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Abstract

The boundary layer receptivity to free-stream acoustic waves in
the presence of localized surface disturbances is studied for the case
of incompressible Falkner-Skan 
ows with adverse pressure gradients.
These boundary layers are unstable to both viscous and inviscid (i.e.,
in
ectional) modes, and the �nite Reynolds number extension of the
Goldstein-Ruban theory provides a convenient method to compare the
e�ciency of the localized receptivity processes in these two cases. The
value of the e�ciency function related to the receptivity caused by
localized distortions in surface geometry is relatively insensitive to the
type of instability mechanism, provided that the same reference length
scale is used to normalize the e�ciency function for each type of
instability. In contrast, when the receptivity is induced by variations in
wall suction velocity or in wall admittance distribution, the magnitudes
of the related e�ciency functions, as well as the resulting coupling
coe�cients, are smaller for in
ectional (i.e., Rayleigh) modes than
for the viscous Tollmien-Schlichting waves. The reduced levels of
receptivity can be attributed mainly to the shorter wavelengths and
higher frequencies of the in
ectional modes. Because the most critical
band of frequencies shifts toward higher values, the overall e�ciency of
the wall suction- and wall admittance-induced receptivity decreases with
an increase in the adverse pressure gradient.

1. Introduction

The pressure gradient in the external stream is
known to exert a signi�cant in
uence upon the lami-
nar to turbulent 
ow transition within the boundary
layer. The experiments of Schubauer and Skramstad
(ref. 1), which for the �rst time established a �rm
connection between the linear stability theory and
the transition process, demonstrated the strongly
stabilizing and destabilizing roles of favorable and ad-
verse pressure gradients, respectively, on the growth
of small-amplitude disturbances in the boundary
layer. Since then, this observation has also been
con�rmed by results from other experimental and
theoretical investigations. Thus, to achieve reduced
aircraft skin friction drag by delayed transition to
turbulence, a favorable pressure gradient needs to be
maintained over most of the wing surface. This ob-
servation forms the basis for the design of the natural
laminar 
ow (NLF) wings (ref. 2), which have at-
tained transition Reynolds numbers of up to approx-
imately 15� 106 during in-
ight experiments. (See
ref. 3.)

Although the desired pressure distribution on an
NLF wing may be maintained at close-to-design con-
ditions, pockets of adverse pressure gradient can oc-
cur for o�-design conditions such as high angles of
attack. In conventional wing designs, an adverse
pressure gradient region usually develops just down-
stream of the blunt leading edge. This region pro-

motes early transition and thereby substantially re-
duces the percentage of laminar 
ow over the wing.
Moreover, the complex interaction between separa-
tion induced by adverse pressure gradients and the
ensuing transition process can also have a detri-
mental e�ect on the overall performance of a low-
Reynolds-number airfoil. (See ref. 4.) Even in the
absence of separation, the adverse pressure gradi-
ent downstream of the blunt leading edge can sub-
stantially increase the amplitude of an instability
wave. (See ref. 5.) Thus, it is vital to understand the
characteristics of transition in boundary layer 
ows
that are subject to adverse pressure gradients.

The �rst systematic study appears to be the
works of Schlichting and Ulrich (ref. 6) and Pretsch
(ref. 7), who used high-Reynolds-number asymp-
totics to investigate the stability of Falkner-Skan
boundary layers at di�erent values of the Hartree pa-
rameter �. An important characteristic of adverse
pressure gradient 
ows (� < 0) is their ability, by
virtue of their in
ectional pro�les, to support the in-
viscid (i.e., Rayleigh type) instability as well as the
viscous Tollmien-Schlichting (TS) modes which dom-
inate the primary instability in a zero or favorable
pressure gradient boundary layer. Inviscid instability
is indicated by the nonzero asymptotes �! �ub;1
and ! ! !ub;1, as R��!1 along the upper branch
of the neutral stability curve, while pure TS in-
stability is indicated by the asymptotes �! 0 and
! ! 0. Here, the nondimensional instability wave



numbers � and �ub;1, the nondimensional frequen-
cies ! and !ub;1, and the 
ow Reynolds number R��

are de�ned in terms of a reference length scale corre-
sponding to the local displacement thickness �� and a
velocity scale corresponding to the local free-stream
velocity. The lower branch of the neutral curve
still involves viscous (i.e., TS) modes with �! 0
as R��!1 similar to the class of boundary lay-
ers without any in
ection points. Of course, note
that the distinction between the viscous and inviscid
mechanisms is asymptotic in nature and valid only
in the limit of R��!1; in practice, the instabilities
of the boundary layer are simultaneously in
uenced
by both of these mechanisms.

Wazzan, Okamura, and Smith (ref. 8) numerically
solved the Orr-Sommerfeld (OS) eigenvalue prob-
lem for the Falkner-Skan pro�les and found that
high Reynolds numbers are required for the estab-
lishment of these asymptotic characteristics just re-
ferred to and hence, the practical utility of each in-
dividual asymptotic result is somewhat limited. The
numerical results also demonstrated the decrease in
the minimum critical Reynolds number and, more
signi�cantly, the increase in the maximum stream-
wise growth rate when the adverse pressure gradient
strength increases. Saric and Nayfeh (ref. 9) re�ned
the quasi-parallel predictions of Wazzan, Okamura,
and Smith by using a weakly nonparallel theory and
found that the corrected growth rates are some-
what greater than those based on the OS equation
alone. By neglecting the small nonparallel correc-
tions, Mack (ref. 10) used the eN methods based
on both an amplitude ratio and an amplitude den-
sity criterion to develop empirical predictions of the
transition Reynolds number as a function of the pres-
sure gradient parameter � and the level of turbulence
in the free stream. The secondary instability of the
Falkner-Skan boundary layers in the presence of �-
nite amplitude primary instabilities was studied by
Herbert and Bertolotti. (See ref. 4.) A direct nu-
merical simulation of this same problem was devel-
oped by Kloker and Fasel (ref. 11) who found the
mechanism of fundamental resonance to be stronger
than the subharmonic secondary instability. Exper-
imental studies of the linear and nonlinear stabili-
ties of Falkner-Skan 
ows have recently been reported
by Wubben, Passchier, and Van Ingen (ref. 12) and
Watmu� (ref. 13); the results in reference 12 con�rm
the linear stability predictions during the early stage
of the transition process. The e�ect of an adverse
pressure gradient on the ampli�cation of an instabil-
ity wave in a more realistic con�guration can also be
inferred from the theoretical prediction (ref. 5) of the
instability wave growth in the Leehey and Shapiro ex-

periment. (See ref. 14.) In particular, Goldstein and
Hultgren (ref. 5) found that the acoustically forced
instability wave was ampli�ed by a factor of approx-
imately 2.5 between the blunt leading-edge juncture
and the measurement station compared with a pre-
dicted decay for a zero pressure gradient boundary
layer.

The results of the latter two investigations (refs. 5
and 14) con�rm the earlier prediction (ref. 15)
that adverse pressure gradient regions in nonsimilar
boundary layers were strong preampli�ers of bound-
ary layer disturbances for the nonin
ected pro�les
farther downstream. However, the manner in which
an adverse pressure gradient can a�ect the mecha-
nisms by which these unstable disturbances are gen-
erated in the �rst place should also be examined (i.e.,
the receptivity stage which initiates the transition
process). Morkovin (ref. 16) �rst recognized the im-
portance of instability wave generation in a laminar
shear 
ow by its disturbance environment and coined
the term \receptivity" for this process. Early experi-
mental work on the receptivity of boundary layer 
ow
by Leehey and Shapiro (ref. 14), Kachanov, Kozlov,
and Levchenko (ref. 17), and Aizin and Polyakov
(ref. 18) and the numerical simulations by Murdock
(ref. 19) stimulated the interest of theoreticians in ex-
plaining the physical mechanisms of boundary layer
receptivity. The �rst signi�cant breakthrough was
provided by the work of Goldstein. (See refs. 20{22.)
He showed that unsteady free-stream disturbances
excite the instability modes in a boundary layer 
ow
by a wavelength conversion process (ref. 23) that
accrues from rapid mean 
ow variations near dif-
ferent types of boundary inhomogeneities. Exam-
ples include the leading-edge region (ref. 20), down-
stream variations in surface boundary conditions
such as roughness elements (ref. 21), and a region
of marginal separation that is forced by a locally ad-
verse pressure gradient. (See ref. 22.) The acoustic
receptivity caused by a localized roughness element
was independently studied by Ruban (ref. 24) us-
ing high-Reynolds-number asymptotic methods sim-
ilar to Goldstein. (See ref. 21.) The general fea-
tures of the Goldstein-Ruban theory have since been
veri�ed with the experimental observations of Aizin
and Polyakov. (See ref. 5.) The distributed receptiv-
ity caused by small-amplitude surface waviness was
studied by Zavolskii et al. (ref. 25) using a �nite
Reynolds number approach based on the OS equa-
tion. Boundary layer receptivity is currently an ac-
tive area of research, as indicated in references 26{28
and the various papers in references 29 and 30, which
provide insight into the types of problems which have
been solved thus far.
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Because of their proximity to the region of in-
stability ampli�cation, short-scale variations in the
surface boundary conditions constitute an important
class of catalysts in the receptivity process; for exam-
ple, see the comparison with leading-edge receptivity
in references 5 and 21. In spite of the various forms
in which these nonuniformities appear in practice
(e.g., variations in surface geometry (refs. 21, 24, 25,
and 31), surface suction velocity, surface admittance
(refs. 32 and 33), and wall temperature (ref. 34)), the
basic mechanism of the receptivity process in each
case is the same as that proposed by Goldstein. Ba-
sically, the unsteady �eld produced by the scatter-
ing of a free-stream disturbance by a local surface
inhomogeneity inherits its temporal scale from the
free-stream disturbance and spatial scales from the
sums and di�erences of all the wave numbers from
the free-stream and surface disturbances; thereby,
the unsteady �eld acquires a Fourier spectrum which
overlaps that of the boundary layer instabilities.

