
Summary

A \robust closed-loop system" maintains desired stability and performance when the nominal
system is subject to plant variations. Multivariable robustness analysis and robust control
design tools take into account the uncertain nature of the plant models used in the design
of feedback control systems. A fundamental research issue is to �nd the means of generating
descriptions of model uncertainty consistent with robust multivariable analysis and design tools.
One approach, based on sector stability theory, provides a frequency-domain description of the
uncertainty associated with a particular model, given bounds on individual parameters in the
model. This paper explores the application of this sector-based approach to the formulation of
useful uncertainty descriptions for linear, time-invariant, multivariable systems. A review of basic
sector properties and the sector-based approach are presented �rst. The sector-based approach
is then applied to several general forms of parameter uncertainty to investigate its advantages
and limitations. The results indicate that the sector uncertainty bound can be used e�ectively
to evaluate the impact of parameter uncertainties on the frequency response of the design model.
Inherent conservatism is a potential limitation of the sector-based approach, especially for highly
dependent uncertain parameters. In addition, the representation of the system dynamics can
a�ect the amount of conservatism re
ected in the sector bound. Careful application of the
method can help to reduce this conservatism, however, and the solution approach has some
degrees of freedom that may be further exploited to reduce the conservatism.

1 Introduction

Uncertainties associated with plant models used in control design are known to limit
attainable system performance. Attaining higher levels of performance for uncertain multi-
input{multi-output systems is a key focus area in current controls research. One class of
multivariable control analysis and design methods explicitly takes into account plant model
uncertainties. These methods involve the generalization of Nyquist theory to multivariable
systems by exploiting the properties of matrix norms. For example, methods of accounting
for unstructured uncertainty use singular values as a basis for robustness tests that assess the
likelihood of a system remaining stable in the face of particular uncertainty representations.
These tests, however, require knowledge of the uncertainty magnitude over all frequencies to
assess robustness accurately.

Consider the graphical interpretation of a typical robustness test for a linear system with
unstructured multiplicative uncertainty re
ected at the plant output depicted in �gure 1
(Postlethwaite and Foo 1984). The upper curve is the reciprocal of the maximum singular
value of the complementary sensitivity function. The lower curve is the maximum singular value
of the uncertainty. The condition for robust stability is that the two curves do not intersect. The
smallest distance between the two curves determines the level of robustness (i.e., the robustness
margin). The frequency-dependent characterization of the uncertainty is therefore critical in
accurately assessing system robustness. Other methods, such as those based on structured
singular values, use the knowledge of the uncertainties in the form of weighting functions for the
same reasons.

Attempts to use the complementary sensitivity function alone as a test for robustness are
likely to give erroneous and misleading results. This is the case in �gure 1. Point a corresponds
to the point of minimum robustness when the uncertainty is assumed to be independent of
frequency. Point b, on the other hand, corresponds to the point of minimum robustness when the
frequency dependence is considered. A true test for robustness requires both curves. The upper
curve alone only provides a relative robustness measure at best and an optimistic indication of
the level of robustness and an erroneous indication of the critical frequency range at worst. (A
nomenclature section appears after the references.)
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Figure 1. Robustness test for unstructured uncertainty.

Design methods that explicitly take into account plant model uncertainties generally assume
that descriptions of the uncertainties, for example, in the form of additive or multiplicative
transfer function matrix blocks, are available as part of the plant model (Doyle and Stein
1981; Lehtomaki et al. 1984; Postlethwaite and Foo 1984; Ridgely and Banda 1986). Such
representations of plant uncertainties are not usually part of the design model and methods of
representing them are not well developed (Anderson and Schmidt 1989; Stein and Doyle 1978;
Kwakernaak 1985). A fundamental research issue is �nding the means to generate descriptions
of plant model uncertainty consistent with robust multivariable analysis and design tools.

One approach to formulating uncertainty descriptions has been developed by Safonov (1978)
and is based on sector stability theory (Zames 1966a, 1966b). The sector-based approach is very
general and permits many forms of uncertainty (both linear and nonlinear) to be considered.
It is also completely compatible with multivariable systems and singular-value-based robustness
measures. The fundamental goal of the approach is to determine a bound on a given function
of parameters for which values are within known bounds. The function may, for example,
correspond to the frequency response of the plant, and the bounded parameters may correspond
to various plant model quantities that, while uncertain, are known well enough to place a bound
on their admissible values.

