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Abstract

A new method for the preliminary design of con-
trolled space structures is presented. The method
coordinates standard �nite-element structural anal-
ysis, multivariable controls, and nonlinear program-
ming codes and allows simultaneous optimization of
the structures and control systems of a spacecraft.
Global sensitivity equations are a key feature of this
method.

The preliminary design of a generic geostationary
platform is used to demonstrate the multidisciplinary
optimization method. Fifteen design variables are
used to optimize truss-member sizes and feedback-
gain values. The goal is to reduce the total mass of
the structure and the vibration control system while
satisfying constraints on vibration decay rate. Incor-
porating the nonnegligible mass of actuators causes
an essential coupling between structural design vari-
ables and control design variables.

The solution of the demonstration problem is
an important step toward a comprehensive controls-
structures integrated design capability. Use of global
sensitivity equations helps solve optimization prob-
lems that have a large number of design variables
and a high degree of coupling between disciplines.

Introduction

Future NASA missions will include large space
structures with control systems to damp out vibra-
tions excited by pointing maneuvers. Preliminary de-
sign of these spacecraft is complicated by a high de-
gree of coupling between the control and structural
analyses. Speci�cally, changes in the structure im-
pact the control system design by modifying both
the plant to be controlled and the expected exci-
tation. At the same time, changes in the control
system impact the structural design by modifying
the number, mass, and location of actuators. The
preliminary design of controlled space structures is
one aspect of a much broader program called the
NASA Controls-Structures Interaction (CSI) Tech-
nology Program (ref. 1).

The CSI program encompasses a variety of
research areas. The primary objectives of the pro-
gram are (1) to develop analytical methods that char-
acterize the performance of controlled space struc-
tures, (2) to develop controls-structures integrated
design (CSID) methods, and (3) to improve ground
test methods to better predict on-orbit system per-
formance and validate the analytical methods. The
�rst objective not only emphasizes the interaction
between the structure and various control systems

but also quanti�es the performance bene�ts and op-
erational restrictions that result from this interac-
tion (refs. 2 and 3). The second objective exploits
advances in structural analysis, multivariable con-
trol, and multidisciplinary optimization for the pre-
liminary design of large, 
exible spacecraft (refs. 4
to 8). The third objective emphasizes hardware im-
plementation and determines the validity of analyt-
ical assumptions. Thus, this objective requires new
methods for accurate static and dynamic modeling
of structural and control system hardware, innova-
tive and physically realizable control strategies, and
new methods for experimental system identi�cation
and veri�cation (refs. 2, 3, and 9).

Research in CSID has grown during the past
10 years. Initial research studied the mechanisms
that link structural characteristics to controlled per-
formance by using simpli�ed models and control the-
ory. Reference 4 contains a survey of this work
and concludes that strongly coupled CSID problems
need attention. Recent research considered prelim-
inary design problems that are complex enough to
capture the most important characteristics of de-
sign problems associated with actual mission hard-
ware. For example, researchers at NASA Langley
Research Center have developed mathematical opti-
mization procedures that successfully reduce surface
distortion errors for large space antennas (ref. 5), tai-
lor structures and control systems for reduced power
consumption (ref. 6), and improve the �ne-pointing
performance of large space platforms while reducing
mass (refs. 7 and 8).

The research reported in this paper addresses
problems for which there is implicit coupling between
structural design variables and control design vari-
ables. These optimization problems are challenging
because they involve eigenvalue solvers and transient
response analyses, which can be computationally ex-
pensive. Moreover, these analyses must be iterated
until all structural and control response quantities
converge.

The current research is unique because it coordi-
nates commercial structural analysis codes,
multivariable control codes, and optimization codes
using the UNIX command language. This method
can also be adapted for a variety of optimization
problems associated with controlled space struc-
tures. The optimization method builds on recent ad-
vances in multidisciplinary analysis and optimization
(refs. 10 to 12). Two key features of this research are
the division of the system engineering problem into
subproblems and the use of general-purpose anal-
ysis and optimization computer software for pre-
liminary design studies. Because the disciplinary
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analyses are tightly coupled, the global sensitivity
equations (GSE) are used to calculate global deriva-
tives of the response quantities with respect to the
design variables. (See ref. 10.) For completeness, the
GSE approach is compared with a more conventional
approach.

The example used to illustrate the optimization
method is the preliminary design of the structure
and a vibration suppression controller for a geosta-
tionary platform subjected to slewing maneuvers. In
this problem, truss-member sizes and controller gains
are chosen to minimize spacecraft mass, which in-
cludes vibration control actuator mass. The mass
of the vibration control actuators is a parameter
that in
uences the spacecraft dynamic characteris-
tics and a control system parameter that determines
the maximum torque available for vibration suppres-
sion. Thus, the structural and control analyses are
coupled by the presence of the nonnegligible actuator
mass.

This paper develops and demonstrates a new
technique for CSID. The design procedure is sum-
marized, and alternative approaches for calculating
global derivatives are discussed. The reference con-
�guration and the optimization problem are pre-
sented with a brief discussion of the coupled disci-
plinary analyses. Typical results are presented, and
a comparison between the GSE approach and a con-
ventional approach is given.

Symbols and Abbreviations

CEC collocated elastic control

CPU central processing unit

CSI controls-structures interaction

CSID controls-structures integrated design

EAL Engineering Analysis Language

Gp;Gr position- and rate-gain matrices
used to de�ne collocated elastic
control law

GSE global sensitivity equations

g vector of 12 design variables used to
de�ne Gp and Gr matrices

I/O input and output

J spacecraft inertia matrix, kg-m2

Mact total mass of vibration suppression
actuators, kg

Ms total mass of truss structure, kg

n number of modes used in reduced-
order model of spacecraft

obj objective function

r vector of three design variables used
to de�ne radii of truss-element cross
section, m

v vector of design variable values
associated with a speci�c stage in
optimization procedure

x arbitrary design variable, x 2 fr;gg

y arbitrary constraint function

� distance between points in design
space

� required vibration decay rate

� 2n � 1 vector of closed-loop eigen-

values, rad2/sec2

� 3 � n mode-slope matrix that
contains rotational components
of structural eigenvectors; super-
script 0 indicates maneuver actu-
ator location and superscripts 1
and 2 indicate �rst and second
vibration-suppression-actuator
locations

!
2 n � 1 vector of natural eigenvalues

of the structural model, rad2/sec2

Multidisciplinary Optimization

Procedure

CSID Method

There are three phases in the CSID process: anal-
ysis, calculation of global derivatives, and optimiza-
tion. Analysis involves iteration between structural
and control analyses until output quantities, such as
structural mass and closed-loop response, converge.
The global sensitivity calculation produces deriva-
tives of response quantities for each design variable.
The optimization phase searches for new values of
design variables that reduce the objective function,
reduce the degree of constraint violation, or both.
Since the coupled analysis is expensive, linear ap-
proximations to the objective and constraint func-
tions are used in the optimization phase. Limits on
the allowable change in design variables restrict the
search algorithm to a domain in which the linear ap-
proximations are appropriate. When no further re-
duction of the approximate objective function can
be achieved without constraint violation, the coupled
analysis and the global derivative calculations are re-
peated for the next set of design variables, and the
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process continues. One repetition of analysis, deriva-
tive calculation, and optimization is referred to as
one cycle. The CSID process continues until a pre-
scribed maximum number of cycles is reached or until
all constraints are satis�ed and the change in the ob-
jective function is less than a prescribed convergence
tolerance for two successive cycles.

