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Introduction

Thc wave-drag format (ref. 1) is a convenient

way to describe a rough-cut airplane geometry for

making a rapid linear analysis of the configuration

aerodynamics. The format is simple and concise,
and it allows changes to be made easily. One reason

for this simplicity is that the individual configuration

components are described as disjoint surfaces. This
limitation is of little consequence for linear analysis

codes, but nonlinear codes require a complete surface

description to establish a computational grid.

The purpose of this paper is to describe automatic

procedures for completing the geometry, beginning
with a wave-drag geometry description. A method

for automatically calculating the wing-fuselage inter-
section line was presented in reference 2. That

method is limited to configurations for which the

fuselage has circular cross sections. Here, a proce-
dure is described that computes the intersection of

two wing-like surfaces. These two procedures permit
one to compute all the intersection lines and thereby

complete the geometry for a configuration that in-

cludes a canard, a horizontal tail, nacelles, pylons,
and a vertical fin on the fuselage or on the wing.

Symbols

c vector location of generic point on
camber line

c(x) z coordinate of camber line as a

continuous function of x

d(t)

e(t)

r

r(x)

absolute distance (eq. (5))

error indicating extent to which v is
displaced from fuselage surface

orthonormal base vectors

vector location of generic point on

fuselage surface

fuselage radius as a continuous function
of x

v

vx Vz

w

parameter that controls length of v

(eq. (4))

variable-length vector defined by

equation (4)

scalar components of v

position vector of point on upper surface
lofting line at airfoil section location

Cartesian coordinates

interpolated value of z

0

Ob

angular coordinate

bounding value of 0

Procedure

Preliminary Considerations

Two procedures are used to compute the inter-
section lines of adjacent components. The first is the
method described in reference 2 which is applicable

when one of the surfaces has circular cross sections.

The second technique assumes that both surfaces are

input as a set of airfoil sections. Prom a purely math-

ematica] point of view, only the second technique
is required because surfaces input in the first (cir-

cular cross-section) format could be converted into

the equivalent of the second format. However, the

coding and computational advantages of the circu-
lar cross-section format are significant; consequently,

a separate algorithm is retained for that case. The

two techniques appear as separate subroutines in the

computer codes.

These two techniques are described herein. Then,

some problems that can arise in particular cases

are described, together with the methods that are
used to resolve them. A discussion of output format

and surface description considerations concludes the

analysis.

Intersection Line When One Component

Has Circular Cross Sections

In the wave-drag format, a wing, pylon, canard,

or fin is specified by individual airfoil sections. Such

components are denoted wing-like surfaces. The
individual airfoil sections are prescribed at constant-

span y stations for a wing, canard, or horizontal tail,
and at constant vertical z stations for a fin or pylon.

A line that connects tile corresponding point (e.g.,

the third point) of the various sections is called a
lofting line. (See fig. 1.)

If this surface intersects the fuselage, which has

circular cross sections, the intersection line is deter-

mined by the method of reference 2. For the reader's
convenience, that method is briefly reviewed here.

The fuselage is input as a set of circles at speci-

fied x stations, centered at points determined by the

input fuselage camber line coordinates at these x sta-
tions. Since camber ordinates can be interpolated at

any x location from the input camber line array, the

shape of the camber line can be represented by a
function c(x) that is defined by these interpolated

values. Similarly, a radius distribution r(x) can be

synthesized from the input array of fuselage radii. A



surfaceequationforthefuselagecanthenbewritten
as

r(x, e) = xi + uJ + (1)

where

u(x, e) = T(z)cose

z(x, o): c(x) + r(x)sin 0

(2)

(3)

The wing lofting lines are extrapolated inward

to the fuselage as follows. Beginning on the upper
surface, let Wl be the vector location of a point on the

first airfoil section (i.e., the most inboard section),
and let w2 be the location of the corresponding point

on the second airfoil section. Thus, wl and w2 lie on
the same lofting line. A vector of variable length v

that is collinear with these two points and pointing

inward toward the fuselage is

v=w l÷t(wl --w2) (4)

where t is a small but otherwise arbitrary number. If
the x coordinate of v(t) is denoted vx and the vector

location of the camber line at vx(t) is denoted c(t),

then the distance (fig. 2) from c(t) to v(t) is

d(t) = Iv(t)- c(t_ (5)

This distance is compared with the fuselage radius
r(vx) at Vx to find the error e. Thus,

e(t) = d(t)- r[vz(t)] (6)

Now the value of t in equation (4) is incremented by
an amount proportional to e(t), and the procedure is

iterated until e(t) is below a specified error bound.