There are, however, many aspects of the sector-based approach that need to be better
understood before it can be used with con�dence. This paper employs sector stability theory
concepts using Safonov's (1978) approach to develop an uncertainty description in a context that
is consistent with linear, time-invariant, multi-input{multi-output (LTI-MIMO) systems. This
study identi�es key properties of the sector-based approach and highlights important implications
of its application to robust control analysis methods. It is important to note that although
this paper reviews the theoretical development performed by Safonov and applies it to linear
multivariable systems, the emphasis is on the application (i.e., the speci�c issues associated with
the application process and the resulting implications).

The paper begins with a review of the sector concept and the basic sector properties
required to formulate the sector-based uncertainty representation in section 2. Section 3
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begins by presenting a block diagram representation of uncertainty for LTI-MIMO systems
that is consistent with the sector theory. The sector theory is then combined with the
uncertainty representation to result in a sector-based uncertainty description that is compatible
with multivariable robustness analysis and design methods. In section 4, this compatibility is
demonstrated by combining the sector-based uncertainty description with one of the singular-
value-based robustness conditions (Doyle and Stein 1981; Postlethwaite and Foo 1984). Finally,
in section 5, the sector-based approach is applied to models that exhibit three classes of parameter
uncertainty. The �rst class of uncertainty is associated with a MIMO plant model in which
only parameters that appear in the numerators of the system transfer function matrix are
uncertain. The second class of uncertainty is associated with a MIMO plant model in which
only parameters appearing in the transfer function matrix denominator are uncertain. These
examples illustrate a method for computing the multivariable sector bound and help identify
and emphasize some key properties and limitations of sector-based uncertainty descriptions.
The third class of uncertainty is for a single-input{single-output (SISO) plant model that is
representative of real-world uncertainties that occur in the transfer function numerator and
denominator simultaneously.

2 Sectors and Their Properties

The term sector comes from a geometric interpretation of some basic concepts of the stability
theory from which sectors were developed (Zames 1966a, 1966b). These concepts are reviewed
to understand the value of sector theory in describing plant model uncertainty and to identify
its limitations.

Consider a real-valued function f [u(t); �] of the real variable u(t) and parameter �; the graph
of this function is shown in �gure 2. The variable u is itself a function of the independent variable
t, which might typically be time. The graph of the function lies between the dotted lines with
slopes labeled a and b. The region of the plane between the dotted lines containing the graph
of the function forms a sector of the plane. If the function is known to lie inside the sector for
all values of the parameter �, then the sector is a bound on all values of f [u(t); �]. As a result,
f [u(t); �], as a function of u(t), can be characterized in terms of an expression involving the
slope of the lines bounding the sector.

Figure 2. Geometric interpretation of sector bounds.
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De�ne

c =
� b + a

2
(1a)

r =
� b� a

2
(b � a) (1b)

to be the \center" and the \radius" of the sector, respectively. The fundamental property of
the relationship between the function f [u(t); � ] and the sector in which it is contained can be
described mathematically in terms of c and r as follows:

jf [u(t); �]� cu(t) j � jru(t) j (2)

In addition, equation (2) can be integrated over the range of f to give a sector bound involving
the 2-norm, or

kf [u(t); �]� cu(t) k2 � kru(t) k2 (3)

where the 2-norm for a real-valued scalar function is de�ned by

kf (t) k2 =
�
Z
1

�1

f (t) f (t) dt (4)

Any function that satis�es equation (3) is said to \lie in the interior of the sector with center c
and radius r."

The concept of the sector can be extended to the complex domain (s-plane) by applying
Parseval's formula (Papoulis 1962). Parseval's formula equates the inner product of a real-
valued function to the inner product of its Fourier transform. That is,

Z
1

�1

f (t) f (t) dt =
1

2�

Z
1

�1

f̂ (�!) f̂ (!) d! (5)

where f̂ is the Fourier transform of f ,

f̂ (!) =

Z
1

�1

exp (�j!t) f (t) dt (6)

Therefore, in the complex domain the sector bound is simply

kf̂ (s; �)� cû (s) k2 � krû (s) k2 (s = j!) (7)

where the 2-norm for a complex-valued scalar function is de�ned by

kf̂ (!) k2 =
�
Z
1

�1

f̂� (!) f̂ (!) d! (8)

Now consider a mathematical generalization of the concept of a sector. Allow f̂(s) to
be F(s)û(s), where û(s) is a complex-valued vector and F(s) is a matrix of complex-valued
functions. Then allow c and r to be expressed as matrices of complex-valued functions C(s) and
R(s), respectively. The generalized form of the sector bound equation (eq. (7)) is then written
as

k [F (s)�C (s)] û (s) k2 � kR (s) û (s) k2 (s = j!) (9)
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The physical interpretation of the sector is now obscured, but the same terminology is used
when discussing the properties of equation (9), that is, center, radius, and sector bound. The
sector bound in equation (9) is the form that leads to the application of sector theory to
uncertainty modeling. However, some additional manipulations are required to relate the sector
bound to recently established robustness concepts. The properties required to accomplish this
are presented below.