A conventional three-phase CSID process is il-
lustrated schematically in �gure 1(a). The coupled
analysis is represented by an iteration between the
controls and structures computer codes. This cou-
pled analysis is performed once at the nominal design
point and is repeated after each design variable is
perturbed. The global derivatives are approximated
with a forward-di�erence formula. The optimization
phase is represented by an iteration between the lin-
ear approximation and optimization computer codes.
The linear approximation computer code calculates
approximate values of both the objective function
and the constraints by a �rst-order Taylor series ex-
trapolation from the nominal solution by using gra-
dient information provided by the global derivative
phase. The optimization computer code is a general-
purpose optimization program.

Figure 1(b) illustrates an alternative CSID ap-
proach in which the coupled analysis is used once per
cycle. The controls and structures computer codes
are modi�ed to calculate the partial derivatives of
output quantities with respect to input quantities.
The global derivatives of response quantities with re-
spect to each design variable are calculated with this
local sensitivity derivative information.

The calculation of global derivatives in the alter-
native approach discussed in appendix A is imple-
mented through the use of global sensitivity equa-
tions (GSE) described in references 10 and 13. The
global derivatives are expressed as the solution to
a set of linear equations whose coe�cients are local
sensitivity derivatives.

To calculate all global derivatives, it is necessary
to solve a series of GSE problems that have the form

2
4 I �@C

@S

� @S
@C I

3
5
8<
:

dC
dx

dS
dx

9=
; =

8<
:

@C
@x

@S
@x

9=
; (1)

where I is the identity matrix, S is the set of all
structural outputs, C is the set of all control out-
puts, and x is any global design variable. Standard
mathematical computer software can be used to solve
equation (1) for each design variable x. The multi-
ple solutions are calculated e�ciently since only the
right-hand side changes.

In this paper, both the conventional and the GSE
approach are used. The conventional approach is rec-
ommended for uncoupled problems. In this case, the
disciplinary analyses can be computed without iter-
ation, and �nite-di�erence approximations to global
derivatives are tractable. The conventional approach
is also recommended for coupled problems for which
the number of structural modes used in the control
analysis is large compared with the number of design
variables. In this case, the dimensions of the GSE
matrix can become large, and the cost of evaluating
the local derivatives can become excessive. On the
other hand, the GSE approach is ideal when the num-
ber of design variables is so large that repeated per-
turbations of the coupled analysis is computationally
prohibitive. The size of the GSE matrix is una�ected
by the number of design variables x. Increasing the
number of design variables means that equation (1)
must be solved for additional right-hand sides. This
impacts the computational cost only when the local
derivatives in the added column vectors are expensive
to calculate.

Demonstration Problem

The preliminary design of a generic geostation-
ary platform is used to develop and demonstrate
the CSID methods. The goal is to reduce the total
mass of the structure and the vibration control sys-
tem while satisfying constraints on vibration decay
rate. Standard �nite-element analysis, multivariable
control, and mathematical programming routines are
coordinated by a new multidisciplinary optimization
scheme.

The reference con�guration, shown in �gure 2,
represents a large geostationary platform, which con-
sists of two antennas connected by a bus structure.
The platform has three sets of actuators; each set
supplies three-axis torques. Two of the actuator
sets work together for vibration suppression control.
These sets are mounted at the intersection of the cen-
terline of the bus structure and the axis of symmetry
of each antenna. The third set of actuators is used
to perform rigid-body rotational maneuvers and is lo-
cated at an arbitrary joint in the bus structure near
the center of mass. A �nite-element model is assem-
bled from beam elements to represent a graphite-
epoxy truss structure. Three groups of beam ele-
ments are de�ned: the bus, the antennas, and the
antenna supports. All beam elements have the same
wall thickness, but the outer radius may vary from
one group of elements to another.

To obtain a tractable integrated design problem,
certain simplifying assumptions are made. The loca-
tions of the three actuator sets are �xed, the mass
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of the maneuver actuator is ignored, and the inertia
matrix J is calculated at the �xed maneuver loca-
tion rather than at the variable center-of-mass lo-
cation. Vibration-suppression-actuator masses are
included in the model, but their rotational inertias
are not included. The masses of scienti�c payloads,
power-generating and power-distribution hardware,
computers, and other supporting equipment are ig-
nored. The mass and dynamic characteristics of the
joints between truss elements are also neglected. The
sti�ness contribution of the surface material of the
antenna re
ector is neglected, but the mass is mod-
eled approximately. Minimum gage constraints on
the truss-member sizes are also used instead of stress
and buckling constraints. The structural model is
discussed in appendix B.

To complete the structural model, the masses of
the two vibration suppression actuators must be de-
termined and incorporated into the model. A con-
straint in the control law design requires that the vi-
bration suppression actuators to have the same mass.
To determine the actuator mass, �rst a torque his-
tory characteristic of a minimum-time rigid-body ro-
tational maneuver is applied to the elastic spacecraft
with the vibration suppression loop closed. The mass
of each actuator is calculated based on the sum of the
maximum torques about each axis required to sup-
press vibrations that occur after this reference ma-
neuver. The total mass is obtained by multiplying
the number of actuators (two) by the mass per actu-
ator. The actuator mass calculation is discussed in
appendix C.

Controls-structures integrated design of the ref-
erence con�guration is implemented with a mathe-
matical programming method used to adjust the val-
ues of 15 design variables. Three design variables ri
control the outer cross-sectional radius of the groups
of beam elements that comprise the bus structure
(i = 1), the antennas (i = 2), and the antenna sup-
ports (i = 3). The remaining 12 design variables
gi (i = 1; 2; : : : ; 12) uniquely determine the elements
of the position- and rate-gain matrices for the vibra-
tion control system.

The optimization problem is to minimize the total
mass of the platform while satisfying vibration decay
requirements. This problem can be stated in terms
of the total mass of the truss structure Ms, the total
mass of the vibration suppression actuators Mact,
and the complex-valued, closed-loop eigenvalues �i.
Minimize

Ms +Mact (2a)

subject to

Re(�i) � � (i = 1; 2; : : : ; 2n) (2b)

where � is the required decay rate and n is the
number of modes used in the reduced-order model of
the spacecraft. The calculation of the real part of the
closed-loop eigenvalues is discussed in appendix C. In
the remainder of the paper, �i is used to stand for
Re(�i).

This design problem is particularly challeng-
ing because the structural and control analyses are
tightly coupled. Changes to the structural design
variables (truss sizes) change the open-loop plant and
thus the closed-loop response to the reference ma-
neuver. On the other hand, changes to the control
design variables (the gains) determine the vibration-
suppression-actuator torques, which are linearly re-
lated to the actuator masses used in the structural
model.

Controls-Structures Analyses

This section brie
y describes the structural and
control analyses and explains the successive substi-
tution algorithm used to solve the coupled problem.
The inputs to the coupled controls-structures analy-
ses are the design variables, and the outputs are Ms,
Mact, and � used in equations (2).

The structural analysis consists of �nite-element
analysis of the spacecraft structure through the use of
the Engineering Analysis Language (EAL) computer
code. (See ref. 14.) The mass and sti�ness matrices
are assembled based on the current values of the
design variables ri and the mass of the actuators
Mact. A real symmetric eigenvalue problem is solved
to obtain the characteristic modes and frequencies
of the truss structure. Outputs from the structural
analysis include the �rst n eigenvalues !2 and the
�rst n mode slopes (i.e., rotational components of the

eigenvectors) at the maneuver actuator location �(0)

and at the vibration-suppression-actuator locations

�(1) and �(2). In addition, the mass of the bare
structureMs and the inertia matrix J associated with
the maneuver actuator location are output. All these
outputs, except for Ms, are inputs to the control
analysis.