The components of v are then taken as a point on
the wing-fuselage intersection curve.

Examples of intersection lines computed in this

manner axe shown in figures 3 6. Figure 3 shows

a wing-fuselage interscction. Figure 4 shows the
canard-fuselage intersection line. Figure 5 shows
intersections of vertical and horizontal tail surfaces

with the fuselage. Figure 6 shows a pylon-nacelle
intersection.

Intersection Line When Neither

Component Has Circular Cross Sections

The intersection of a vertical fin with the wing
(fig. 7) can be taken as a model for this type of

problem. The fin section that is closest to the wing
is denoted by the subscript 1 and the second section,

by 2. A fin lofting line is extrapolated toward the

wing surface in accordance with equation (4).

On the wing upper surface, a new wing section

is interpolated at vy(t). On this interpolated section
the wing ordinate is denoted zi(x). At x = vx this
coordinate is compared with Vz to determine the

error. Thus,

= - zi(v ) (7)

This error represents the vertical distance be-

tween the extrapolated lofting line and the wing sur-

face. To reduce the error, t is incremented by an
amount proportional to e(t), and the entire proce-
dure is repeated. This iteration is continued until

the absolute value of the error is below a specified

bound. The set of intersection points obtained by
extrapolating all the lofting lines to the wing sur-
face defines the fin-wing intersection line. The inter-

section of a pylon with the wing lower surface is

handled in precisely the same manner.

The same basic procedure, with some terminology
changes, can also be used to compute the inter-

section of a wing, canard, or fin with a noncircular

fuselage. In this case the fuselage is input as a set

of circumferential curves (y and z coordinates) at

constant x stations. Now, when a lofting line is
extrapolated toward the fuselage in accordance with

equation (7), a new circumferential curve yi(z) is
interpolated at x -- Vx. At z = Vz this coordinate is

compared with vy. Thus, equation (6) is replaced by

= - y(v ) (8)

Figures 7 and 8 show examples of fin-wing inter-

section lines and pylon-wing intersection lines
computed in this manner.

Potential Problems

The above description for computing the inter-
section of a wing-like surface with a circular cross-

section fuselage (eqs. (1)-(6)) does not actually re-
quire that the fuselage and the wing-like surface be
disjoint--that is, the root airfoil section need not lie

entirely outside the fuselage. As a rule the inter-

section line algorithms converge even if one of the in-

put components actually pierces through the other.

For example, the root wing section may lie partly or

entirely within the fuselage.

However, one situation that can cause a problem
is illustrated in figure 9. Here, a vertical fin intersects

the fuselage near the aft end where the fuselage

radius is relatively small. The extended fin lofting
lines intersect the fuselage in two places: one on the

upper half of the fuselage surface and the other on

the lower half. The input fin is set so low that, for



someof the loftinglines,thetip of the line iscloser
to the lowerintersectionpoint than is the upper
point. Consequently,the intersectionlinealgorithm
will convergeto thelowerpoint. Therefore,to assure
that thecorrectintersectionpointis computed,the
verticalfin isrequiredto beinputasasurfacethat is
disjointfromthefuselage,andatesthasbeenwritten
into the programto providea checkon this. This
problemcannotariseif the fin is seton the upper
wing surfacebecausethe uppersurfaceis labeled
separatelyfromthelowersurface.

Anotherproblemthat canariseis thatthe lofting
linesof a surfacemaynot all intersectthe second
surface. Thus,mathematically,v in equation(4)
doesnot intersectthe secondsurfacefor anyvalue
of t. As presently constituted, the algorithms do
not make allowance for this situation. However, a

procedure is described in reference 2 for treating the

case in which the wing is set so low on the fuselage
that some of the lower surface lofting lines do not

intersect the fuselage.