2.1 Property 1

A signi�cant advantage of the sector-based approach to bounding matrices of complex-valued
functions is that the bound can be related to singular-value properties of the matrices. The
2-norm for functions of the type A(s)x(s), where A(s) is a complex matrix and x(s) is a
compatible vector, has the form

kA (s)x (s) k2 =
1

2�

Z 1

�1
x� (s)A� (s)A (s)x (s) ds (10)

where the integrand is the Euclidean norm of A(s)x(s), denoted by kA(s)x(s)kE . By writing
equation (9) in the form of equation (10) it can be readily shown that if

kF (s) û (s) �C (s) û (s) kE � kR (s) û (s) kE (s = j!) (11)

for all ! 2 [0;1), then equation (9) is satis�ed as well. That is, if equation (11) is satis�ed
for every value of the independent variable s, then the integral of the left side is less than the
integral of the right side. This is exactly the requirement for equation (9) to be satis�ed.

Note that the minimum and maximum singular values of a matrix are related to the Euclidean
norm by

� (A) =max

x6=0

kAxkE
kxkE

(12a)

� (A) =min

x6=0

kAxkE
kxjkE

(12b)

where �(A) and �(A) indicate the maximum and minimum singular values of the matrix A,
respectively (Ridgely and Banda 1986). Applying this property to equation (11), one can see
that equation (9) is guaranteed to be satis�ed if

� [F (s)�C (s)] � � [R (s)] (s = j!) (13)

for every ! 2 [0;1) and kx(s)kE 6= 0. That is, if an upper bound on the left side of
equation (11) is less than a lower bound on the right side, then equation (11) is satis�ed. This
form of the sector bound can be readily combined with established robustness properties, as
shown subsequently.

2.2 Property 2

Consider the sector bound

kf [u(t); �]� cu(t) k2 � kru(t) k2 (14)

If f [u(t); �] can be represented by [c + �c(t)]u(t), where �c(t) represents a perturbation about
c, then equation (14) simpli�es to

k�c (t) u(t) k2 � kru(t) k2 (15)
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One interpretation of this result is that if c + �c(t) lies in a sector with center c and radius r,
then �c(t) lies in a sector with center at the origin (zero) and radius r. This indicates that the
sector bound can be represented in a form that is independent of the nominal values of the
parameters. In terms of the graphical interpretation of the sector (as in �g. 2), this corresponds
to rotating the sector about the origin until it is symmetric with respect to the independent
variable, as shown in �gure 3. The sector bound for c + �c(t), equation (14) and �gure 3(a), is
therefore completely equivalent to the sector bound for �c(t), equation (15) and �gure 3(b).

(a) Sector for c + �c(t).

(b) Sector for �c(t).

Figure 3. Equivalence of sector bounds.

2.3 Property 3

Another key property of sectors is that if there is a collection of sectors that are independent,
they can be combined into a single matrix sector by concatenating them diagonally. Consider
the collection of perturbations ci+ �ci, which lie in sectors with centers ci and radii ri such that
none of the ci + �ci depend on the other terms cj and �cj (j 6= i). Safonov and Athans (1978)
have shown that, in this case,

k (C+ �C)x�Cxk2 � kRxk2 (16)
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where

C = diag [c1; c2; c3; :::] (17a)

�C = diag [�c1; �c2; �c3; :::] (17b)

R = diag [r1; r2; r3; :::] (17c)

and x is a compatible vector. This fact is important because it allows sector bounds on individual
system parameters to be used to bound the entire system.

3 Sector Bounds for the System

The sector properties discussed above can be combined with an appropriately developed
system representation to formulate a sector bound for the plant when the variations in its
parameters have known sector bounds. The following development of the bound parallels the
proof of Safonov's sector bound theorem (Safonov 1978; Safonov and Athans 1978, 1981). It is
less rigorous than the proof, however, and is only intended to explain the key concepts.