With regard to the in
uence of an adverse pres-
sure gradient on the receptivity of a boundary layer,
Goldstein, Leib, and Cowley (ref. 22) showed that
strongly adverse pressure gradients can provide an
additional receptivity mechanism by inducing rapid
mean 
ow variations in a local region of marginal
separation. The present paper examines the role
of somewhat weaker, but possibly larger scale, ad-
verse pressure gradients as modi�ers of the receptiv-
ity which is induced by short-scale inhomogeneities
on the airfoil surface such as wall humps and suction
slots and/or strips. More speci�cally, the intention
is to clarify the di�erences between the generation
of TS waves and the in
ectional instabilities by this
latter class of receptivity mechanisms. Attention will
be focused primarily upon the receptivity caused by
localized and suitably weak surface nonuniformities
that involve short-scale variations in the surface suc-
tion velocity, surface admittance, or surface geome-
try (more detailed discussion in section 3). Varia-
tions in surface suction and surface admittance are
relevant to suction surfaces that are used in laminar

ow control (LFC), but irregularities in shape can be
found on the surface of almost any airfoil. Because
such nonuniformities can occur well downstream of
the leading edge (i.e., close to the region of instabil-
ity), they are particularly detrimental to maintain-
ing laminar 
ow. Receptivity mechanisms related to
these surface perturbations were �rst identi�ed by
Goldstein (ref. 21), Ruban (ref. 24), Kerschen and
Choudhari (ref. 32, details in Choudhari (ref. 33))
in the context of the generation of TS instabilities;
these references provide a more complete discussion

of the mechanisms by which energy is transferred to
the instability wave in each case.

Although the analyses of Goldstein, Ruban, and
Kerschen and Choudhari utilized the triple-deck the-
ory, which is an asymptotic approximation of the set
of Navier-Stokes equations in the in�nite Reynolds
number limit, the Goldstein-Ruban theory can also
be generalized quite easily to �nite, but moderately
high, Reynolds numbers. (See ref. 28.) Such �nite
Reynolds number predictions have recently been pre-
sented by a number of authors, including Choudhari
and Streett (ref. 35), Choudhari (refs. 36 and 37),
Crouch (refs. 38 and 39), and Pal and Meyer (ref. 40).
However, note that a similar and completely equiv-
alent approach which utilized the concept of adjoint
eigenfunctions was �rst described in the Russian lit-
erature by Fedorov (ref. 41), and Tumin and Fedorov.
(See ref. 42.) The OS equation was also used by
Goldstein and Hultgren (ref. 5) in the context of re-
ceptivity problems. However, they used it to pre-
dict the ampli�cation of the generated instability
wave; the receptivity was predicted by the triple-
deck theory of Goldstein (ref. 21) and Ruban. (See
ref. 24.) Formally, the triple-deck theory is only
applicable to TS instability modes near their lower
branch. However, Choudhari and Streett (ref. 35)
and Choudhari, Ng, and Streett (ref. 43) have indi-
cated that, by recasting this theory in terms of the
quasi-parallel stability equations (i.e., the OS equa-
tion in the incompressible case), a wider class of
boundary layer instabilities can be addressed such as
the unsteady Rayleigh modes in in
ectional and/or
compressible two-dimensional boundary layers and
cross
ow vortices in three-dimensional boundary lay-
ers. Because of the presence of both TS and Rayleigh
mechanisms of instability in the present problem,
this �nite Reynolds number adaptation seems par-
ticularly attractive for the investigation of the in-

uence of an adverse pressure gradient on the re-
ceptivity mechanisms that are related to surface
nonuniformities.

In view of the numerous stability-related inves-
tigations described previously, the receptivity study
should naturally include the Falkner-Skan family of
incompressible boundary layers. These self-similar
pro�les allow the pressure gradient to be varied in
a systematic manner and can be used with the as-
sumption of local similarity in order to predict the
receptivity of a more general class of boundary layer

ows (e.g., the recent work of Jiang and Gaster
(ref. 44), which demonstrates that the stability of ar-
bitrary nonsimilar boundary layers can be predicted
with impressive accuracy by using the local similarity
principle). This paper concentrates primarily on
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acoustic free-stream disturbances because, in low-
speed 
ows, the receptivity to acoustic disturbances
is an order of magnitude greater than the receptiv-
ity to convected vortical disturbances. (See ref. 28.)
This result was originally established for the viscous
TS modes only; however, when based on a qualita-
tive comparison of the respective signatures within
the boundary layer, the above conclusion is expected
to hold in the case of Rayleigh modes as well.

The topics of the remaining part of the paper are
as follows. In section 3, the �nite Reynolds number
approach is applied to boundary layers with nonzero
pressure gradients. A detailed set of numerical re-
sults, which expands on the results presented in ref-
erence 43, and a discussion of the di�erences between
the receptivity characteristics in the viscous (TS) and
inviscid (i.e., in
ectional or Rayleigh) regimes are
presented in section 4.

2. Symbols

An asterisk (�) indicates a dimensional quantity,
a superscript bar ( � ) denotes the Fourier transform
in the streamwise direction, and a caret (b) indicates
the pro�le of a slowly varying quantity at the location
of the surface nonuniformity.

Cu local coupling coe�cient based on
maximum streamwise velocity 
uctuation
across boundary layer

D di�erentiation operator along wall-
normal (Y ) direction

D� desynchronization factor

eD� quantity related to desynchronization
factor

E eigenfunction for instability wave

F (j) spatial distribution of surface non-
uniformity of type j

f nondimensional frequency parameter,

!���
1

U�
1

2

fFS Falkner-Skan stream function, (eqs. (3.2))

L� streamwise length scale of surface
nonuniformity (associated with �� for
computational convenience)

`� distance from leading edge to surface
nonuniformity

R Reynolds number based on free-stream
velocity U�

1
at reference location

t nondimensional time,
U�
1
t�

L�

U (j) perturbation to mean streamwise
velocity because of stationary surface
nonuniformity of type j

U�
1

free-stream velocity at reference location

u� unsteady perturbation to streamwise
velocity

V (j) perturbation to mean surface-normal
velocity because of stationary surface
nonuniformity of type j

v unsteady perturbation to surface-normal
velocity

X local streamwise coordinate, x
�

L�

x slow streamwise coordinate, x
�

`�

x� dimensional coordinate in streamwise
direction

Y nondimensional surface-normal

coordinate,
y�

L�

y� dimensional coordinate in surface-normal
direction

� streamwise wave number nondimension-
alized by ��

� pressure gradient parameter (i.e.,
Hartree) in Falkner-Skan solution,
(eqs. (3.2))

�� local displacement thickness of mean
boundary layer

� small parameter in perturbation series

� Falkner-Skan similarity

coordinate, y�

s
U�
e
(x�)

(2� �)��x�

�
(j)
u e�ciency function based on amplitude of

streamwise velocity 
uctuation associated
with generated instability wave for
surface nonuniformity of type j

�� kinematic viscosity of 
uid

	 steady stream function

 unsteady perturbation to stream function

! nondimensional local frequency, !
�L�

U�
1

Subscripts:

ac acoustic (disturbance)
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e local inviscid free stream

fs free stream (disturbance)

ins instability wave

lb lower branch of neutral stability curve

mg maximum spatial growth rate, location
or frequency

ub upper branch of neutral stability curve

ub;1 upper branch asymptote as R��!1

w wall (disturbance)

0 zeroth-order solution for steady or
unsteady part of stream function

1 �rst-order perturbation to steady or
unsteady part of stream function

�� based on local displacement thickness of
mean boundary layer

Superscripts:

(j) type of surface nonuniformity:
j = 1 for wall suction variation
j = 2 for wall admittance variation
j = 3 for wall geometry variation

Abbreviations:

FS Falkner-Skan

LFC laminar 
ow control

NLF natural laminar 
ow

OS Orr-Sommerfeld

TS Tollmien-Schlichting

3. Summary of Finite Reynolds Number

Approach

The following discussion summarizes the applica-
tion of the �nite Reynolds number approach to re-
ceptivity of adverse pressure gradient Falkner-Skan
boundary layers. As previously mentioned, a com-
plete description of the issues underlying a localized
receptivity theory has been given by Goldstein in
his pioneering work (ref. 21), and the modi�cations
involved in a �nite Reynolds number approach are
discussed in detail in references 36{39. The latter
papers, in particular reference 36, provide detailed
comparisons of the �nite Reynolds number predic-
tions with those based on Goldstein-Ruban theory
as well as with the recent experimental data of Saric,
Hoos, and Radeztsky. (See ref. 45.) For complete-
ness, the principal ideas of the �nite Reynolds num-
ber approach are reiterated in this paper.