Output Considerations

The output geometry can be expressed in a Hess

format. (See ref. 3.) All the intersection lines are

computed before any output is printed.

Fuselage. In the output the fuselage is described

as separate upper and lower surfaces. For circular
cross sections, thc defining points are computed from

polar coordinates, which are used in each cross sec-

tion (x = Constant) with the polar axes centered at
y=0 and z=c(x). The angular coordinate 0=0

corresponds to the horizontal axis z -- c. The fuse-

lage upper surface is distinguished from the lower
surface by a bounding value Ob(X ), which is defined
as follows. From the nose to the leading edge of the

canard, Ob(X ) varies continuously from 0 to the value
of Ob(X ) that corresponds to its value at the inter-
section of the canard leading edge with the fuselage.

In the canard region, Ob(X ) corresponds to the inter-
section line of the canard upper surface and the fuse-

lage. Between the canard trailing edge and the wing,

Ob(X ) varies from its value at the canard trailing edge
to that at the wing leading edge intersection point.

In the wing region it corresponds to the wing up-

per surface intersection line. A similar procedure is
followed aftward from the wing trailing edge to the

horizontal tail, over the tail, and to the end of the

fuselage, where Ob(X) terminates with a value of 0.

The fuselage lower surface is bounded by a curve that
is identical to Ob(X ), except in the canard, wing, and

tail regions, where it corresponds to the lower surface
intersection lines.

If the fuselage cross sections are not circular,

the y and z coordinates of each cross-section curve
are expressed parametrically in terms of arc length.

Then, the bounding quantity Ob(X ) is replaced by a

similarly defined bounding value of the arc length

parameter.

For continuity the same number of points is

printed out for each cross section. However, the num-

ber of points is not evenly divided between upper
and lower surfaces. The fraction of the points that

are assigned to the upper surface is chosen so that

the points will be approximately evenly spaced at
the x location where the wing leading edge intersects

the fuselage. This system is set arbitrarily and could

easily be replaced with any other criterion.

At any cross section, upper surface points are
spaced at equal distances, beginning at 0 = 7r/2 and

ending at 0 = 0b, except in the region of a vertical fin

where the fuselage points begin at the value of 0 that

corresponds to the fin-fuselage intersection point at
that station. On the lower surface the points are

spaced at equal distances, beginning at 0 =-7r/2

and terminating at the lower surface bounding curve.

Wings. The wing, canard, and horizontal tail

components are treated as having separate upper and
lower surfaces. In the output the airfoil sections are

listed in order starting at the fuselage. The input

root section is replaced by the intersection line with

the fuselage because the input root section might lie

partly or totally within the fuselage.

If a vertical fin is set on the wing upper surface,

two additional curves must be interpolated into the

wing output coordinates. The first curve begins at
the wing leading edge at y = yf, where the fin leading

edge intersects the wing. It follows the wing section
shape back to the fin leading edge, then traces the
intersection line of the inner fin surface with the wing

to the fin trailing edge, then follows the wing surface

along y = y/ to the wing trailing edge. The second
curve lies identically on the first ahead of the fin and
behind it but traces the intersection line of the fin

outer surface with the wing in the fin region. In

the wing lower surface output, a surface curve is

interpolated at y- y/ to assure continuity of the
wing construction lines.

On the wing lower surface, the intersections of

the pylons are treated in a manner similar to the fin-

wing intersections on the upper surface. For each

pylon-wing intersection, two curves are interpolated
on the lower surface (onc tracing the inner part of
the intersection line and the other tracing the outer

part), and one curve is interpolated on the upper
surface.
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Empennage. The canard, fin, and horizontal

tail surfaces are specified in the wave-drag format by
the root and tip sections only. However, for present

purposes, several airfoil sections are interpolated be-

tween the root and tip. Then, in the output file, the

root section is replaced by the intersection line, as
discussed earlier.