Assume that the plant model is given such that

y (s) = T (s)u (s) (18)

where y(s) and u(s) are the system outputs and inputs, respectively, and T(s) is a linear,
time-invariant, multivariable operator with uncertain parameters. The uncertainties cause
perturbations in the plant response relative to the response of the nominal plant model. The
response of the plant can therefore be written

y (s) = Lyu (s)u (s) + d (s) (19)

where Lyu(s) is the transfer matrix for the nominal plant model and d(s) is the perturbation
response. The perturbation response is directly dependent on the variations in the plant
parameters due to the modeling uncertainty. The functional relationship between these
quantities can be expressed as

d (s) = f (s; �)u (s) (20)

where f(s; �) represents perturbations in the system dynamics due to �, the parameter variations
associated with uncertainties in the nominal plant model.

Assume that each uncertain parameter �i is independent and lies in a sector centered at
ci with radius ri. Then according to property 3, the uncertainties can be combined into a
perturbation matrix C + �C, with the sector bound given in equation (16). By property 2, an
equivalent sector bound is

k�C xk2 � kRxk2 (21)

In order to exploit this sector bound, the perturbation matrix �C must be isolated from the
dynamics. That is, d(s) must be able to be expressed in the following form:

d (s) = �Lyu (s; �C) u (s) (22)

where �C appears explicitly. The solution is to develop a feedback structure around �C that
admits all forms of parameter variations associated with LTI-MIMO systems.

A structure that allows �C to be isolated from the plant dynamics is shown in �gure 4.
The perturbation matrix �C appears explicitly and the dynamic e�ects are characterized by
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the transfer function matrices Leu(s), Lev(s), and Lyv(s). This structure is similar to that
developed by Safonov (1978). The elements in the dashed box represent the portion of the system
response associated with plant uncertainties and are referred to as the uncertainty dynamics.
The transfer matrix Leu(s) transforms the vector of system inputs u(s) into one compatible
with �C. The matrix Lyv(s) transforms the output of the perturbation block v(s) into the
perturbation response d(s). The matrix Lev(s) is required to allow the parameters in �C to
appear in the denominator of the system transfer matrices. Without Lev(s) it would only be
possible to characterize the e�ects of uncertainties appearing in the numerator of the transfer
matrix. This fact becomes evident when one attempts to characterize a denominator uncertainty
without using Lev(s), an exercise that is left for the reader.

Figure 4. General structure for uncertainty dynamics.

Consider the block diagram of the system representation in �gure 4. It is evident from the
diagram that

y (s) = Lyu (s)u (s) + Lyv (s)v (s) (23a)

e (s) = Leu (s)u (s) + Lev (s)v (s) (23b)

where e(s) and v(s) are the input and output of �C, respectively. Since the perturbations are
assumed to lie in a sector centered at the origin with radius R (i.e., eq. (21) with x replaced by
e(s)), the sector bound for �C can be written

kv (s) kE � kR (s)e (s) kE (24)

The objective is to obtain a sector bound on the overall system. This can be accomplished
by replacing v(s) and e(s) in equation (24) with expressions in terms of u(s). The remainder
of this section is devoted to the mathematical development required to isolate u(s). The main
mathematical tool is the inner product de�ned by

hx1 (s) ;x2 (s)i =
�
x�
1
(s)x2 (s) (25)

where x1(s) and x2(s) are compatible complex-valued vectors. The following discussion is limited
to operations in the frequency domain and, for the sake of clarity, the argument s is deleted.

Substituting equation (23b) into equation (24) and expressing the Euclidean norm in terms
of the inner product (i.e., k (�) k2E = h(�) ; (�)i) results in

hv;vi � hR (Leuu+ Levv) ;R (Leuu+ Levv)i (26)
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which can be expanded with inner product operations to

0 � hv; (I� L�

evR
�RLev)vi � hu;L�euR

�RLevvi

� hv;L�evR
�RLeuui � hu;L�euR

�RLeuui (27)

De�ne the following:

Qv =
�
I� L�evR

�RLev (28a)

Rv =
�
L�euR

�RLeu (28b)

Sv =
�
L�evR

�RLeu (28c)

Substituting these de�nitions into equation (27) results in the simpler expression

0 � hv;Qvvi � hSvu;vi � hv;Svui � hu;Rvui (29)

Now de�ne

Tv =
�
Q�1
v Sv (30)

and note that Qv usually has an inverse1 and that Q�

v
= Qv. Also note that the de�nition of

Tv has the following properties:

h (v �Tvu) ;Qv (v �Tvu)i = hv;Qvvi � hu;T�
v
Qvvi

� hv;QvTvui+ hu;T�vQvTvui (31)

and
T�vQv = S�vQ

�1
v Qv = S�v (32)