Consider the 
ow past a semi-in�nite 
at surface
which is inclined at an angle ��=2 to the incoming
stream. (See �g. 1.) Negative values of � correspond
to positive angles of attack and, therefore, to a
decreasing slip velocity

U�e (x
�)= U�

1
x�=(2��) (3.1)

on the upper surface, where x = x�=`� denotes the
distance from the leading edge, nondimensionalized
with respect to some reference length `� (identi-
�ed later with the position of the surface inhomo-
geneity), and U�

1
is the free-stream velocity at the

reference location x� = `�. The boundary layer 
ow,
which develops under the adverse pressure gradient
corresponding to equation (3.1), is described by the
self-similar stream function

	�0(x
�; y�)=

q
(2� �)U�e (x

�)��x�fFS(�)

� = y�

s
U�e (x

�)

(2� �)��x�

9>>>=
>>>;

(3.2a)

where y� is the coordinate normal to the surface,
�� is the kinematic viscosity of the 
uid, and fFS(�)
satis�es

f 000FS+ fFSf
00

FS+ �
�
1� f 02FS

�
= 0

fFS(0) = f 0FS(0) = 0 f 0FS(1) = 1

9=
; (3.2b)

The cause of receptivity is assumed to be a local
nonuniformity of length scale L� on the surface at
a distance `� (`� � L�) downstream of the lead-
ing edge. (See �g. 1.) In particular, the receptivity
produced by small but rapid changes in the mean
suction-blowing velocity, the surface admittance, or
the geometry of the surface will be considered. A
porous surface of nonzero admittance essentially sets
up an unsteady mass 
ux through the suction holes
when the surface pressure 
uctuates as a result of
an incident acoustic wave. Therefore, direct speci�-
cation of the distribution of this unsteady mass 
ux
is more convenient than its computation from the
surface admittance distribution. Accordingly, with-
out any loss of generality, the streamwise distribu-
tions of the mean suction-blowing velocity, the un-
steady normal velocity, and the surface height above
its nominal position are assumed to be given by

�
(1)
w U�

1
F (1)(X), �

(2)
w u�acF

(2)(X), and �
(3)
w L�F (3)(X),

respectively; the small parameters �
(j)
w (j = 1; 2; 3) in-

dicate the amplitude of the local variation scaled
by the appropriate reference quantities indicated by

asterisks, and functions F (j)(X) characterize the
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geometry of the variation in terms of the local co-
ordinate X =(x�� `�)=L�. Note that to provide the
necessary coupling between the free-stream distur-
bance and the instability wave, the surface distur-
bance length scale L� must be of the same order of
magnitude as the local instability wavelength at the
frequency under consideration. (See refs. 21 and 24.)

The unsteady perturbation in the free stream is
assumed to be a low-amplitude acoustic disturbance
propagating parallel to the incoming stream and
varying harmonically in time at a frequency !�.
Because the acoustic wavelength is in�nite in the
low-Mach-number limit, the outer unsteady motion
is simply a temporal modulation of the local mean

ow, and the unsteady slip velocity �eld is then given
by

u�e(x
�)= u�acx

�=(2��)e�i!
�t� (3.3)

where u�ac denotes the magnitude of the unsteady slip
velocity at the surface inhomogeneity location such
that �fs � u�ac=U

�

1
� 1.

By exploiting the presence of the two small am-
plitude parameters �w and �fs in the problem, the
local motion near the surface inhomogeneity can be
expanded in terms of the dual perturbation series

 (j) = 	0(x; Y ) + �
(j)
w 	

(j)
1 (X; Y )

+ �fs 0(x; Y )e
�i!t + �fs�

(j)
w  

(j)
1 (X; Y )e�i!t

+O

�
�2fs;

h
�
(j)
w

i2�
(3.4)

where the stream function  (j) (j = 1; 2; 3), wall-
normal coordinate Y , nondimensional acoustic fre-
quency !, and time t have been nondimensional-
ized by U�

1
L�, L�, U�

1
=L�, and L�=U�

1
, respectively.

Note that, even though the instability wavelength L�

varies by an order of magnitude through the fre-
quency range of interest, L� will henceforth be as-
sociated with the local displacement thickness �� for
computational convenience.

Observe that the streamwise dependence of each
term in equation (3.4) is indicated by either the lo-
cal X or the global x coordinate. Each term in
the perturbation expansion then represents a unique
combination of spatial and temporal scales that is
associated with the physical origin of that term.
Brie
y, the zeroth-order term 	0(x; Y ) corresponds
to the unperturbed base 
ow (i.e., the mean bound-
ary layer motion in the absence of any perturbations)
which depends only on the global streamwise coordi-

nate x. The �rst-order perturbations 	
(1)
1 and  0

represent the steady but local and unsteady but
slowly varying signatures, on the above base 
ow,
induced by the surface inhomogeneity and the free-
stream acoustic wave, respectively. The �rst term
that exhibits unsteadiness as well as fast stream-
wise dependence and is, therefore, relevant to the
generation of instability waves corresponds to the

O
h
�fs�

(j)
w

i
term produced by the mutual interaction

of the two �rst-order perturbations. In the case
of the wall admittance problem, the short-scale un-

steady �eld  
(2)
1 is produced directly by the inter-

action of the O(�fs) free-stream disturbance with the

O
h
�
(2)
w

i
wall admittance. Because none of the other

quadratic terms (i.e., O
�
�2fs

�
and O

h
�
(j)
w

i2
) produced

by the self-interaction of the two �rst-order pertur-
bations possesses the desired combination of spatio-
temporal scales, the receptivity problem reduces to

solving for the stream function  
(j)
1 (X; Y ) and/or ex-

tracting the part that corresponds to the unstable
mode.

An asymptotic approach would involve a further
expansion (singular perturbation) of each term in
equation (3.4) in terms of inverse powers (and some-
times logarithms) of the Reynolds number R��. If
the interest is limited to the zeroth-order solution
for the instability wave amplitude, then the com-
putation of just the leading term in each of the
above expansions in terms of R�� is su�cient. Thus,
the steady base 
ow 	0(x; Y ) is given by the non-
dimensional form of the Falkner-Skan stream func-
tion. (See eqs. (3.2a) and (3.2b).) In most sta-
bility applications, usually ! � R��; hence, the
acoustic signature �eld  0(x; Y ) is governed by the
linearized form of the unsteady boundary layer equa-
tion. Whenever ! satis�es the stronger constraint of
1=R��� ! � R��,  0(x; Y ) is given by the Stokes
shear wave to the leading order; the higher or-
der terms can be obtained in the manner described
by Ackerberg and Phillips (ref. 46) and Goldstein,
Sockol, and Sanz (ref. 47), who studied the zero pres-
sure gradient case (i.e., � = 0:0 in eq. (3.1)). In
general, the latter constraint is satis�ed for both
TS and Rayleigh modes. However, as the results
of section 4.1 show, an exception is encountered
when � = �0:1988 (i.e., the separation pro�le case)
wherein ! � 1=R�� along the lower branch. The
acoustic signature  0(x; Y ) is quasi-steady in this
particular case. The complexity arises in the calcula-

tion of the short-scale perturbations 	
(j)
1 (X; Y ) and,

especially, of  
(j)
1 (X; Y ), which can have di�erent

asymptotic structures that depend on the particular
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streamwise length scale and/or frequency. For length
scales that are relevant to the generation of insta-
bility modes in the vicinity of the lower branch of
the neutral stability curve, the mean 
ow perturba-

tions 	
(1)
1 and 	

(3)
1 satisfy the steady and linearized

triple-deck (i.e., interactive boundary layer) equa-
tions. However, at larger wave numbers, these per-
turbations are governed by a noninteractive structure
described by Smith et al. (See ref. 48.) Similarly, the

unsteady short-scale �eld  
(j)
1 (X; Y ) is governed by a

linearized but inhomogeneous form of either the un-
steady triple-deck equations (ref. 49), quintuple-deck
equations (ref. 50), or a Rayleigh equation (possi-
bly inhomogeneous) supplemented by the inhomoge-
neous viscous equations for the region close to the
wall and in the critical layer; the choice depends on
the relative scaling of the frequency parameter ! and
the local Reynolds number R��.