The control analysis determines the transient
closed-loop response of the spacecraft to a reference
maneuver and searches for the maximum vibration
control torques and the times at which they occur.
The maneuver is assumed to be linear since it rotates
the spacecraft through small angles during a long pe-
riod of time. Thus, the nonlinear coupling of rigid
and elastic motion that is typical of rotational ma-
neuvers is not modeled. The maneuver represents a
typical disturbance that might be encountered by the
geostationary platform. The vibration suppression
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system employs collocated elastic control (CEC) with
a single pair of actuators constrained so that their net
torque output is zero. The robust dissipative control
law used by CEC does not a�ect rigid-body motion
and guarantees stability despite unmodeled dynam-
ics and parameter uncertainty (refs. 15 to 17). The
torque required by the CEC actuators is a function
of the angular deformations and angular deforma-
tion rates at the actuator locations and the values of
the 12 design variables gi, which uniquely determine
the position-gain matrix Gp and rate-gain matrix
Gr. The complete control analysis is contained in
appendix C.

The actuators are sized based on the peak torques
required to suppress the elastic motion that remains
after the reference maneuver. The mass of actuators
needed to provide the peak torques can be interpo-
lated from an empirical table of mass versus torque
for available actuators. For the present study, how-
ever, a linear relationship between actuator mass and
maximum torque output is assumed. Outputs from
the control analysis include Mact and the 2n complex
closed-loop eigenvalues �. The actuator mass Mact

is an input to the structural analysis.

The solution to the coupled controls-structures
analysis problem is found by iteration. Figure 3
shows a 
ow chart of the iterative procedure that
starts with an initial estimate of the actuator mass.
This value of Mact is incorporated into the struc-
tural model. The required actuator mass is deter-
mined from the transient response calculated in the
control analysis. If the value of Mact used in the
structural model and the value calculated by the
control analysis are within 1 percent of each other,
then the procedure terminates. Otherwise, the re-
quired actuator mass is used in the structural analy-
sis (i.e., the mass matrix is updated) and the iteration
continues.

The above procedure was modi�ed to improve ef-
�ciency. The computational cost of the procedure
is dominated by the cost of solving the structural
eigenvalue problem. Fortunately, calculating the sen-
sitivity of the solution of the eigenvalue problem to
changes in lumped masses (e.g., @!2=@Mact) is rel-
atively inexpensive. (See refs. 18 and 19.) There-
fore, the change in structural outputs with a change
in Mact can be estimated when the change is su�-
ciently small. Currently, the full structural analysis
is repeated only when the change in actuator mass
exceeds 10 percent of the initial estimate. Otherwise,
the structural outputs are estimated from sensitivity
information.

The modi�cation for e�ciency required one addi-
tional change in the procedure. If the change in Mact

is less than 1 percent but is based on an estimate of
the structural outputs, then one additional execu-
tion of the structural and control analyses is needed
to con�rm convergence. During the additional exe-
cution of the structural analysis, the local derivatives
(e.g., @!2=@r2) of structural outputs with respect to
design variables are calculated, along with the local
derivatives with respect to Mact.

GSE and Optimization

This section contains a summary of the global
derivative calculation and the optimization process
required to complete one cycle of the new CSID
procedure. These calculations, which take place
after the controls-structures analysis has converged,
assume that values of the output quantities J, !,

�(0), �(1), �(2), Ms, Mact, and � are available.

To solve the GSE problem (eq. (1)), all local
derivatives that are the coe�cients of the matrix
equations must be evaluated. That is, for each con-
tributing analysis, the partial derivatives of each out-
put quantity with respect to each input quantity
must be calculated or estimated. For the demon-
stration problem, the contributing analyses are con-
trols and structures, and the input and output quan-
tities are shown in �gure 4. All partial derivatives
are scaled according to the scheme suggested in ref-
erence 20 and placed in the GSE as discussed in
appendix A.

The set of linear GSE (eq. (1)) is assembled and
solved to determine the global derivatives of Ms,
Mact, and � with respect to each design variable.
For example, one of these linear equations is

dMact

dr2
=

nX
i=1

@Mact

@!i

d!i
dr2

+

6X
i=1

@Mact

@Ji

dJi

dr2

+

3nX
i=1

2X
j=0

@Mact

@�
(j)
i

d�
(j)
i

dr2
(3)

Equation (3) re
ects the fact that the required ac-
tuator mass is not in
uenced directly by the truss
sizing variable r2 (i.e., @Mact=@r2 = 0) but is in
u-
enced indirectly by the eigenvalues and the elements
of the inertia and mode-slope matrices. The notation
d=dr2 signi�es the global derivative with respect to
r2. Thus, the global derivatives quantify the e�ect
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of coupling between the local control and structural
analyses.

Once the global derivatives are available, they
can be used to provide linear approximations to
the objective function and the normalized constraint
function yi. For example, given

obj = Ms +Mact

yi = 1�
�i

�
(i = 1; 2; : : : ; 2n)

9>=
>; (4)

where yi � 0 is a feasible constraint, and the required
decay rate � is a negative real number; therefore, the
e�ect of changing an arbitrary design variable x by
the amount �x is approximated by

obj(x+�x) �Ms +
dMs

dx
�x

+Mact +
dMact

dx
�x

yi(x+�x) � 1�
�i
�
�

d�

dx

�x

�

9>>>>>>=
>>>>>>;

(5)

The solution of the optimization problem in
equations (2) is accomplished by linking the linear
approximation routine with the standard nonlinear
programming code CONMIN (ref. 21). A nonlinear
programming code was selected because future CSID
projects may require nonlinear objective and con-
straint functions.

Results and Discussion

Demonstration Overview

All results in this section were generated with the
GSE approach. The impact of choosing the GSE ap-
proach over the conventional approach is discussed
in the section \Comparison of GSE and Conven-
tional Approach." The implementation details are
discussed in appendix D.

The proper operation of the optimization pro-
cedure is demonstrated through convergence to the
same solution from two di�erent initial design points.
In each case, the total mass of the reference con�g-
uration is minimized with respect to 15 design vari-
ables (eqs. (2)). The decay rate requirement is � =
�0:03. The reference maneuver rotates the space-
craft 20� about all axes simultaneously in 10 sec.
Limits are set so that a design variable may change
no more than 10 percent during a single cycle. The
number of modes and frequencies that describe the
open-loop model was n = 20, and 0.5 percent modal
damping was assumed.

Case 1: slightly infeasible initial design.

Demonstration case 1 has an initial design that does
not ful�ll the decay rate requirement. The initial val-
ues of the truss sizing variables are r1 = 4, r2 = 4,
and r3 = 8 cm. These sizes yield an initial struc-
tural mass of 1158 kg. The frequencies of the �rst
�ve elastic modes are 0.668, 0.977, 1.35, 1.48, and
1.48 Hz. The fourth and �fth vibrational frequen-
cies are identical (i.e., they are repeated eigenvalues)
because of structural symmetries in the spacecraft
antennas. Both closely spaced and repeated frequen-
cies are characteristic features of large space struc-
tures and are considered in this demonstration prob-
lem. The initial values of the position- and rate-gain
matrices are

Gp = Gr =

2
4
5100 800 700
800 5000 700
700 700 4900

3
5 (6)

The closed-loop response that results from these
gains indicates an actuator mass requirement of only
10.69 kg. The �rst �ve closed-loop eigenvalue pairs
are �0:021 � 4:2j, �0:031 � 6:1j, �0:049 � 8:5j,
�0:047� 9:3j, and �0:047� 9:3j. Only the �rst pair
violates the constraint that Re(�) � �0:03.