Therefore, substituting Tv into equation (29) and using the properties in equations (31) and (32)
allows equation (29) to be simpli�ed to

h(v� Tvu) ;Qv (v �Tvu)i � hu;Pvui (33)

where

Pv =
�
Rv + S�

v
Q�1

v
Sv (34)

In order to eliminate v from equation (33) a special property of matrices is employed. Let A
and B be appropriately dimensioned complex matrices, with A being positive de�nite. If ~A is
de�ned as

~A =
�

�
BA�1B�

�
�1

(35)

then
hx;B�~ABxi � hx;Axi (36)

This is lemma A1 (Safonov 1978) and it is proved in appendix A.

Let A = Qv and B = Lyv; then,

hx;L�yv

�
LyvQ

�1
v L�yv

�
�1

Lyvxi � hx;Qvxi (37)

1
A condition for the existenceof Q�1

v
is discussed in section5.1.

9



If x in equation (37) is replaced by (v�Tvu) and compared with equation (33), then one �nds
that

hLyv (v �Tvu) ;

�
LyvQ

�1
v L�yv

�
�1

Lyv (v �Tvu)i � hu;Pvui (38)

Substituting equation (23a) into equation (38) results in

h
�
y �

�
Lyu + LyvTv

�
u
�
;

�
LyvQ

�1
v L�yv

�
�1 �

y�
�
Lyu + LyvTv

�
u
�
i � hu;Pvui (39)

Note that equation (39) is satis�ed whenever equation (24) is satis�ed. All dependence on e
and v has been removed. The information about the sector bounds on the system parameters
is now completely contained in Pv;Qv, and Tv. All that remains is to simplify equation (39)
into a form consistent with the sector bound equation.

De�ne

Tn =
�
Lyu + LyvTv (40a)

Qn =
�

�
LyvQ

�1
v L�yv

�
�1

(40b)

Pn =
�
Pv (40c)

Substitution of equations (40) into equation (39) results in

h(y� Tnu) ;Qn (y �Tnu)i � hu;Pnui (41)

Now, since Qn and Pn are Hermitian matrices, they can be factored2 so that equation (41) can
be written as

kQ
1=2

n (y� Tnu) k2 � kP
1=2

n uk2 (42)

Substituting equation (18) into equation (42) results in

kQ
1=2

n (T� Tn)uk2 � kP
1=2

n uk2 (43)

where, in summary,

Tn =
�
Lyu + Lyv (I� L�evR

�RLev)
�1
L�evR

�RLeu (44a)

Pn =
�
L�euR

� (I�RLevL
�

evR
�)
�1
RLeu (44b)

Qn =
�

h
Lyv (I� L�evR

�RLev)
�1
L�yv

i
�1

(44c)

and where the expression for Pn was obtained by use of the matrix inversion lemma (pp. 48{49
of Brogan 1974).

Equation (43) is in the form of a sector bound that is slightly more general than that discussed

previously. (See eq. (9).) Notice that the left side has the added weighting Q
1=2

n , which did
not appear in the earlier form. This causes little di�culty, as shown subsequently. Therefore,
equation (43) is a generalized sector bound on the overall plant response given the sector bounds
on the uncertain plant parameters.

2 The factoring method used in the examples is the Cholesky decomposition(Strang1980).
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4 Robustness Analysis Using Sector Bounds

The sector bound shown in equation (43) can be used to compute an upper bound on T
(i.e., an uncertainty bound) that is consistent with LTI-MIMO robustness analysis and robust
control design methods. Begin by considering a singular-value form of the sector bound from
equation (43):

�

h
Q

1=2
n (T �Tn)

i
� �

h
P
1=2
n

i
(s = j!;! 2 [0;1)) (45)

If equation (45) is satis�ed, then equation (43) is satis�ed as well. Equation (45) can be expanded
through the use of singular-value properties (Ridgely and Banda 1986) as follows:

�

h
Q

1=2
n (T� Tn)

i
� �

h
P
1=2
n

i

( � [T� Tn] � �

h
P
1=2
n

i
�

h
Q
�1=2
n

i
(46)

since, for compatible arbitrary matrices A and B,

� [AB] � � [A]� [B]

and for de�nite A,

�

h
A�1

i
=

1

� [A]

Thus, if equation (46) is satis�ed for all s = j! (! 2 [0;1)), then the sector bound (eq. (43))
is also satis�ed. Equation (46) is a general singular-value representation of a sector-based plant
model uncertainty bound. It is in a form that can be readily combined with recently established
singular-value-based robustness tests.