An alternate path, which is similar to that taken
in the conventional studies of boundary layer stabil-
ity (refs. 8 and 10 quoted earlier) and in some recent
studies of the receptivity phenomenon (refs. 35{41),
exploits the well-known disparity between the length
scales `� and L� of the base 
ow and the instabil-
ity wave, respectively, at su�ciently high values of
the Reynolds number R��; at the same time, the
method treats R��as a �nite quantity in order to ob-
tain a single set of operators that will be valid in all
asymptotic regions, at least, to the leading order of
approximation. Thus, by neglecting the streamwise
variations of the quantities 	0(x; Y ) and  0(x; Y ),
which depend only on the global streamwise coor-
dinate x, their respective pro�les may e�ectively be
frozen at the wall inhomogeneity location x = 1. The
Stokes wave solution mentioned in the previous para-
graph turns out to be a convenient approximation
for  0(x; Y ) in the �nite Reynolds number approach
(refs. 36 and 37) except in the low-Strouhal-number
region (!R��� O(1)) encountered at � = �0:1988 as
discussed before. Both the mean and unsteady short-

scale perturbations 	
(j)
1 and  

(j)
1 then satisfy the

usual equations of parallel 
ow disturbance, which
reduce to the Orr-Sommerfeld (OS) equation in the
Fourier transform space. (See refs. 36 and 37.)

Accordingly, Fourier transforms of the steady per-

turbations 	
(1)
1 and 	

(3)
1 are governed by the time-

independent form of the Orr-Sommerfeld equation

i�b	0

0(D
2
��2)	

(j)
1 � i�b	000

0 	
(j)
1

�
1

R��

(D2
��2)2	

(j)
1 = 0 (j = 1; 3) (3.5a)

subject to an inhomogeneous boundary condition
that corresponds to a speci�ed distribution of the
wall suction velocity

	
(1)
1 (0) =

F
(1)

(�)

i�
(3.5b)

or to a nonzero horizontal velocity

D	
(3)
1 (0) = �b	00

0(0)F
(3)

(�) (3.5c)

Note that the boundary condition (eq. (3.5c)) arises
from the transfer of the no-slip condition from the

deformed surface position Y = �
(3)
w F (3)(X) to its un-

perturbed location Y = 0. The caret on b	0 in equa-

tion (3.5a) and on b 0 in equation (3.6a) below rep-
resents the pro�le of the respective stream function
quantity along the wall-normal direction at x = 1;
the operator D and the primes denote di�erentiation
with respect to the wall-normal Y coordinate.

The unsteady scattered �eld  
(j)
1 satis�es the

inhomogeneous OS equation

� i!(D2
��2) 

(j)
1 + i�b	0

0(D
2
��2) 

(j)
1

� i�b	000

0  
(j)
1 �

1

R��

(D2
��2)2 

(j)
1

= �i�
hb 0

0(D
2
� �2)	

(j)
1 � b 000

0 	
(j)
1

i
(3.6a)

The inhomogeneous term on the right side of equa-
tion (3.6a) for j = 1 and j = 3 arises from a temporal
modulation of the short-scale mean 
ow perturba-

tion 	
(j)
1 by the acoustic signature  

(j)
1 . (See ref. 28.)

In addition to the inhomogeneity in the di�erential

equation itself,  
(3)
1 also satis�es the inhomogeneous

boundary condition

D 
(3)
1 (0) = �b 00

0(0)F
(3)

(�) (3.6b)

that corresponds to a transfer of the no-slip condition
for the unsteady motion. Because changes in wall

admittance do not a�ect the mean 
ow, 	
(2)
1 � 0,

and consequently, the forcing term on the right side
of equation (3.6a) is equal to zero for j = 2. Thus,

unlike  
(1)
1 and  

(3)
1 , the stream function  

(2)
1 for

the wall admittance case satis�es a homogeneous

OS equation. The motion corresponding to  
(2)
1 is

directly driven by the unsteady velocity, which is
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induced by the acoustic pressure 
uctuations across
the porous surface and is speci�ed to be of the form

v
(2)
1 (0) = �i� 

(2)
1 (0) = �F

(2)
(�) (3.6c)

Other than for equations (3.6b) and (3.6c), all of

the other boundary conditions on  
(j)
1 (j = 1; 2; 3) are

homogeneous in character.

The physical stream function  
(j)
1 can be obtained

by evaluating the inverse Fourier integral

 
(j)
1 (X; Y ) =

1
p
2�

Z
1

�1

ei�X 
(j)
1 (�; Y ) d� (3.7)

However, the extraction of just that part of  
(j)
1 that

corresponds to the unstable TS wave is su�cient.
This part can be computed as the residue contribu-
tion to the inverse Fourier integral in equation (3.7)

from a pole singularity in  
(j)
1 (�) at the wave number

�ins that corresponds to the aforementioned unstable
mode. (See refs. 21, 36, and 37.) Thus,

 
(j)
1 ins(X; Y ) =

p
2� i8><

>:
@

h
 
(j)
1

i
�1

@�

9>=
>;� = �ins

ei�insX (3.8)

Note that the OS eigenvalue problem also admits a
number of other higher modes; however, these modes
are stable and, therefore, will not be considered
in the present analysis. After utilizing the linear

dependence of  
(j)
1 on F

(j)
, equation (3.8) leads to

the following expression in dimensional form for the
streamwise velocity 
uctuation associated with the
generated instability wave (refs. 21, 36, and 37):

u
�(j)
ins (X; Y; t) = C

(j)
u u�acEu(Y; !;R��)e

i(�insX�!t)

(3.9a)
where

C
(j)
u = �

(j)
w F

(j)
(�ins)�

(j)
u (!;R��) (3.9b)

and Eu(Y; !;R��) is the local instability eigenfunc-
tion for the streamwise velocity perturbation, which
is normalized to have a maximum magnitude of unity

across the boundary layer. The factor C
(j)
u , which is

referred to as the \local coupling coe�cient" (refs. 21
and 51), is essentially the transfer function that re-
lates the output of receptivity (i.e., the local ampli-
tude at X = 0 of the generated instability wave) to
its input (i.e., the local amplitude of the free-stream

acoustic disturbance). For the weak surface inhomo-

geneities considered here, C
(j)
u is linear in the ampli-

tude of the inhomogeneity and, as seen from equa-
tion (3.9b), can be written in terms of the product of

a geometry factor F
(j)

(�ins) and an e�ciency func-

tion �
(j)
u . The geometry factor corresponds to the

Fourier transform of the spatial distribution of the
wall inhomogeneity at the complex instability wave

number �ins. Conversely, the e�ciency function �
(j)
u

is independent of the details of the surface inhomo-
geneity and, hence, characterizes the local e�ciency
of the receptivity process that results from an inter-
action between the particular surface and free-stream
perturbations being considered. Because the geome-
try factor is common to all three combinations of the
perturbations considered in this paper, the character-
istics of the receptivity process in each case may be
gleaned from examination of the variation of the e�-

ciency function �
(j)
u with respect to both the position

R�� of the surface nonuniformity and the frequency
! of the acoustic disturbance.

Note that the result of equation (3.9b) is valid
for all receptivity mechanisms involving weak surface
inhomogeneities irrespective of the type of method-
ology (asymptotic or �nite Reynolds number) used

to solve the problem. Individually, the values of F
(j)

and �
(j)
u depend on the choice of the reference length

scale in the problem; however, their product (i.e., the

coupling coe�cient C
(j)
u ) does not. In this paper,

the local displacement thickness of the unperturbed
mean boundary layer was chosen as the reference
length scale (i.e., L� = ��). However, a more ap-
propriate choice for the reference length scale might
well have been the local length scale of the generated
instability wave (i.e., L� = ��=�ins). Had the latter

choice been made, the geometry factor F
(j)

and the

e�ciency function �
(j)
u in equation (3.9b) would be

multiplied by �ins and 1=�ins, respectively, for both
j = 1 and j = 2. The corresponding conversion fac-
tors for the wall geometry-induced receptivity (j = 3)
would be �ins and 1=�2

ins, the latter term being di�er-
ent than that for the cases of j = 1 and j = 2 to com-
pensate for the additional length scale dependence in
the de�nition of the normalized height perturbation

�
(3)
w . To maintain consistency with the previous in-
vestigations (refs. 21, 36, and 37) as well as to con-
form with the general practice of using a boundary
layer thickness as the reference length scale in most
practical applications, �� was adopted as the uniform
length scale at all values of the acoustic frequency pa-
rameter. However, keep in mind the aforementioned
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dependence of the e�ciency function values on the
choice of `� when interpreting the numerical results
presented in the next section.

4. Results

As mentioned in section 1, boundary layers de-
veloping under an adverse pressure gradient can
support both viscous (TS) and inviscid (in
ectional,
or Rayleigh) instabilities. Because the viscous modes
occupy the lower branch region of the neutral stabil-
ity curve, their generation can have a greater im-
pact on the transition process. However, the critical
Reynolds numbers decrease rapidly as the adverse
pressure gradient increases, and consequently, the
generation of in
ectional modes becomes increasingly
more relevant. Thus, the basic objectives of the para-
metric study are to understand how the coupling co-
e�cients related to TS-mode generation are a�ected
by the adverse pressure gradient, to assess the major
di�erences between the receptivity characteristics in
the TS and in
ectional-mode regimes, and to ascer-
tain the cause of these di�erences.

To meet these objectives, the stability characteris-
tics of the Falkner-Skan boundary layers with � < 0
will �rst be examined. In addition to providing a
background for the later discussion on receptivity,
this section will generally emphasize the importance
of �nite Reynolds number e�ects. Results that per-
tain to the mean 
ow perturbations produced by vari-
ations in the wall suction velocity or the wall geom-
etry will subsequently be described. As discussed
in section 3, these mean 
ow perturbations provide
the spatial modulation required for generation of in-
stability waves; their properties in adverse pressure
gradient 
ows will be examined. Finally, the results
on receptivity will be presented, and the dependence

of the e�ciency function �
(j)
u on frequency, Reynolds

number, and pressure gradient parameter will be ex-
plored in detail.