Figure 5 contains optimization histories for demon-
stration case 1. Figure 5(a) shows the history of
the objective (i.e., total mass) with respect to the
optimization cycle. The CSID procedure increases
the total mass during the �rst �ve cycles and de-
creases the total mass at each cycle thereafter. The
initial increase in total mass is associated with a
rapid decrease in the constraint violation, as indi-
cated in �gure 5(b). This �gure shows that the max-
imum eigenvalue constraint max

�
Re(�)

�
decreases

smoothly to the constraint boundary in �ve cycles.
The maximum constraint value oscillates around the
constraint boundary beginning at cycle 15. Such be-
havior is common when a linear approximation to
nonlinear constraints is used.

Figures 5(c) to 5(e) contain histories of selected
design variable values. Only the diagonal elements
of the gain matrices Gp and Gr are plotted. The
o�-diagonal elements never change signi�cantly from
their initial values. A comparison of these histories
with those in �gure 5(a) shows that the initial in-
crease in total mass is associated with increases in
all three structural design variables and in rate gain.
The subsequent decrease in mass is associated with a
decrease in the radii of the bus truss. A decrease in
rate gain also contributes, but this decrease lags the
structural changes. This e�ect implies that changes
in the structure not only decrease mass but also
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reduce the amount of control e�ort required to meet
decay rate constraints.

Figure 5(f) is similar to �gure 5(a) but uses a
di�erent scale for the actuator mass. This �gure
indicates that the actuator mass requirements are
changed by �25 percent from cycle to cycle, even
when the change in design variables is much smaller.
This behavior emphasizes that the amount of con-
trol e�ort required is a function of diverse factors,
such as dynamic and inertial properties of the struc-
ture plus adjustments to the control system. More
importantly, �gure 5(f) indicates that an increase in
actuator mass from about 10 to 50 kg allows a re-
duction of about 300 kg in total mass. This favor-
able trade-o� of structure mass for control e�ort is
the major bene�t of an integrated controls-structures
optimization procedure.

Case 2: highly infeasible initial design.

Demonstration case 2 has an initial design that has a
smaller total mass and a greater constraint violation
than the �rst case. The only di�erence between the
cases is that initial values of the truss sizing variables
are each set to 2 cm. This causes the �rst seven pairs
of closed-loop eigenvalues to violate the decay rate
constraint. Figure 6 contains a convergence history of
mass with respect to optimization cycle. This second
case converges to the same total mass as the �rst case,
namely, about 850 kg with an actuator mass of about
50 kg.

One way to compare the optimization histories
of the two cases is to plot the maximum eigenvalue
constraint versus total mass. (See �g. 7.) In this
�gure, movement downward and to the left signi-
�es improvement of the design from one cycle to
the next. The two demonstration problems start at
di�erent initial conditions and follow di�erent con-
vergence paths. However, the �nal conditions are
similar. This similarity shows that the optimization
procedure performs well (consistently produces an
improved design) and that the �nal solution is pos-
sibly a global minimum.

Although the optimization procedure converges
to equally satisfactory solutions from di�erent initial
design points, the convergence path of demonstration
case 1 is less direct than that of case 2. The path
of case 2 makes consistent progress toward the �nal
solution, while the path of case 1 initially adds an
unnecessary amount of mass. Two of the structural
design variables increase during the early optimiza-
tion cycles but return to their initial values at the
end of the optimization process. (See �g. 5(c).) This
observation, and the previously noted oscillation of
the maximum constraint value around the constraint

boundary, suggests that the quality of global deriva-
tives should be investigated. The derivatives may be
accurate, but the move limits allow design variable
values to change so much that the linear approxima-
tion is a poor representation of the coupled analysis.
Alternately, the global derivatives calculated by the
GSE approach may be de�cient.

A simple test can be used to determine the quality
of global derivatives that were calculated in demon-
stration case 1. Two design points v1 and v2 that
correspond to successive optimization cycles are se-
lected. A coupled analysis is performed at each de-
sign point and at evenly spaced intermediate points
so that:

vnew = �v2+(1��)v1 (� = 0; 0:1; : : : ; 1:0) (7)

where vnew is a sequence of intermediate points be-
tween the chosen design points v1 and v2. Fig-
ure 8(a) compares the actuator mass calculated by
the coupled analysis with the mass predicted with
nominal values and global derivatives at the point
v1. In this case, v1 and v2 are the design points as-
sociated with cycles 18 and 19 in �gure 5. The di�er-
ence between actual and approximate Mact is small
at � = 0:1, but this di�erence is large at � = 1:0.
This change indicates that the global derivatives are
calculated correctly but that the move limits need
to be small if the linear approximations for actuator
mass are to remain valid. Fortunately, this discrep-
ancy is less severe for the prediction of closed-loop
eigenvalues. Figure 8(b) contains the corresponding
comparison of the real part of the maximum eigen-
value with the linear approximation to this value.
The behavior is more nearly linear, and the error
caused by the current move limits is acceptable.

Assessment of GSE Approach

This paper investigates the use of the GSE ap-
proach to provide global derivatives for CSI opti-
mization problems. As previously discussed, the
GSE approach provides high-quality derivative in-
formation. In this section, the strengths and weak-
nesses of GSE are discussed from an implementation
standpoint. The strengths involve numerical, e�-
ciency, human judgment, and organizational issues;
the weaknesses include implementation complexity
and computer memory requirements.

The numerical argument for the GSE approach is
that it is relatively insensitive to the degree of con-
vergence of the iterative (coupled) analysis. The it-
erative procedure (�g. 3) terminates based on the
percentage change in the mass of actuators. The
current study experimented with 1 and 0.1 percent
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convergence criteria for the iterative analysis and
found little di�erence in the optimization results. On
the other hand, 0.05 percent was the largest con-
vergence criterion that produced acceptable results
when global derivatives were estimated by the con-
ventional approach (�nite di�erencing over the cou-
pled analysis). A small convergence criterion means
many additional iterations of the coupled analysis
and additional computational expense.

For CSID problems, the GSE approach is e�-
cient. The coupled analysis is performed only once
per cycle; thus, the number of structural eigenvalue
problems to be solved is kept to a minimum. The
structural code is computationally expensive and
requires large amounts of computer memory. For
instance, in the demonstration problem, the �nite-
element analysis required 20 times more central pro-
cessing time and 20 times more disk space than the
control analysis required. The GSE approach re-
quires the calculation of many additional local deriva-
tives, but most of these calculations involve reduced-
order control analysis.

Another strong argument for the GSE approach
involves human judgment. As a rule, researchers lack
con�dence in global derivatives of a multidisciplinary
analysis whether the derivatives are calculated by the
conventional approach or by the GSE approach. On
the other hand, individual entries in the GSE ma-
trix (which result from local analyses) generally have
physical meaning. For example, numerical values
that indicate the dependence of closed-loop eigen-
values on open-loop frequencies, or the dependence
of the inertia properties of the structure on actuator
mass, may have intuitive appeal. These physically
meaningful quantities are often available as an out-
put option from the standard analysis codes. For
instance, semianalytic formulas for structural deriva-
tives are common. (See appendix B.) When this is
not true, the local derivatives can be estimated by
�nite-di�erence approximation. Finite-di�erence ap-
proximations to the control derivatives proved to be
accurate. (See appendix C.)

