volume required for sig-

nificant payloads and the aerodynamic capat)ility to

negotiate the transition from high angles of atta(:k

to lower angles of attack (for cruise flight) and thus

safely reenter the atmost)hcr(_ anti t)crform conven-

tional horizontal landings. The concct)ts that wcrc

investigated included variations in camt)er distribu-

tion fi)r t)oth thc upper and lower sm'faces of a 75 °

swept delta planform. Experimental rcsulls from ex-

tensivc will(I-tutmel tests have t)ccn t)rescnte(t and

arc compared with somc calculate(t results. Some

COllclu(tillg observations arc presented as follows:

1. Flat-bottom concepts with upper surface camber

provided greatcr drag for rctardation at high an-

gles of attack, but thcy wouht t)e difficult to trim

hmgitudinally.

2. Flat-top concct)ts wit h lower surface carat)or t)ro -

vided less (trag for rclar(tat.ion a( high angles

of attack lint couhl t)c more easily trimnmd

longitu(linally.

3. Tit(, nmximum values of lift-to-drag (L/D) ra-

tio generally decreased with increasing volume al-

though some combinations of caml)er provided an

incrcase in volume with no loss in L/D.

4. Thc generally goo(t agrecntcnt bctwecn theoret-

ical and cxperilnental results indicates that the

calculation techniques uscd should t)e a vahmt)lc

aid in the dcsign process of lifting-I)ody vehicles

in the supersonic speed rang(,.

NASA l,angley I{es(_al'Ch (_enter

ltaml)tOn. VA 23681-(}001
I)('c(mfl)er 1,1, 1993
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Table I. Body Coordinates at Centerline

Vertical distance fi'om model centerline (Z), in., for design

X, ill. U3010 U3020 U5020 L3010 L3020 L7010 L7020

1.5

3.0
4.5

6.0

7.5

9.0

10.5

12.0
13.5

15.0

1.04

1.38
1.50

1.47

1.38

1.22
1.04

.77

.47

.20

1.88
2.72

3.00

2.94

2.76

2.48
2.06

1.50

.87

.20

1.32

2.01

2.54

2.87

3.00
2.90

2.55

1.97

1.17

.20

1.04

1.35

1.50

1.47
1.35

1.19

.95

.66

.35
0

1.80

2.70

3.00

2.96
2.75

2.46

2.04
1.47

.80

0

0.87

1.05
1.20

1.34

1.43

1.49

1.50
1.28

.78

0

1.17

1.77
2.25

2.61

2.87

2.99
3.00

2.60

1.62

0

Table II. Volumes of Test Models

Model V, in 3

U3010/LF (UF/L3010)

U3020/LF (UF/L3020)
U5020/LF (UF/L5020)

U3010/L7010

U3020/L7010

U5020/L7010

U3010/L3010

U3010/L3020
U3010/L7020

67.42

121.57
121.88

132.26
186.41

186.72

128.82

188.99

190.47



9.27

0.80 rad.

-_.60

U302t U5020-- Balance
housin,

0.80 rad._

0.25 0.25

1.30
__ ]

U3010 UF_ _ Moment
center 0.20

LF_/

0 L701

L3020

L5020--

15.00

L7020

(a) Overlay of several camber shapes.

Figure l. Model geometry. Dimensions are given in inches unless otherwise noted.
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U3OIO/LF (UF/L3010)

U3020/LF (UF/L3020)

U5020/LF (UF/L5020)

(b) Flat-bottom and fiat-top models.

c - y
U3010/L7010

U3020/L7010

U5020/L7010

(c) Models with lower surface L7010.

U3010/L3010

U3010/L3020

U3010/L7020
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Figure 1. Concluded.
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