The combination of the uncertainty bound with a robustness test requires the choice of a
speci�c characterization of the plant model uncertainty. For the purposes of demonstration,
consider a typical formulation with additive uncertainty as shown in �gure 5. This uncertainty
formulation is used throughout the remainder of this paper. Other uncertainty formulations
(e.g., multiplicative uncertainty at the plant input or output) give similar and analogous results.

Figure 5. Additive plant uncertainty.
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A condition for guaranteed stability of the closed-loop system depicted in �gure 5 subject to
the uncertainty � is

� [�] <
1

�

h
[I+KG]�1K

i (s = j!;! 2 [0;1)) (47)

where G is the nominal plant transfer matrix and K is the feedback compensation (Doyle and
Stein 1981; Barrett 1980; Postlethwaite and Foo 1984). The plant uncertainty represented by �
may not actually be known, but a quantitative upper bound on �[�] can be obtained with the
sector-based approach if the uncertain parameters in the plant model have known bounds. The
objective is therefore to obtain an upper bound on �[�] from the sector bound equation.

Simple block diagram manipulations indicate that the open-loop system representation can
be written as

T = G+� (48)

A similar expression for Tn in equation (46) can be written:

Tn = G+ ~� (49)

where G corresponds to the nominal plant transfer matrix, Lyu in equation (44a), and ~�

corresponds to the remaining term in equation (44a). Note that ~� is a purely mathematical
quantity that in this case is analogous to �. Substituting these expressions into equation (46)
results in the equivalent sector bound equation

�

h
�� ~�

i
� �

h
P
1=2
n

i
�

h
Q
�1=2
n

i
(50)

Now consider the single-input{single-output form of equation (50) where � and ~� are complex
scalars and Pn and Qn are replaced by the scalars p and q. Equation (50) takes on the simpli�ed
form

j�� ~�j � j (p=q)1=2 j (51)

A geometric interpretation of this equation indicates that � lies inside a circle centered at ~�

with radius j (p=q)1=2 j, as depicted in �gure 6.

Figure 6. Geometric interpretation of sector bound.
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Let a real parameter � be chosen such that

� = j ~�j+ j (p=q)1=2 j (52)

Clearly � is an upper bound on j�j (i.e., � � j�j). Generalizing this to matrices implies that if

� = �
h
~�
i
+ �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
(53)

then � is an upper bound on �[�], which can be proved as follows. Let � be a matrix such that
�[�] � �. Then,

� [�]� �
h
~�
i
= �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
(54)

) �
h
�� ~�

i
� �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
(55)

since for compatible arbitrary matrices A and B (Ridgely and Banda 1986),

� [A�B] � � [A]� � [B]

Combining equation (55) with equation (50) gives

�
h
�� ~�

i
� �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
� �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
� �

h
�� ~�

i
(56)

As a result, � is a bound on the admissible uncertainty. This implies that

� [�] � � [�] = � (57)

so

� [�] � �
h
~�
i
+ �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
(58)

The right side of equation (58) is a sector-based uncertainty bound that is compatible with the
singular-value-based robustness condition. The same expression results for other uncertainty
representations (e.g., multiplicative uncertainty re
ected at the plant input). The only di�erence
is that ~� has a di�erent interpretation that depends on the uncertainty representation.

Equation (58) can be used in the robustness condition, equation (47), in place of �[�] as
shown in equation (59) to provide a robustness test that can be readily computed :

�
h
~�
i
+ �

h
P
1=2
n

i
�
h
Q
�1=2
n

i
<

1

�
h
[I+GK]�1K

i (59)

Equation (59) can be used as a su�cient robustness condition to verify that known sector
bounded uncertainties will not destabilize the closed-loop system. The implications of equa-
tion (59) are the same as those of equation (47). That is, if equation (59) is satis�ed, then
the closed-loop system is guaranteed to be stable for the modeled plant variations. Violation
of equations (47) and (59) does not, however, imply that the closed-loop system is necessarily
unstable (Doyle and Stein 1981).

An interpretation of this result is illustrated in �gure 7. The upper curve is a plot of the
reciprocal of the maximum singular value of [I+GK]�1K. The lower curve is a plot of the
maximum singular value of the \exact" uncertainty �. The middle curve is a plot of the
right side of equation (58), and since it is an upper bound on the actual uncertainty, it is
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used in equation (59) to test for system stability subject to the sector bounded uncertainties.
Equation (59) is satis�ed as long as the upper and middle curves do not intersect. This condition
is potentially more conservative than equation (47), however, since equation (59) may be violated
while equation (47) is still satis�ed. In graphical terms, the upper and middle curves may
intersect without causing the lower and upper curves to intersect.