A �nal argument for GSE, which is mentioned
in reference 10, is realized in the current research.
The GSE approach facilitates the smooth operation
of a multidisciplinary design team. In the current
research, some team members had more experience
with control theory, and others had more experience
with structural analysis. Members used their own
expertise to develop the local analysis and local
derivative capabilities. Once individual codes were
operational, they were combined with generic global
sensitivity and optimization routines. The end

result was a powerful and 
exible CSI optimization
capability.

Complexity is one de�nite disadvantage of the
GSE approach. A large number of local derivatives
must be communicated to the GSE computer code in
exactly the correct form and order. Inconsistencies
within the coupled analysis can be a problem. For
instance, the structural outputs contain derivatives
of !2, but the control analysis calculates derivatives
with respect to !.

Another potential disadvantage of the GSE ap-
proach is the size of the set of linear equations to be
solved. For the current example, the size never ex-
ceeded 228� 228 and thus was not a concern. The
number 228 represents 2 masses, 6 unique compo-
nents of the symmetric inertia matrix, 180 elements
of the 3 mode-slope matrices, 20 elastic modal fre-
quencies, and 20 unique real parts of the closed-loop
eigenvalues. The actual size is slightly smaller be-
cause repeated eigenvalues (due to structural symme-
try) are eliminated. The size of the GSE matrix can
expand if the number of modes used in the reduced-
order model increased or if additional constraints
(e.g., structural member buckling constraints) are
added to the optimization problem.

Comparison of GSE and Conventional

Approaches

In the �nal analysis, the value of the GSE ap-
proach needs to be assessed relative to the conven-
tional approach. Clearly, it is easier to develop a
procedure that perturbs the coupled analysis many
times and estimates the global derivatives through
the use of a forward-di�erence formula than it is to
calculate and manipulate the local derivatives and
solve equation (1). However, choosing a perturba-
tion step size is di�cult. The accepted method for
choosing step size is to test successively smaller steps
and stop when no signi�cant change in output occurs.
This method assumes that the coupled analysis is
perfectly converged; thus, the method requires many
repetitions of controls and structures codes to satisfy
a small convergence tolerance. As a consequence, this
method of determining step size is expensive. More-
over, the step size that proves to be appropriate for
a given design point is not guaranteed to remain ap-
propriate throughout the problem domain.

To compare the GSE and conventional approaches,
demonstration case 1 was solved by each method.
As shown in �gure 9, the two approaches have sim-
ilar convergence histories. The computational cost
per cycle for 15 design variables and 20 modes is
about the same. The perturbation step size for the
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conventional approach was set at 0.01 percent of the
nominal value of each design variable.

Choosing the proper step size for the conventional
approach was di�cult. Perturbation step sizes that
were several orders of magnitude larger and smaller
than 0.01 percent were investigated at the initial de-
sign point. Each of the three structural design vari-
ables was perturbed separately. The global deriva-
tives varied enormously with the perturbation step
size (i.e., changes in sign and in order of magnitude
were observed), and the choice of appropriate step
size was not clear. Eventually, the perturbation step
size was chosen by comparison of the �nite-di�erence
derivatives with the global derivatives calculated by
the GSE approach. This experience suggests that
the GSE approach is the best choice when the con-
trol and structural analyses are tightly coupled, that
is, when an iteration between the analyses is required
for solution.

In summary, the GSE approach should be favored
for problems with a large number of design variables
and for problems in which the coupling between
disciplines is strong. When a large number of design
variables occur, the GSE approach is more e�cient,
and when coupling between disciplines is strong, the
GSE approach is not sensitive to poor choices of
convergence tolerance or perturbation step size.

Concluding Remarks

This paper describes the development and imple-
mentation of a general optimization-based method
for the design of large space platforms through inte-
gration of the disciplines of structural dynamics and
controls. The method is especially appropriate for
preliminary design problems in which the structural
and control analyses are tightly coupled. The method

is signi�cant because it coordinates general-purpose
structural analysis, multivariable control, and opti-
mization codes and thus can be adapted to a vari-
ety of controls-structures integrated design (CSID)
projects. The method uses the global sensitivity
equations (GSE) approach. Although the GSE ap-
proach has been applied to other preliminary design
problems, this is the �rst application to the design of
a large space structure.

To demonstrate its capabilities the method is
used to minimize the total weight of a space platform
while maintaining a speci�ed vibration decay rate
after slewing maneuvers. Although the structural
model has many simplifying assumptions and the
number and location of actuators are �xed, this
proves to be a challenging design problem. With the
CSID procedure, the platform is redesigned so that
the mass distribution and dynamic characteristics of
the structure enhance the use of rate and position
feedback by the control system. The CSID method
must trade sti�ness that adds structural weight for
control e�ort that adds weight to the actuators.
The procedure not only makes a favorable trade of
structural mass for control e�ort but also satis�es the
vibration decay rate constraints.

This research demonstrates that an integrated
controls-structures optimization method can lead
to signi�cant mass savings, which may not be re-
vealed by traditional (single-discipline) design meth-
ods. The solution of the demonstration problem is
an important step toward comprehensive preliminary
design capability for controlled space structures.

NASA Langley Research Center

Hampton, VA 23665-5225

September 27, 1991
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Table 1. Eigenvalues Calculated During Optimization Cycle
in Demonstration Case 1

2
4
These cycles represent the initial and �nal conditions
and one intermediate result; bold-face type indicates
repeated eigenvalues

3
5

Eigenvalues for|

Mode no. Cycle 0 Cycle 6 Cycle 27

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 17.6 34.0 18.2
8 37.7 123.1 36.6
9 71.5 195.9 75.5
10 86.7 272.9 85.1

11 86.7 310.4 85.1

12 89.0 310.4 101.8
13 156.8 333.6 159.4
14 407.5 661.3 325.6
15 407.5 1524.0 399.1

16 442.0 1531.0 399.1

17 530.1 1531.0 506.1
18 787.6 1914.0 821.0
19 1114.0 2797.0 1114.0
20 1350.0 4954.0 1320.0

21 1350.0 4954.0 1320.0

22 1387.0 5216.0 1360.0

23 1387.0 5264.0 1360.0

24 2588.0 5264.0 1871.0
25 2588.0 6733.0 2061.0
26 2600.0 9102.0 2531.0
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Table 2. FORTRAN Programs With Corresponding Input and Output
Files Used by CSID Procedure

Program name Input �les Output �les

preeal M.act, modes.old, modes.dat, eal.in
VARIABLE, eal.old

EAL version 324 eal.in eal.out

posteal eal.out modes.dat, gse.dat

MACT modes.dat, actcon.dat, actmass.out, M.act
VARIABLE

dMACT modes.dat, actcon.dat history.new, cderv.dat
history.old, VARIABLE

gsebld gse.dat, cderv.dat, DESVARBL
actcon.dat, VARIABLE
modes.dat

optimz DESVARBL, FIXEDPAR VARIABLE, M.act
history.new
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Appendix A

Global Sensitivity Equations

This appendix describes the use of global sensitivity equations (GSE) to calculate derivatives of integrated
controls-structures response quantities with respect to design variables and emphasizes the application of GSE
to the demonstration problem. References 10 to 12 discuss the theoretical foundations and other applications
of GSE.

In theory, the GSE approach can be applied to coupled problems with any number of contributing analyses.
The global derivatives are determined by solution of a set of linear equations of the form

Ah = B (A1)

where A is a matrix of coe�cients, h is the solution vector, and B is a matrix of one or more right-hand-side
column vectors.