4.1. Stability Characteristics Under

Adverse Pressure Gradients

Figure 2 shows the streamwise growth rate
�Im(�ins) of the instability wave as a function of
the local Strouhal number ! for � = �0:05, �0:10,
�0:14, and �0:1988. For each value of the pressure
gradient parameter, the growth rate variations are
displayed for Reynolds numbers ranging from low (for
which the �nite Reynolds number e�ects cannot be
neglected) to high (which may not be very relevant
from a practical point of view, because the 
ow may
already be turbulent, but which are more representa-
tive of the inviscid asymptote for in
ectional modes).
Recall that the viscous and the inviscid modes are

not clearly identi�ed at any �nite Reynolds number.
However, because the inviscid upper branch scaling
corresponds to frequencies that are much higher than
those of the lower branch ones, most of the unstable
region can be expected to be basically dominated by
the in
ectional mechanism, especially at su�ciently
high values of j�j and/or R��.

The dominance of the inviscid mode can be
gauged by whether the upper branch neutral fre-
quency has become largely insensitive to changes in
the local Reynolds number. Thus, �gure 2(a) sug-
gests that, for � = �0:05, viscous e�ects are still sig-
ni�cant at R�� = 2000. However, �gures 2(b){2(d)
show that for stronger pressure gradients, the in-
viscid neutral asymptote is nearly established at
R��= 2000. The maximum growth rate at these lo-
cations as well as the corresponding Strouhal number
!mg still depends on R�� to a signi�cant extent. The
reason for this dependence may be that the most un-
stable frequency !mg lies in the viscous regime or in
the domain of overlap of the viscous and the inviscid
Rayleigh regimes.

Because the lower branch corresponds to predom-
inantly viscous modes, the associated neutral fre-
quency !lb is dependent on the Reynolds number R��

at all values of �. However, one characteristic of the
viscous TS modes becomes apparent when the lower
branch frequencies are plotted against the Reynolds
number on a logarithmic plot. (See �g. 3.) Slopes of
the curves in �gure 3 show that, for all pressure gra-
dients other than the separation case (� = �0:1988),

!lb � R
�1=2
�� for all su�ciently large R��, which cor-

responds to the regular triple-deck scalings. How-
ever, �gure 3 indicates that, for � = �0:1988, !lb
decreases faster than R�1

�� , which implies that the
lower branch modes are quasi-steady. In spite of
this increase in the temporal scale, the streamwise
wavelengths of these instability modes remain su�-
ciently short for them to still be classi�ed as par-
allel 
ow instabilities to the leading order. Indeed,
Okamura, Smith, and Wazzan (ref. 52) had found
numerically that the neutral wave number �lb varies

as R�0:699�� as R��!1 at � = �0:1988, which was
quite di�erent from the scaling derived analytically
by Hughes and Reid (ref. 53) for the corresponding
approximate Pohlhausen pro�le. The validity of the
quasi-parallel approximation in this paper implies
that the receptivity theory from section 3 can still
be used to predict the coupling coe�cients but only
after the high-frequency Stokes wave approxima-
tion for the acoustic signature �eld ( 0) is replaced
by its quasi-steady counterpart because of the fre-
quency scaling (! � 1=R��) along the lower branch
asymptote. Because ! varies continuously from this
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quasi-steady asymptote to O(1) values along the up-
per branch, the point where the Stokes wave approx-
imation for  0 becomes reasonable as ! is increased
at a given Reynolds number is not easily determined.
In the intermediate range of ! = O(1=R��),  0 is
governed by the unsteady linearized boundary layer
equations (refs. 20 and 46) and, therefore, has a
nontrivial dependence on the entire history of the up-
stream disturbance. To avoid the associated compli-
cations, the Stokes wave approximation was used for
 0 throughout the calculations. Therefore, the recep-
tivity results are of questionable validity in a narrow
range of the frequency-Reynolds-number space when
� ! �0:1988. However, this is of minor signi�cance
overall because the viscous instabilities are relatively
unimportant in the transition of the near-separation
pro�le. Moreover, the calculations of references 46
and 47 suggest that the Stokes wave solution may
be established at frequencies close to ! = O(1=R��),
i.e., well before the ! � 1=R�� asymptotic limit is
reached. Thus, in a practical sense the Stokes wave
approximation is likely to provide most of the sig-
ni�cant information concerning the receptivity of a
near-separation 
ow.

4.2. Characteristics of Mean Flow

Perturbations Produced by Variations in

Wall Suction and Wall Geometry

The characteristics of the mean 
ow perturba-
tions produced by wall suction and wall geometry
variations under adverse pressure gradient conditions
will be investigated next; recall that the receptivity
through the wall suction and wall geometry varia-
tions is determined entirely and in part, respectively,
by the scattering of the Stokes shear wave because
of the corresponding mean 
ow perturbation. As
described in section 3, the amplitude of the gener-
ated instability wave is determined as the residue of

the inverse Fourier integral for  
(j)
1

because of the

�rst-order pole singularity of  
(j)

1
at the instabil-

ity wave number �ins. Accordingly, this is the only
wave number component of the mean 
ow perturba-
tion that has any signi�cance from the standpoint
of receptivity. Because the imaginary part of �ins
is usually small when compared with its real part,
the Fourier component of the mean 
ow perturba-
tion corresponding to �ins can be approximately as-
sociated with the local 
ow response to sinusoidal
distributions of the wall suction velocity or waviness
(wall roughness) height with a wave number equal to
the real part of �ins. The mean 
ow modi�cation be-
cause of waviness of the airfoil surface or by suction
through regularly spaced suction strips is a problem
of signi�cant practical importance; hence, the vari-

ous aspects of the mean 
ow perturbations for the
speci�c case of � = �0:14 will be detailed.

First, consider the mean 
ow perturbations U
(1)

1
,

V
(1)

1
, and P

(1)

1
that are produced by the wave num-

ber component � = �ins of the wall suction distribu-
tion. Figures 4 and 5 are plots of the pro�les of the

magnitudes of vertical V
(1)

1
and streamwise U

(1)

1
ve-

locity perturbations, respectively, at � = �0:14. Fig-
ures 4(a) and 5(a) illustrate the pro�les at a Reynolds
number of R�� = 500 and �gures 4(b) and 5(b) at
R��= 5000. The four curves in each of �gures 4(a),
4(b), 5(a), and 5(b) are associated with the local in-
stability wave number at frequencies equal to !lb=2,
!lb, !mg, and !ub at the Reynolds number under
consideration; the subscripts lb, ub, and mg refer to
the lower branch, upper branch, and the maximum
growth rate, respectively. The wall-normal location
that corresponds to the critical layer of the instability
wave at each frequency is also indicated by an � on
each of these curves. Recall that, as ! varies from its
lowest (!lb=2) to its highest (!ub) value in �gures 4
and 5, the wavelength of the instability wave and,
hence, that of the surface disturbance, decreases from
the value of the longer triple-deck scale to a value
comparable with the thickness of the boundary layer.
A detailed account of the in
uence of the length scale
of a surface disturbance based on the higher Reynolds
number asymptotic theory was given by Smith et al.
(ref. 48) for problems involving two-dimensional ob-
stacles on the airfoil surface. Their analysis will be
used to interpret the numerical results presented in
this section.

As a result of the reduction in instability wave-
length with an increase in value of the frequency pa-
rameter, the mean-
ow perturbation also changes in
character from interactive to that driven by a viscous
layer close to the wall. This di�erence is re
ected in

the shapes of the jV
(1)

1
j pro�les across the boundary

layer. (See �g. 4.) Thus, at ! = !lb=2 and ! = !lb,
the unit normal velocity perturbation at the surface
gets ampli�ed considerably across the main part of
the boundary layer before beginning to decay outside
of the boundary layer region. In accordance with
interactive (i.e., triple-deck) scaling, the extent of
this ampli�cation is also seen to increase with an in-
crease in the Reynolds number. However, for suction
distributions with shorter wavelengths corresponding

to ! = !mg and ! = !ub, the resultant jV
(1)

1
j per-

turbation reaches a maximum at the surface itself
and decreases nearly monotonically into the bound-
ary layer region.
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Unlike the pro�les of the jV
(1)
1 j perturbations,

pro�les of the corresponding streamwise velocity per-

turbations jU
(1)
1 j are qualitatively similar for all wave

numbers except � = �mg for which the jU
(1)
1 j pro-

�le has three peaks rather than two as in all other

cases. (See �g. 5(a).) However, the values of jU
(1)
1 j

change signi�cantly as �ins varies from �ins(!lb=2)
to �ins(!ub). In the range of smaller (i.e., the
TS) wave numbers, a unit amplitude suction at the
surface produces a streamwise velocity perturbation
that increases with R��, whereas at the larger (i.e.,
the Rayleigh) wave numbers, the maximum value of

jU
(1)
1 j remains comparable to the amount of applied

suction in the entire range of Reynolds numbers con-
sidered in this study. Because of the great di�er-
ence between streamwise velocity perturbations in

these two cases, the jU
(1)
1 j values at ! = !mg and

! = !ub would have been almost zero on the scale
of �gure 5(b); hence, they have been multiplied by a
factor of 10 in this �gure. Consistent with the above
trend, lower amplitudes of pressure perturbation (not
shown here) were observed in the cases of large wave
numbers. Moreover, the pressure perturbation at the
larger wave numbers begins to slowly decay immedi-
ately away from the surface. This is unlike the re-
sponse in the range of smaller wave numbers, where
the pressure perturbation is nearly constant inside
the boundary layer and begins to attenuate only out-
side of this region.