Figure 7. Interpretation of sector-based robustness condition.

5 Limitations and Applications

In this section limitations in using the uncertainty bound in equation (58) are discussed. Some
of the limitations are directly observable from the development itself while others become more
apparent when the approach is applied to typical forms of parameter uncertainties. Example
problems are, therefore, used to illustrate these limitations and at the same time to demonstrate
the solution technique.

5.1 Limitations

A couple of conditions on the applicability of the uncertainty bound are linked to equa-
tions (44). In order for the system sector bound to exist the inverse of

Qv =
�
I� L�

evR
�RLev

(eq. (28a)) must exist since Tn;Pn, and Qn from equations (44) all depend on the existence
of Q�1

v , either directly or indirectly. In addition, Qn only exists if LyvQ
�1
v L�yv has an inverse.

Simple tests for the existence of these inverses are the following:

1. Qv will have an inverse if � [RLev] < 1. (Note that this is only a su�cient condition.)

2. LyvQ
�1
v L�yv will have an inverse if Qv has an inverse and if Lyv is an m� n matrix, where

m � n (m is the number of outputs and n is the number of uncertain parameters) and Lyv
is full rank (i.e., rank m).

Proofs of these conditions are presented in appendix A. The consequences of these conditions are
fairly minor. A violation of the �rst condition implies that sector radii are su�ciently large that
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the maximum singular value of the matrix product RLev exceeds unity. This can be remedied
by using a di�erent set of physical units. For example, assume a parameter is represented in

units of degrees per second and the sector radius is 100. Converting the units to radians per

second reduces the sector radius to 0.556, which is likely to cause the existence condition to be

satis�ed.

The second condition is violated when there are less uncertainties than outputs or when

an output of the system is not a�ected by any of the modeled uncertainties. It is not likely

for realistic systems to contain less uncertainties than outputs, since there are typically a large

number of uncertain parameters. However, if there are fewer uncertain parameters than outputs,

the parameter must be repeated until the condition is satis�ed. In the latter situation, if a

transfer function in the system does not have any uncertainty, it should not be included in the
computation of the sector bound. Therefore, the remedy is to reformulate the problem such that

only outputs that are dependent on uncertain parameters are considered.

A slightly stronger limitation of the sector theory is that it only applies when the true plant is

stable for all perturbations inside the parameter sectors. This is because the relationship between

the frequency-domain and the time-domain representation of the system (via Parseval's formula)

is only valid for stable systems. This is not too disconcerting for robustness applications because

the robustness conditions (e.g., eq. (47)) e�ectively limit the perturbations to be nondestabilizing

(open loop) since the conditions require that the number of right half-plane poles of the open-loop

system not change under admissible perturbations (Doyle and Stein 1981).

Yet another limitation is associated with the conservatism introduced by sector bounds. In

the frequency domain, if a single parameter � is known to lie in a sector with center � and

radius �, then � can take on any complex value inside the circle, as shown in �gure 8. Thus,

even if � is known to be a strictly real-valued parameter, bounding it within a frequency-domain

sector admits complex-valued perturbations ��. As a result, conservatism is introduced into the

system sector bound when uncertain parameters are strictly real-valued parameters (or otherwise

conservatively bounded within a circle). Additional conservatism is introduced by the singular-

value form of the sector bound since it is obtained through use of inequality properties of singular

values.

Figure 8. Sector bound for real parameter.

Conservatism is also introduced because of the restrictions on cross coupling of the uncertain

parameters. Recall that by property 3 the uncertain parameter matrix �C is required to be

diagonal. This allows the individual parameter sectors to be combined into a single-matrix

sector. (See eqs. (16) and (17).) However, this also requires that each uncertain parameter
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be treated as if it is independent of the other uncertain parameters. Also, the fact that �C is
diagonal limits the ways by which the system can be represented to formulate the system sector
bound. This conservatism can best be illustrated by examples.

The following examples serve to identify some of the factors that in
uence the conservatism of
the sector-based uncertainty bound. In addition, the examples demonstrate a method of solving
for the uncertainty dynamics matrices for general plant parameter uncertainties.