The size and topology of the GSE are determined by the application. For the demonstration problem
(eqs. (2)), there are two contributing analyses: controls and structures. The inputs and outputs of these
analyses are shown in �gure 4. There are 15 design variables r and g and thus 15 column vectors in the
matrix B. There are 42 response quantities Ms, Mact, and � and 206 outputs of the structural analysis that

in
uence the control analysis (!, �(0), �(1), �(2), and J). The preceding counts assume that n = 20. Thus,
matrix A in equation (A1) has at most 248� 248 entries.

The actual number of coe�cients that need to be computed is smaller than the maximum number of entries
in matrix A. The closed-loop eigenvalues � occur in conjugate pairs, and only the real part of each complex
number is constrained. Generally, no more than 20 of the 40 closed-loop eigenvalues have unique values or
unique partial derivatives. Likewise, the open-loop eigenvalues !2 are not all unique. Because of the symmetry
of the structure, some eigenvalues are paired. Furthermore, since none of the design variables or response
quantities alter the symmetry of the structure, the partial derivatives of eigenvalues with respect to changes
in the input quantities also occur in pairs. Removing from matrix A rows and columns that correspond to
nonunique quantities gives a matrix with about 220� 220 elements. The exact number can change depending
upon which structural modes are retained in the reduced model. Many of these elements have the value of zero
and do not need to be computed.

The topology of matrix A for the reference problem is

A =

"
I(22�22) A2(22�198)

A1(198�1)
0(198�21) I(198�198)

#
(A2)

where the submatrices have the indicated sizes and I is the identity matrix, 0 indicates a submatrix �lled with
zeros, and submatrix A1 is de�ned as

AT
1 =

"
� @!1

@Mact
; : : : ;� @!n

@Mact
; �

@�
(1)
11

@Mact
; : : : ;�

@�
(3)
3n

@Mact
; � @J1

@Mact
; : : : ;� @J6

@Mact

#
(A3)

where the local derivatives are calculated by a semianalytic method discussed in appendix B. The submatrix
A2 is de�ned as

A2 =

2
66666666666664

�
@Mact
@!1

: : : �@Mact
@!n

�@Mact

@�
(1)
11

: : : �@Mact

@�
(3)
3n

�@Mact
@J1

: : : �@Mact
@J6

� @�1
@!1

: : : � @�1
@!n

� @�1

@�
(1)
11

: : : � @�1

@�
(3)
3n

�@�1
@J1

: : : �@�1
@J6

...
. . .

...
...

. . .
...

...
. . .

...

�@�n
@!1

: : : � @�n
@!n

� @�n

@�
(1)
11

: : : � @�n

@�
(3)
3n

�@�n
@J1

: : : �@�n
@J6

0 : : : 0 0 : : : 0 0 : : : 0

3
77777777777775

(A4)

where all local derivatives are approximated by �nite di�erencing.
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Matrix B in equation (A1) has rows that are associated with each unique response quantity and each unique
output of the structural analysis and are ordered to be consistent with matrix A; the columns in matrix B
correspond to the design variables. Thus, matrix B has the form

B =

"
0(21�3) B2(21�12)

B1(199�3)
0(199�12)

#
(A5)

where

B1 =

2
6666666666666666666666666666666666664

@Ms

@r1

@Ms

@r2

@Ms

@r3

@!1
@r1

@!1
@r2

@!1
@r3

...
...

...

@!n
@r1

@!n
@r2

@!n
@r3

@�
(1)
11

@r1

@�
(1)
11

@r2

@�
(1)
11

@r3

...
...

...

@�
(3)
3n

@r1

@�
(3)
3n

@r2

@�
(3)
3n

@r3

@J1
@r1

@J1
@r2

@J1
@r3

...
...

...

@J6
@r1

@J6
@r2

@J6
@r3

3
7777777777777777777777777777777777775

(A6)

and

B2 =

2
6666666664

@Mact
@g1

: : :
@Mact
@g12

@�1
@g1

: : :
@�1
@g12

...
. . .

...

@�n
@g1

: : :
@�n
@g12

3
7777777775

(A7)

As with the A submatrices, the components of B1 are evaluated with semianalytic formulas, and the
components of B2 are evaluated with �nite di�erences.

The solution vector h in equation (A1) contains global derivatives of response and structural output
quantities with respect to each of the 15 design variables. Thus, for the �rst design variable (which corresponds
to the �rst column vector in matrix B)

hT1 =

2
4dMact

dr1

;
d�1

dr1

; : : : ;
d�n

dr1

;
dMs

dr1

;
d!1

dr1

; : : : ;
d!n

dr1

;
d�

(1)

11

dr1

; : : : ;
d�

(3)

3n

dr1

;
dJ1

dr1

; : : : ;
dJ6

dr1

3
5 (A8)

The �rst 2 + n entries in each hi vector contain global derivatives that are needed by the optimization phase
of the controls-structures integrated design (CSID) process.

The solution of equation (A1) is calculated with a standard lower and upper triangular decomposition
algorithm. The computer code that solves equation (A1) also estimates the condition number N of the matrix
de�ned as

N = kAkkA�1k (A9)
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where the matrix norm is de�ned as

kAk = max
j

 X
i

jaijj

!
(A10)

Condition numbers between 103 and 106 were typical for the demonstration problems. These exponents suggest
a loss of 3 to 6 signi�cant �gures (out of about 14 signi�cant �gures on a 64-bit machine) due to numerical
errors during the solution of equation (A1). The e�ect of conditioning errors would have been greater than
this if the individual entries in the GSE matrix were not scaled as suggested in reference 20. For example,
@Mact=@J3 is multiplied by J3=Mact before being placed in the GSE matrix. After equation (A1) is solved, the
true values of the global derivatives can be recovered through reversal of the scaling procedure.
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Appendix B

Structural Analysis

This appendix describes the structural model
used in the demonstration problems. The de�ni-
tions of the structural design variables are given,
and the procedures used to calculate the outputs of
the structural analysis are explained. The �nite-
element model, comprised of beam elements and
point masses, is assembled with the program Engi-
neering Analysis Language (EAL; see ref. 14).

The geometry of the reference con�guration is
shown in �gure 2. The size and shape of the plat-
form does not change during the optimization pro-
cess. Structural elements are divided into three
groups (bus, antenna, and antenna support) and are
sized by the optimization process. The three de-
sign variables ri control the outer radius of groups
of structural elements and assume values between
1 and 10 cm.

The truss-like bus structure is composed of 10 bays
that are 3.0 m long by 1.5 m wide and high. Figure 10
indicates the connection of members to form a typical
bay. The truss elements in the bus are tubes with a
constant wall thickness of 0.159 cm and with outer
radius controlled by design variable r1. The bays
on each end of the bus include extra members to
support the vibration suppression actuators located
at the centers of these two bays. The actuators are
modeled as point masses that are connected to each
corner of the bay.

The 
at, circular antennas with diameters of 15.0
and 7.5 m are formed with 12 radial and 12 circum-
ferential beam elements. The antenna truss elements
have the same wall thickness as the bus truss ele-
ments, but their outer radius is controlled by the de-
sign variable r2. The antennas are supported by truss
members that connect the four joints on the top face
of the last bay to the center of an antenna. The dis-
tance between the centerline of the bus structure and
the plane of each antenna is 5 m. The outer radius
of the antenna support members is controlled by r3.

The mass and inertia properties of the reference
con�guration and its static response characteristics
are determined with EAL. Standard routines return
the total mass, the truss structure mass, and the
center-of-mass location. These routines also calcu-
late the inertias about the center of mass. The par-
tial derivatives of the truss mass and of the elements
of the moment of inertia matrix with respect to ri

and Mact are approximated with a �nite-di�erence
technique.