Because of the large jU
(1)
1 j perturbations in the

TS-wave-number range, the unsteady forcing func-
tion in equation (3.6a) would be expected to be domi-
nated by the momentum transfer terms involving the
perturbation in the streamwise velocity. Because the
forcing term in equation (3.6a) accounts for the en-
tire suction-induced receptivity, the values of the ef-

�ciency function �
(1)
u can be expected to be much

greater for the range of viscous TS modes than for
the range of in
ectional instability modes. Although
the transverse gradients associated with the Stokes
wave become sharper in the frequency range of in-

ectional instabilities, they do not signi�cantly alter
the above conclusion as is shown later in section 4.3.

The mean 
ow perturbations produced by weak
and nearly sinusoidal variations in the surface geom-
etry will be examined next for the same set of values
of �ins, R��, and � as previously chosen for �gures 4

and 5. In �gures 6 and 7, respectively, the jV
(3)
1 j

and jU
(3)
1 j pro�les are plotted after normalizing them

by the local nondimensional amplitude of the surface

height variation. Because jV
(3)
1 j = 0 at the wall in

this case, the maximum of the vertical velocity per-
turbation occurs at a �nite distance away from the
surface. In the range of smaller (i.e., TS) wave num-
bers, this maximum occurs in the outer part of the
boundary layer region; at larger wave numbers, the
maximum shifts much closer to the wall and presum-
ably lies just outside of the thin viscous layer next
to the surface. Furthermore, at larger wave num-

bers, the jV
(3)
1 j pro�les also exhibit a signi�cant de-

cay across the main part of the boundary layer.

The mean 
ow perturbations caused by the wall
geometry variation are e�ectively driven by a shear-
ing velocity at Y = 0, which arises from a transfer of
boundary condition to the unperturbed location of
the surface. (See eq. (3.5c).) Figures 6(b) and 7(b)
show that the e�ect of this shear is quite signi�cant
in the entire boundary layer when the wave number is
small. However, at larger wave numbers, this bound-
ary perturbation is greatly attenuated across the vis-

cous sublayer close to the wall. Although jU
(3)
1 j is

many times greater than jV
(3)
1 j in this thin sublayer,

both jU
(3)
1 j and jV

(3)
1 j have comparable magnitudes

in the rest of the boundary layer. This also leads to
a signi�cant variation in the pressure perturbation

P
(3)
1 across the boundary layer at these larger wave

numbers.

Similar characteristics of mean 
ow perturbation
caused by a wall geometry variation were noted at
values of � other than �0:14. However, the overall
magnitude of the mean 
ow perturbation was a de-
creasing function of the adverse pressure gradient j�j
and eventually approached zero in the limit of the
separation pro�le. Of course, the linear assumption
is not valid in this limit, and mean 
ow separation is a
possibility even for small perturbations in the surface
height. Thus, the results for wall geometry-induced
receptivity in the case of � = �0:1988 should be
regarded mainly as qualitative indicators of the lim-
iting response expected under severely adverse pres-
sure gradients.

4.3. E�ciency Functions for Localized

Receptivity in Falkner-Skan Boundary

Layers

The pressure gradient e�ect on the e�ciency func-
tion for each of the receptivity mechanisms will be
studied next. Recall that the admittance variation
does not produce any mean 
ow perturbation but
leads to a direct generation of instabilities through
the short-scale, unsteady mass 
ux across the porous
surface. (See refs. 32 and 33.) Thus, the e�ect of an
adverse pressure gradient on this receptivity process
will also be investigated.
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The results presented in this section include the

variation of the e�ciency function �
(j)
u along three

di�erent paths in the !-R�� plane. First, the change

in j�
(j)
u j is examined as the acoustic frequency is var-

ied while the wall inhomogeneity is held at a �xed
location. In practice, the receptivity sites on an LFC
wing are partially predetermined by the design pro-
cess (e.g., at the joints between two adjacent parts,
suction strips, and/or suction slots). Thus, to under-
stand the frequency dependence of each receptivity
mechanism and to determine the frequencies which
are excited most e�ciently at a given receptivity lo-
cation would be useful. However, from the viewpoint
of LFC design, the e�ciency function for a distur-
bance of �xed (physical) frequency is of greatest in-
terest because a typical design objective is to mini-
mize the instability amplitudes in the most unstable
band of frequencies. Thus, the variation in the mag-
nitude of the e�ciency functions is considered with
respect to location for frequencies that are most rele-
vant to the transition process. Finally, the variation

in j�
(j)
u j along the two neutral branches is brie
y ex-

amined. Such results can reveal useful information
about the asymptotic scaling of the e�ciency func-
tions and may help to model the receptivity stage
as part of more sophisticated transition prediction
methods which depend on understanding the initial
amplitudes of boundary layer disturbances. More-
over, results for receptivity caused by distributed sur-
face nonuniformities can also be deduced quite easily
from the e�ciency function values for localized in-
homogeneity along the lower branch of the neutral
stability curve. (See refs. 36, 54, and 55.) The re-
ceptivity along the upper branch has little practical
signi�cance of its own but is of interest because it
typi�es the entire class of in
ectional instabilities.

4.3.1. Frequency dependence at �xed loca-

tion of surface inhomogeneity. First, consider
the frequency dependence of the e�ciency functions
at a �xed location of the surface inhomogeneity. Fig-

ures 8 and 9 are plots of the values of j�
(j)
u j as func-

tions of ! for the wall suction (j = 1) and wall
admittance (j = 2) problems, respectively. In each
�gure, data plots correspond to pressure gradients
of � = �0:05, �0:10, �0:14, and �0:1988. (Note the
di�erent abscissa scales for di�erent values of �.) Ob-

serve that the values of both j�
(1)
u j and j�

(2)
u j decrease

monotonically (or very nearly so) as the frequency
parameter is increased, which suggests that the gen-
eration of the high-frequency in
ectional modes by
these two mechanisms is ine�cient in comparison
with the generation of the low-frequency viscous TS

modes. However, decreased e�ciency does not nec-
essarily mean lower initial amplitudes in practice be-
cause the latter are also a�ected by the geometry
of the suction strips (eq. (3.9b)). The rather nar-
row suction strips used for typical laminar 
ow con-
trol may favor the inviscid modes. Also note that

both j�
(1)
u j and j�

(2)
u j decrease more rapidly with

! across the rather small band of viscous TS (i.e.,
low-frequency) instabilities than across the much
wider range of in
ectional Rayleigh (i.e., relatively
high-frequency) modes. A comparison of the e�-
ciency function magnitudes for neutral frequencies at
R��= 1000 for di�erent values of � indicates that the
e�ciency function magnitude increases marginally
with the adverse pressure gradient in the TS case and
decreases somewhat in the in
ectional-mode case.

The increase in j�
(j)
u j (j = 1, 2) with �� in the

TS range is also consistent with the asymptotic pre-
dictions of Kerschen and Choudhari (ref. 32) and
Choudhari. (See ref. 33.)

The triple-deck arguments in references 32 and 33
clearly show that the suction-induced receptivity
in the TS range of frequencies is dominated by
the transfer of streamwise momentum (i.e., the X-
momentum equation) from the �rst-order perturba-

tions 	
(1)
1 and  0 to the short-scale unsteady �eld

 
(1)
1 containing the instability wave. The stream-

wise velocity perturbations are dominant in the range
of TS modes because the streamwise wavelengths of
these modes are much greater than the transverse
boundary layer length scale (i.e., the displacement
thickness ��). However, because the wavelengths of
the in
ectional modes are of the same order as ��, the
vertical momentum transfer was investigated for its
importance during the generation of these instabil-
ity modes. Evaluation of the separate contributions

to j�
(j)
u j from the X- and Y -momentum equations

showed that the role of vertical momentum trans-
fer is again quite insigni�cant. This probably re-
sults because the energy transfer is localized in the
thin viscous layers close to the wall where all veloc-
ity perturbations are primarily in the streamwise di-
rection even in the range of predominantly inviscid
instabilities.