Pylons and nacelles. The input format re-
quires that the nacelles be described as bodies of

revolution. For the output, the cross sections arc

circlcs except in the region of the pylon-nacelle inter-
section, where the circular arc begins at the inner
intersection line and ends at the outer intersection

line. For continuity, .cross sections are interpolated
at x stations that correspond to the pylon-nacelle

intersection points.

The pylons present a special problem. In the in-

put file they are specified by two airfoil sections (as
fins). The nacelles are normally set close to the wing;

therefore, the input upper pylon section may pierce

through the wing, and the lower pylon section may

pierce the nacelle. This event is even more likely if
the geometry is being automatically modified, as in

an optimizer loop. Therefore, the two input pylon

sections are used only for the purpose of computing
the intersection lines. For the output, the upper sec-

tion is replaced by the pylon-wing intersection line,

and the lower section is replaced by the pylon-naccllc
intersection linc. Of course, even this precaution will

fail if the input geometry is such that the nacelle

pierces the wing.

Continuity. The object of this analysis is to

define a complete configuration surface geometry,

starting from disjoint component geometries in wave-

drag format. The goal is not to design a configuration
or to generate a grid, but to provide a tool for

those purposes. Nevertheless, to facilitate graphical

display and surface grid generation, an effort was

made to preserve continuity of output surface lines

where feasible. For example, an additional fuselage
curve that connects to each point of tile canard-

fuselage intersection line is relatively easy to obtain
by interpolation. Consider, however, the problem
that arises when both fin and horizontal tail surfaces

are present. In general, they will not begin and end at

the same x stations but will have a region of overlap

in the x intervals. (See fig. 5.) In this overlap region,

not only must the fuselage lines be interpolated but

also an additional fill lofting line that corresponds to

each tail lofting line and vice versa. The accounting

problem is even more severe on wings with nacelles.
For example, each pylon lofting line would have to

be continued along the wing, the other pylon, both

nacelles, the fuselage, the wing upper surface, and

the wing tip. Constructing all these interpolated
curves would succeed in closing the tiny gaps that

occur in graphical displays of surfaces when the
construction lines are not continuous. But that

construction would not produce a useful surface grid
for computational purposes because the curves are

crratically distributed. However, a more smoothly

distributed set of grid lines could be interpolated
from the surface construction lines.

Some examples of complete configuration geome-

tries computed by the methods described herein are
shown in figures 10 12.

Concluding Remarks

Procedures have been derived for developing a

complete airplane surface geometry starting from
component descriptions. The procedures involve lo-

cating the intersection lines of adjacent components
and omitting any regions for which part of one sur-

face lies within the other. Two algorithms were used:

one, if both of the intersecting surfaces are wing-like
surfaces; the other, if one of the surfaces has circular

cross sections. Some sample results in graphical form
were included.

NASA Langley Research Centcr
Hampton, VA 23681-0001
May 24, 1994
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(a) Coordinate system.

Airfoil
sections

lines

(b) Wing geometry.

Figure 1. Coordinate system and basic wing geometry.
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Sectionof
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Figure2. Extrapolationof wingloftinglinetowardfuselage.



",yy/y _7/!

(a) Original configuration (from wave-drag data).

(b) Configuration with computed intersection.

Figure 3. Example of calculated wing-fuselage intersection.
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Figure4. Exampleofcalculatedcanard-fuselageintersection.

Figure5. Intcrsectionsof verticalandhorizontaltail surfaceswith fuselage.



Figure6. Exampleof calculatedpylon-nacelleintersection.

Figure7. Intersectionof verticalfin withwinguppersurface.



Figurc8. Intcrsectionof pylonwith winglowersurface.

Intersectionpoints

Thesetwoloftinglinesterminateclosertolower
intersectionpointswithfuselagethan to upper

Figure 9. Illustration of fin input problem that causes algorithm to fail. Extension of each fin lofting line

intersects fuselage in two places.
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Figure10.Exampleof input configurationin wave-dragformat.

Figure11.Exampleofoutput configurationwith verticalfin on fuselageandwithoutcanard.

Figure12.Exampleof outputconfigurationwith verticalfin onwingandwithcanard.
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