The dynamic characteristics of the reference con-
�guration are determined through solution of an
eigenvalue problem of the form

K	�!2M	 = 0 (B1)

where K is the sti�ness matrix, M is the mass ma-
trix, !2 represent the eigenvalues, and 	 represent
the eigenvectors, normalized so that 	T

i M	i equals
unity.

Typical values of !2 are listed in table 1. The
�rst 26 eigenvalues are listed for structures that
correspond to three di�erent cycles of demonstration
case 1. The �rst six eigenvalues, which are associated
with the rigid-body modes, are identically zero. Only
the eigenvalues of the �rst 20 elastic modes are
transmitted to the controls analysis. Also, the bold-
face type in table 1 indicates the presence of repeated
eigenvalues.

The partial derivatives of !2 and 	 with respect
to the design variables and the mass of actuators are
calculated with semianalytic formulas described in
references 18 and 19. For instance, the eigenvalue
derivatives with respect to r1 are given by

@(!2)

@r1

= 	T

�
@K

@r1

�!2 @M

@r1

�
	 (B2)

The derivatives of the sti�ness and mass matri-
ces can be accurately approximated with a �nite-
di�erence technique. Although the solution of the
eigenvalue problem (eq. (B1)) is computationally ex-
pensive (e.g., 3 min of CPU time on a CONVEX 220
for the demonstration case), the partial derivatives of
eigenvalues and eigenvectors can be calculated accu-
rately and with little expense, especially if the mass
and sti�ness matrices are updated e�ciently. (See
ref. 19 for implementation details and cost estimates
of various methods.)

When the solution to equation (B1) produces re-
peated eigenvalues, then the calculation of partial
derivatives of those particular eigenvalues and of cor-
responding eigenvectors requires special care. (See
ref. 22.) In the demonstration problem, repeated
eigenvalues are caused by symmetry in the reference
con�guration. The mode shapes associated with re-
peated eigenvalues always involve bending or rotation
of the antennas. Figure 11 shows the mode shapes
for a typical pair of repeated eigenvalues. Since the
bus structure is not involved in either mode, the ro-
tational components of the matrix 	 at the actuator
locations must equal zero. Moreover, since the de-
sign variables do not in
uence the symmetry of the
structure, the partial derivatives of these rotational

13



components with respect to structural parameters
must also equal zero. Thus, the method developed
in reference 22 is not required here.

The outputs of the structural analysis are Ms,
J, !, and 	. The derivatives of these quantities
with respect to Mact are calculated routinely, and
the derivatives with respect to the structural design

variables are calculated once per cycle. The matrix	
contains modal displacements and rotations at each
node in the �nite-element model. Only the modal
rotations that correspond to the three actuator loca-
tions are required by the controls analysis. Therefore,
these rotations are extracted from the matrix 	 and
placed in matrices �(0), �(1), and �(2).

14



Appendix C

Actuator Mass Calculation

The vibration suppression actuators, located at speci�ed structural nodes, are sized so that they damp the

elastic motion that results from a minimum-time reference rotational maneuver. To determine the actuator

mass, a reduced-order model of the spacecraft, which is obtained by modal truncation, must �rst be provided to

the control analysis from the structural analysis. Next, the vibration suppression control law must be de�ned.

A closed-loop model results, which may be put into state-space form. The reference maneuver that excites the

closed-loop system is next de�ned, and the response to this excitation is determined. The resulting vibration

suppression torque histories are scanned to �nd peak values, and the required actuator mass is determined

from these values. The remainder of this appendix describes the details of this procedure.

Eigenvalue analysis of a �nite-element model of the spacecraft as described in appendix B allows construction

of a truncated model in the control analysis. This reduced-order model consists of n elastic modes and has the

general form

�q+D_q+�q = �tF + �rT (C1)

where q represents an n-vector of unknown modal coordinates, �q and _q are time derivatives, D is a

diagonal damping matrix with elements 2�!i, � is the modal damping (� = 0:005), � is a diagonal

matrix of eigenvalues !
2
i , and �t and �r are translational and rotational components of the structural

eigenvectors at the points where external forces F and moments T are applied. Reference 23 discusses the

choice of an appropriate number of modes, and reference 24 discusses the classical transformation of the

di�erential equations of motion from physical to modal coordinates. The explicit form of the right-hand

side of this equation is determined once the vibration suppression system and the reference excitation are

characterized.

The vibration suppression system employs a robust dissipative control strategy called collocated elastic

control (CEC), since it provides stability despite unmodeled dynamics and parameter uncertainty. (See refs. 15

to 17.) Expressions for a single pair of CEC actuators that produce torques T1 and T2 (as in the demonstration

problem) are developed here, although this procedure may be generalized to any number of actuators.

Collocated with the CEC torque actuators are attitude and attitude rate sensors. The actual attitude

at each of the CEC actuator locations includes the rigid-body attitude a0 as well as the rotational elastic

deformation. These angles are

a1 = a0 +�
(1)q and a2 = a0 +�(2)q (C2)

Similarly the measured attitude rates are

_a1 = _a0 +�
(1) _q and _a2 = _a0 +�(2) _q (C3)

To remove the e�ect of the rigid-body attitude and rate, the actuators act in a di�erential mode. De�ne

a = a1 � a2 = �q

_a = _a1 � _a2 = �_q

)
(C4)

where � = �(1)��(2). The actuator outputs are constrained so that T1 = �T2 �W so that the CEC system

does not a�ect rigid-body motion. The control law has the form

W = �Gpa�Gr _a (C5)

where the Gp and Gr are 3� 3 positive-de�nite, symmetric position- and rate-gain matrices. Symmetry of the

gain matrices is guaranteed implicitly by the following decompositions:

Gp = G
T
pGp and Gr = G

T
rGr (C6)
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The 12 unique elements of the decomposed gain matrices Gp and Gr are the design variables g. Thus,

Gp =

2
4 g1 0 0
g2 g3 0
g4 g5 g6

3
5 and Gr =

2
4 g7 0 0
g8 g9 0
g10 g11 g12

3
5 (C7)

where 0 � gi � 200.

The closed-loop equations of motion are written with equation (C1). For now, the reference maneuver is

given as some moment U applied at a point. The closed-loop elastic equation of motion, which is obtained by

considering both the reference maneuver and the CEC system, is

�q+D_q+�q = �(0)TU+�(1)TT1 +�(2)TT2 (C8)

where the 3� n mode-slope matrices �(0), �(1), and �(2) contain rotational components of the eigenvectors

at the point of application of the maneuver moment U and at the two CEC torque actuator locations. From

� = �(1) ��(2), equation (C8) can be written as

�q+D_q+�q = �(0)TU+�TW (C9)

By substitution for the control law (eq. (C5)) and use of equation (C4), the closed-loop equations of motion

become

�q +D_q+�q = �(0)TU (C10)

where positive de�nite matrices D and � are

D = D+�TGr�

� = �+�TGp�

)
(C11)

This system may easily be written in state-space form as

_x = Ax+BU (C12)

for the 2n states x = (qT ; _qT )T . The 2n� 2n matrix A is

A =

�
0 I

�� �D

�
(C13)

The 2n� 3 matrix B is given by

B =

�
0

�(0)T

�
(C14)

The closed-loop eigenvalues, which are used as constraints in the optimization process, are the eigenvalues of

matrix A.