Note that in the case of receptivity from wall
suction or wall admittance variations previously
discussed, there was no qualitative change in the ef-
�ciency function curves as the adverse pressure gra-
dient was increased. However, when the receptivity
is induced by wall geometry variations (�g. 10), the
response of the e�ciency function curve depends sig-
ni�cantly on the value of �. As seen in �gure 10(a)
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for � = �0:05, the e�ciency function j�
(3)
u j increases

in magnitude almost up to the upper branch neutral
frequency !ub at both R�� = 500 and R�� = 1000.
However, with a further increase in R��, the maxi-

mum value of the j�
(3)
u j curve quickly begins to shift

toward lower frequencies and approaches the most
unstable frequency !mg at R�� = 1500 and 2000.
Most likely, this is caused by a slow onset of inviscid
mode dominance under a weak adverse pressure gra-

dient. The j�
(3)
u j curve at � = �0:10 displays a some-

what di�erent response than that at � = �0:05. In

this case, the maximum value of j�
(3)
u j at R��= 500

is already closer to !mg; however, at higher Reynolds
numbers, this maximum is replaced by a peak at

a much lower frequency. The j�
(3)
u j curve now dis-

plays a pronounced minimum between ! = !mg and
! = !ub. Figure 10(c) for � = �0:14 also shows a
roughly similar characteristic.

A comparison of �gures 10(a){10(c) also indicates

that the overall maximum value of the j�
(3)
u j curve

decreases, albeit rather weakly, with an increase of
j�j and/or R��. However, observe that a sudden in-
crease in the e�ciency function value occurs in the
range of both low and high frequencies for the case of
the separation pro�le (�g. 10(d)). The low-frequency
(i.e., !R��� O(1)) results are of doubtful accuracy
because of the Stokes wave approximation for  0.
Nevertheless, the high-frequency results point toward
an increase in the e�ciency of wall geometry-induced
receptivity under severely adverse pressure gradients.
As noted before, remember that the maximum rough-
ness height for which the mean 
ow perturbation can
be regarded as a linear perturbation of the upstream

ow decreases as the adverse pressure gradient in-
creases. At � = �0:1988, even a minute roughness
can provoke local separation and invalidate this anal-
ysis in principle. However, refer to the remarks at the
end of this section in the same context.

Recall from the governing equations (3.6a)
and (3.6b) that the wall geometry-induced receptiv-
ity equals the sum of two separate contributions: the
�rst from the interaction of the Stokes wave with
the mean 
ow perturbation, which leads to the volu-
metric source term in equation (3.6a) and the second
from a direct scattering of the Stokes wave by the geo-
metric inhomogeneity, which leads to the inhomoge-
neous boundary condition for equation (3.6b). Both
of these contributions have the same order of magni-
tude in the Blasius case (refs. 36 and 37); whereas the
mean 
ow perturbation is zero to the leading order in
the separation pro�le case, and hence, the receptivity
there results entirely from the inhomogeneous bound-

ary condition. A comparison of these two contribu-
tions at intermediate values of the pressure gradient
parameter (�g. 11) reveals that, for frequencies closer
to !lb where the instability is primarily viscous, the
contribution because of the mean 
ow perturbation
is small but still signi�cant. However, at higher
frequencies which lead to shorter wavelength in
ec-
tional instabilities, this contribution becomes quite
negligible relative to the contribution from equa-
tion (3.6b). This characteristic is completely con-
sistent with the theoretical prediction of Goldstein
(ref. 21) that the cause is the short-wavelength na-
ture of the in
ectional instabilities, which dominate
the range of higher frequencies. As discussed in the
context of �gures 6 and 7, the mean 
ow perturba-
tion decreases in amplitude as the length scale of the
surface disturbance decreases, whereas the thickness
of the Stokes shear wave decreases as the frequency
increases, which makes the same wall roughness ele-
ment appear taller in a relative sense.

Finally, note that because the mean 
ow pertur-
bation produced by a wall geometry variation be-
comes small as � ! �0:1988, the receptivity in the
above limit is dominated by the direct scattering of
the Stokes wave. Therefore, it is quite possible that
the e�ciency function results presented in this pa-
per would remain quantitatively satisfactory even at
� = �0:1988.

4.3.2. Reynolds number dependence for

�xed-frequency disturbances. The e�ciency
functions that correspond to an acoustic disturbance
of a �xed physical frequency are now considered. Fig-
ure 12 indicates the variation in the magnitude of

the e�ciency function �
(1)
u with respect to the wall

inhomogeneity location R�� for adverse pressure gra-
dients that correspond to � = �0:05, �0:10, �0:14,
and �0:1988. In descending order, the four frequen-
cies selected for each value of � correspond to those
with ampli�cation ratios of e5, e7, e9, and e11 be-
tween the two neutral locations. Thus, on the ba-
sis of the e9 criterion, the third highest frequency
at each � is the one most likely to lead to transi-
tion. The lower branch, the upper branch, and the
maximum-growth locations at each frequency are in-
dicated on each curve in �gures 12{14 by a triangle,
a circle, and a diamond, respectively. Note that be-
cause of the slow deceleration of the free stream, a
disturbance of �xed physical frequency does not cor-
respond to a constant dimensionless frequency pa-

rameter f = !���=U�

e
2 as in the Blasius case but f

varies as flb(R��;lb=R��)
2� as R�� varies. The values

of f1000 indicated in �gures 12{14 correspond to the

13



frequency parameter f based on a reference Reynolds
number of R��= 1000.

Two observations follow from �gure 12. First, as
the adverse pressure gradient increases, the range of
ampli�ed frequencies generally shifts toward higher
values. Consequently, the maximum value of the

j�
(1)
u j curve corresponding to an instability wave with

a �xed ampli�cation ratio decreases with an increase
in the adverse pressure gradient. At � = �0:14, the

maximum value of j�
(1)
u j is approximately 55 percent

less than the maximum value at a frequency that has
the same ampli�cation ratio in the zero pressure gra-
dient case studied in references 36 and 37. Secondly,

the relative decrease in j�
(1)
u j between the maximum

growth rate location and the upper branch location
is rather insigni�cant when the pressure gradient is
weak but becomes quite large as the pressure gradi-
ent increases. As shown in �gure 12(c), the e�ciency
function at � = �0:14 decreases in value at nearly a
constant rate as the wall inhomogeneity moves from
the lower to near the upper branch location.

As in the previous wall suction case, �gure 13

shows that the e�ciency function j�
(2)
u j for the

wall admittance-induced receptivity also decreases in
value with an increase in the adverse pressure gra-

dient. Unlike j�
(1)
u j, the overall shape of the j�

(2)
u j

curve is relatively una�ected by the precise value of
the pressure gradient parameter �.

The e�ciency function �
(3)
u for the receptivity

caused by a wall geometry variation is plotted in �g-
ure 14 for the same frequencies as those in �gures 12

and 13. Note that the maximum value of the j�
(3)
u j

curve for an instability wave with a speci�ed ampli-
�cation ratio undergoes only a slight change as j�j is
increased from 0:05 to 0:10 in spite of the shift in the
instability band toward higher frequencies. More-
over, for wall hump locations upstream of the lower
branch, the e�ciency function curve is almost a lin-
ear function of R�� at all values of j�j. However,
the nature of receptivity downstream of the lower
branch location appears to be highly dependent on
the magnitude of the applied pressure gradient. Fig-
ure 14 also shows that, with increasing j�j, the overall

maximum of the j�
(3)
u j curve shifts from the upper

branch toward the lower branch location. Further-
more, in the limiting case of � = �0:1988 (�g. 14(d)),
the maximum magnitude of the e�ciency function at
each of the chosen frequencies is signi�cantly greater
than at any other value of �.

4.3.3. Variation along two neutral branches

and implications for distributed receptivity.

Figure 15 displays the variation in the magnitude of

the e�ciency functions j�
(j)
u j (j = 1, 2, 3) along the

lower branch of the neutral stability curve. The �rst
observation from �gure 15 is that the slope of each ef-
�ciency function curve in the separation case is quite
di�erent from that of a relatively moderate adverse
pressure gradient. This is only natural because of
the di�erent scaling laws for the instability wave fre-
quency and wave number along the lower branch of
the neutral stability curve at � = �0:1988. (See
section 4.1.) Of course, as discussed in section 4.3,

the results for j�
(1)
u j and j�

(3)
u j at � = �0:1988

are to be regarded with caution because the Stokes
wave approximation was utilized to calculate these

quantities. The j�
(2)
u j curves (�g. 15(b)), which are

independent of the Stokes wave approximation, in-
dicate that the e�ciency function in the wall ad-
mittance case increases more rapidly with R�� at
� = �0:1988 than at other values of the pressure
gradient parameter.

Also note in �gure 15 that e�ciency function
curves at � = �0:05, �0:10, and �0:14 are nearly
parallel for each of the three types of surface inho-

mogeneities; j�
(1)
u j and j�

(2)
u j increase as a function

of j�j, whereas j�
(3)
u j decreases somewhat with an

increase in the adverse pressure gradient. The high-
Reynolds-number asymptotes in the �rst two cases

(i.e., j�
(1)
u j = O(R

1=2
�� ) and j�

(2)
u j = O(R

1=4
�� )) are also

established at fairly low Reynolds numbers, some-
where in the range of R��= 1000 to R�� = 2000,
depending on the precise value of the adverse pres-
sure gradient parameter. In contrast, �gure 15(c)

indicates that the e�ciency function j�
(3)
u j in the

wall roughness case does not quite reach its asymp-

tote, j�
(3)
u j = O(R0

��), even for Reynolds numbers as
high as 50 000, especially under severely adverse pres-
sure gradients. However, for R�� � 5000, the dif-
ference between the analytical (i.e, triple-deck) and
the numerical predictions (refs. 21, 32, and 33) for
all three e�ciency functions was generally less than
10 percent.

Previously (refs. 54 and 55), the receptivity
caused by distributed (i.e., nonlocalized) surface
nonuniformities was shown to be dominated by a
narrow range of locations near the lower branch of
the neutral stability curve. In the present context,
this implies that the receptivity in such cases is de-
termined by the TS-mode generation and that the
generation of Rayleigh modes is primarily relevant
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to isolated nonuniformities with a shorter streamwise
length scale. The increase in receptivity caused by
nonlocalized distributions of surface nonuniformities
is quanti�ed by the equation

C
(j)
u;array

C
(j)
u

=
�ins;lb

F
(j)�

�ins;lb
�q

i� eD�

1X
n=1

F
(j)�

n�w;lb
�

� exp

"
�

�
n�w;lb��ins;lb

�2
i eD�

#
(4.1a)

(refs. 56 and 57), which yields the ratio of the ef-
fective coupling coe�cient (refs. 58 and 59) for an
array of compact equidistant nonuniformities to the
coupling coe�cient in the case of a single such non-

uniformity whose shape is given by F (j)(X). Here,
�w(R��) � ��w�

�(R��) denotes the fundamental wave

number of the periodic distribution; the quantity eD�

is de�ned as

eD� =

 
R2
��;lb

R`�;lb

!
D� (4.1b)

where the desynchronization factor D� is given by

D� =
2

2� �

�
�0ins;lb ��0w;lb

�
(4.1c)

in the present notation. The primes in equa-
tion (4.1c) denote di�erentiation with respect to R��,
and the subscript lb indicates evaluation at the lower
branch location R�� = R��;lb. The desynchroniza-
tion factor is a measure of how rapidly the unsteady
forcing produced by the interaction between the free-
stream and surface disturbances becomes detuned
with respect to the phase of the instability mode.
In �gure 16, the values of jD�j are plotted for the
values of � that are being considered in this para-
metric study. For comparison, the jD�j curve for
the Blasius boundary layer has also been included in
this plot. The �gure shows that, except in the case
of the separation pro�le, the value of jD�j is rela-
tively insensitive to the value of �. This implies that
the asymptotic scalings as well as other observations
made for the Blasius boundary layer (� = 0) in refer-
ences 54, 55, 58, and 59 are also valid in the context
of distributed receptivity in moderately adverse pres-
sure gradient boundary layers.

Now, the e�ciency functions for the in
ectional
(i.e., Rayleigh) modes will be studied from the per-
spective of their variation along the upper branch
of the neutral stability curve. (See �g. 17.) Ob-
serve that, despite the Reynolds number dependence

of both the mean 
ow perturbation and the Stokes

shear wave, the e�ciency functions j�
(1)
u j and j�

(3)
u j

are asymptotic to a constant at su�ciently high
Reynolds numbers just as was the e�ciency func-

tion j�
(2)
u j in the wall admittance case which does

not depend on either the mean-
ow disturbance or
the Stokes shear wave. The order in which the
high-R�� asymptote is reached at any given pres-

sure gradient corresponds to j�
(2)
u j, j�

(1)
u j, and j�

(3)
u j.

The same trend was also observed along the lower
branch; hence, the �nite Reynolds number e�ect ap-
pears overall to be the most signi�cant in the case of
receptivity caused by the wall geometry variations.
However, for each type of surface inhomogeneity, the
�nite Reynolds number e�ect diminishes uniformly
with an increasingly adverse pressure gradient. Thus,
the constant asymptotes for all three e�ciency func-
tions are approximately valid for R�� > 5000 at
� = �0:05, for R�� > 2500 at � = �0:10, and
R�� > 1000 at � = �0:14. In the case of the sep-
aration pro�le, the e�ciency functions are almost
constant throughout the range of Reynolds numbers
investigated.

5. Summary and Concluding Remarks

A �nite Reynolds number approach was used to
examine the in
uence of an adverse pressure gradient
on the e�ciency of acoustic receptivity through lo-
calized surface disturbances that involve short-scale
variations in the wall suction velocity, wall admit-
tance, or the shape of the airfoil surface. The sta-
bility of boundary layer 
ows that develop under
adverse pressure gradients is governed by the vis-
cous TS mechanism at lower values of the frequency
parameter and/or Reynolds number (i.e., near the
lower branch of the neutral stability curve), whereas
the inviscid in
ectional mechanism is dominant in
the remainder of the unstable region. Although re-
ceptivity in the lower branch region is usually more
important from a practical point of view, the possi-
bility of highly e�cient excitation of the in
ectional
instabilities cannot be ignored a priori. For prob-
lems of this type, the �nite Reynolds number exten-
sion of the Goldstein-Ruban theory provides a par-
ticularly useful predictive tool because of its inherent
composite nature (i.e., valid for a combination of in-
stability regimes) and its 
exible adaptation to the
di�erent types of surface inhomogeneities. In addi-
tion, this particular extension of the theory can pos-
sibly capture some higher order terms in the asymp-
totic expansion based on R�� � 1. However, in
practice, the overall accuracy of such a prediction
may not be signi�cantly better than a leading or-
der asymptotic solution because the overall error may
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be dominated by the neglected O
nh
�
(j)
w

i
2
�fs

o
term in

both cases. The Falkner-Skan family of self-similar
boundary layer pro�les was chosen herein to system-
atically investigate the e�ects of an adverse pressure
gradient parameter. However, the overall trends en-
countered here are also expected to remain valid for
the nonsimilar boundary layers that are encountered
in practice.

The overall conclusion from the parametric study
is that the adverse pressure gradient reduces the
maximum value of the e�ciency function that is re-
lated to the receptivity caused by wall suction or wall
admittance variation, but it does not signi�cantly af-
fect the magnitude of the e�ciency function related
to wall geometry-induced receptivity (except for the
increase seen under severely adverse pressure gradi-
ents). These trends appear to have their origin in the
high-frequency and short-wavelength nature of the
instabilities that are most critical for the transition
in adverse pressure gradient boundary layers. In the
wall suction case, the shorter wavelengths cause the
corresponding mean 
ow perturbations to become
smaller in magnitude, thereby weakening the inter-
action with the Stokes shear wave that produces the
instabilities. Similarly, the e�ciency of admittance-
induced receptivity decreases because the shortened
streamwise length scales and commensurately in-
creased unsteady vertical perturbation components
inside the boundary layer make any given magnitude
of the unsteady normal 
ux at the wall relatively
less e�ective in producing the instability wave. For
the case of wall geometry-induced receptivity, the
mean 
ow perturbation caused by a speci�ed wall
height variation becomes weaker at larger wave num-
bers, but the maximum value of the e�ciency func-

tion j�
(j)
u j remains relatively constant as j�j is in-

creased and, in fact, j�
(j)
u j increases somewhat as

j�j becomes very large. This is because the wall
geometry-induced receptivity has a second compo-
nent that is related to a purely geometric interaction
of the Stokes shear wave with the local distortion
in the surface. This latter interaction is in
uenced
by two opposing e�ects; the reduced thickness of the
Stokes shear wave at high frequencies makes a surface
perturbation of �xed height appear relatively greater
and a weakened transmission of the horizontal ve-
locity perturbation (which arises from the transfer
of the no-slip boundary condition) to the boundary
layer region controlling the instability. The numeri-
cal results indicate that these two e�ects almost can-
cel each other and thereby keep the maximum value

of j�
(3)
u j almost constant for much of the � range.

The previous conclusions concerning the di�er-
ences between the e�ciency factors for viscous and
inviscid types of instabilities should not be extra-
polated directly to the actual amplitudes of these
instabilities in any given situation. Even when
the localized mechanisms considered here dominate
the overall receptivity process, the amplitudes of
the generated instability modes are determined not
only by the e�ciency factor but also by the ge-
ometry of the surface disturbance and the fre-
quency spectrum of the free-stream disturbances.
Because the ranges of wavelengths and frequen-
cies for these two instabilities are quite di�erent
even at �nite Reynolds numbers, a speci�c wall
inhomogeneity will not necessarily have a spatial
spectrum that is nearly uniform across the entire
range of wave numbers. Similarly, the disturbance
environment is unlikely to have a relatively 
at
spectrum in the range of frequencies corresponding
to both types of instabilities. Hence, more pre-
cise conclusions for initial amplitudes of the two
types of instability waves will necessarily depend
upon more speci�c information.

NASALangley Research Center
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Figure 10. In
uence of adverse pressure gradient on e�ciency function for wall geometry-induced receptivity.
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(b) Receptivity due to wall admittance variation.

–.1


–.2


–.3


–.4


–.5


–.6


–.7
2.0 2.5 3.0 3.5 4.0 4.5

β = –0.1988
β = –0.14
β = –0.10
β = –0.05

log10Rδ∗

5.0

lo
g 10

|Λ
u 

|
(3

)

(c) Receptivity due to wall roughness variation.

Figure 17. E�ciency functions j�
(j)
u j (j = 1, 2, 3) along upper branch of neutral stability curve.
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