The response x(t) of the closed-loop system to a reference excitation dictates the required vibration

suppression torques. This reference excitation was chosen to be a bang-bang type, minimum-time rotational

maneuver given by

U(t) =

2
4u1u2
u3

3
5 =

8<
:
umax (0 � t < tf=2)
�umax (tf=2 � t < tf )
0 (t � tf )

9=
; (C15)

where umax is the maximum applied maneuver moment given by

umax =
4

t
2
f

J �f (C16)
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Here, ui represents components of the maximum maneuver moment, tf is the maneuver time, J is the spacecraft

inertia matrix, and �f is the vector of (small) desired attitude angles. (The reference excitation, which depends

on J, is di�erent for each repetition of the controls analysis.) The initial orientation angles and times are

assumed to be zero. Maneuver parameters tf and �f remain �xed throughout the optimization procedure.

The reference maneuver only exists to simulate a realistic disturbance to the spacecraft. Thus, the mass of the

maneuver actuator (assumed to be zero) is never changed.

The actuator mass is determined by solving equation (C12) for the response x(t) and then calculating from

equations (C4) and (C5) the actuator torque W(t), which is a function of x. The response is given by

x(t) = exp(At)x0 + exp(At)

Z t

0

exp(�A�)BU(�) d� (C17)

Evaluating the convolution integral yields

x(t) =

8>>><
>>>:

A�1 [ exp(At)� I]Bumax (0 � t � tf=2)

A�1
�
exp(At)� 2 exp

�
A(t� tf=2)

�
+ I
	
Bumax (tf=2 � t � tf )

A�1 exp(At)
�
exp(�Atf=2)� I

�2
Bumax (t � tf )

9>>>=
>>>;

(C18)

This expression may be used to �nd the torque at any time by recalling that the CEC control law (eq. (C5))

may be rewritten as

W(t) =
�
�Gp� j �Gr�

�
x(t) (C19)

For the demonstration problem, the peak values of W are found simply by scanning each required control

torque history for each of the three coordinate directions for a su�cient period of time after the maneuver

ends. Limiting the search to times greater than tf allows calculation of the unforced response recursively at

minimum computational cost (e.g., 10 sec of CPU time on the CONVEX 220). Thus,

xi+1 = exp(A �t)xi (i = 0; 1; 2; : : : ; nt) (C20)

where x0 = x(tf ), and �t is no greater than P=2, where P is the period of the highest vibration frequency in

the truncated model, and nt is the number of points scanned. For the demonstration cases, �t = P=16 and

the time histories are scanned starting at tf for a time period equal to twice the period of the lowest vibration

frequency.

Having identi�ed the peak torques, the actuator mass is determined with a functional or empirical

relationship between torque output and actuator mass. For the demonstration problem, a constant of

proportionality is assumed, and the contributions to the total actuator mass from each coordinate direction

are

(m1;m2;m3)
T = 2MT (w

�

1; w
�

2; w
�

3)
T = 2MTW

� (C21)

where w
�

i = jwi(t
�

i )j is the peak torque occurring at time t
�

i for the ith coordinate direction, and MT is

the constant of proportionality between mass and torque output (MT = 1:0 lbm/ft-lbf = 0.334 kg/N-m). The

factor of 2 exists because there are two CEC actuators. The actuator mass then is

Mact = m1 +m2 +m3 (C22)
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Appendix D

Computer Implementation

The integrated controls-structures optimization
procedure is implemented as a batch job on a
CONVEX 220 computer. The procedure consists of
a set of FORTRAN codes that are linked by oper-
ating system commands and by input and output
(I/O) �les. The operating system on the CONVEX
computer is a derivative of UNIX, and the command
language interpreter is similar to the C shell (csh)
available on many machines. Table 2 contains a list
of all FORTRAN codes and their I/O �les.

The batch job developed for the current research
is useful as a model of a generic optimization pro-
cedure for coupled, multidisciplinary optimization
problems. This batch job can be modi�ed to ad-
dress a variety of controls-structures integrated de-
sign (CSID) optimization problems. Figure 12 is a
list of the batch submittal �le, and �gure 13 is a
conceptual 
owchart that explains the operation of
the batch job. In �gure 13, the rectangles represent
FORTRAN programs, the diamonds represent logical
tests, the heavy lines indicate normal data 
ow, and
the dashed lines indicate a shortcut, which is used
whenever possible. The numbers in parentheses be-
side the 
owchart correspond to numbered comments
in �gure 12.

The command language implementation scheme
has a number of advantages over the traditional
programming language (e.g., FORTRAN) implemen-
tation. This is a time-consuming procedure (e.g.,

one demonstration problem required about 25 hr of
CPU time on the CONVEX computer). This com-
mand language implementation facilitates monitor-
ing, restarting, and debugging the process. Since
each execution of each FORTRAN program creates
new output �les, a simple list of �le names and times
of creation is used to deduce the state of an execut-
ing process. At the same time, any output �le can be
examined or printed to obtain information about the
progress of the optimization. If the optimizer or anal-
ysis routines do not appear to be operating correctly,
the process can be stopped and restarted at the cur-
rent step or at a previous step. To restart at the
beginning of any cycle, only the �les \VARIABLE,"
\M.act," and \history.old" need to be edited to con-
tain the design point, the initial estimate of actuator
mass, and the history of previous optimization cy-
cles. If the process stops abnormally, then �les such
as the Engineers Analysis Language (EAL) input and
output �les, which normally are not printed, are ex-
amined for the cause of the failure.

A �nal advantage of this command language im-
plementation is computer resource management. As
each FORTRAN execution is completed, the batch
job condenses the output and deletes as many �les as
possible. Thus, complete information is available for
debugging when the process stops abnormally, but
the disk space is saved when the process executes
normally. The �ltering tools available in a UNIX-
based operating environment (e.g., \grep") are used
to extract a summary of information in each output
�le before the �le is deleted. (See �g. 12.)
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(a) Conventional CSID procedure.

(b) Alternate CSID procedure that uses global
sensitivity equations.

Figure 1. Optimization approaches for coupled controls-structures integrated design (CSID) problems.

Figure 2. Reference con�guration of geostationary platform with three-axis torque actuators.

Figure 3. Flowchart of iterative procedure for coupled analysis.

Figure 4. Input and output quantities for contributing analyses.

(a) Optimization history of mass of actuators, structure, and total geostationary platform.

(b) Optimization history of maximum closed-loop eigenvalue compared to its allowable value. Constraint
is initially violated.

Figure 5. Results of demonstration case 1.

(c) Optimization history of structural design variable values.

(d) Optimization history of position-gain matrix values. Diagonal elements of Gp are shown.

(e) Optimization history of rate-gain matrix values. Diagonal elements of Gr are shown.

Figure 5. Continued.

(f) Optimization history for mass of actuators and total mass.

Figure 5. Concluded.

Figure 6. Optimization history of mass with respect to optimization cycle in demonstration case 2.

Figure 7. Comparison of optimization histories of demonstration cases 1 and 2. These cases start from
di�erent points in design space and converge to equivalent designs.

(a) Mass of actuators.

(b) Real part of maximum closed-loop eigenvalue.

Figure 8. Comparison of actual computed values of selected outputs of coupled controls-structures analysis
with linear approximation to those values.

Figure 9. Comparison of optimization histories of demonstration case 1 with GSE and conventional
approaches.

Figure 10. Typical bay of truss structure for reference con�guration.

Figure 11. Typical mode shapes for eigenvectors of repeated eigenvalues.

Figure 12. Batch submittal �le for implementation of CSID procedure with UNIX command language.

Figure 12. Continued.

Figure 12. Continued.

Figure 12. Concluded.

Figure 13. Flowchart of CSID procedure with GSE approach. See table 2 for FORTRAN programs and
�gure 12 for numbered comments.
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