5.2 Numerator Uncertainty for a Multivariable System

In this example a simple two-input{two-output system is considered to have the transfer
matrix

G (s) =
1

s2 + ds+ e

�
s+ a a
s+ b s2 + as+ c

�
(60)

where each of the numerator coe�cients is uncertain but is known to lie in a sector. That is,

a = a + a0 b = b + b0 c = c + c0 (61)

where, for example, a is the nominal value of a and a0 is the perturbation of a. The sector
bounds on the coe�cients are such that the perturbation value is centered at the origin with
radius r (e.g., a0 is in a sector centered at zero with radius ra).

Denote the system inputs by u(s) and the system outputs by y(s). The system frequency-
domain input-output equation can then be written as

�
s2 + ds+ e

�
y (s) =

�
s+ a a
s+ b s2 + as + c

�
u (s) +

�
a0 a0

b0 a0s+ c0

�
u (s) (62)

The perturbation response (as in eq. (19)) due to uncertainties is simply

d (s) =
1

s2 + ds+ e

�
a0 a0

b0 a0s + c0

�
u (s) (63)

Block diagram manipulations of the uncertainty dynamics, �Lyu in �gure 4, indicate that the
disturbance can also be expressed as

d (s) = Lyv (s) �C Leu (s)u (s) (64)

Notice that Lev(s) is zero because there are no denominator uncertainties.

Combining equations (64) and (65) gives the equation that governs how �C;Leu(s), and
Lyv(s) may be chosen:

Lyv (s) �C Leu (s) =
1

s2 + ds + e

�
a0 a0

b0 a0s + c0

�
(65)

The solution of equation (65) is not unique. There is considerable freedom in choosing the
transfer matrices in the uncertainty dynamics since the scalar equations that govern the choice
of the matrix elements are underspeci�ed. The governing scalar equations are also nonlinear, a
fact that complicates their solution.

The �rst step in solving equation (65) is the choice of the �C matrix. The simplest way of
choosing �C is to assume that each appearance of an uncertain parameter is associated with a
di�erent sector. For example, since the parameter a appears three times in the input-output
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equation, each of the three is assumed to be a di�erent parameter and so is associated with
an independent sector. The perturbation matrix and the associated sector radius matrix are

therefore

�C = diag
�
a0
; a0

; a0
; b0

; c0
�

(66a)

R = diag [ra; ra; ra; rb; rc] (66b)

One would expect the system sector bound resulting from this choice for �C to be overly

conservative because, in e�ect, a is allowed to take on a di�erent value every time it appears in

the system input-output equation. This issue is addressed subsequently. For now, consider the

process by which Leu(s) and Lyv(s) can be chosen subject to the choice of �C. Let

Lyv (s) =
Nyv (s)

dyv (s)
Leu (s) =

Neu (s)

deu (s)
(67)

where Nyv(s) and Neu(s) are matrices of numerator polynomials and dyv(s) and deu(s) are

denominator polynomials. Recall from equation (23a) that

y (s) = Lyu (s) u (s) + Lyv (s) v (s)

Thus, if dyv(s) is chosen to be the nominal system denominator polynomial, then both Lyu(s)

and Lyv(s) will have a common denominator. Therefore, let

dyv (s) = s
2 + ds+ e (68)

Equation (63) and the choice for dyv(s) then require that

deu (s) � 1 (69)

For dimensional consistency Nyv(s) must be a 2 � 5 matrix of polynomials and Neu(s) must

be a 5 � 2 matrix of polynomials. Therefore, let

Nyv (s) =

�
l11 l12 l13 l14 l15

l21 l22 l23 l24 l25

�
(70a)

NT
eu (s) =

�
m11 m21 m31 m41 m51

m12 m22 m32 m42 m52

�
(70b)

Substituting equations (70) and (66a) into equation (65), expanding the elements, and grouping

like terms results in a system of nonlinear equations for each uncertain parameter. This is true

regardless of how many times a parameter appears in the system equations. Therefore, there are

three systems of equations to solve in this example, one associated with each of the uncertain

parameters a, b, and c.

System for a:
1 = l11m11 + l12m21 + l13m31

1 = l11m12 + l12m22 + l13m32

0 = l21m11 + l22m21 + l23m31

s = l21m12 + l22m22 + l23m32

9>>>>=
>>>>;

(71a)
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System for b:
0 = l14m41 0 = l14m42

1 = l24m41 0 = l24m42

)
(71b)

System for c:
0 = l15m51 0 = l15m52

0 = l25m51 1 = l25m52

)
(71c)

The solutions to these systems of equations are not unique. However, since the elements of

Nyv(s) and Neu(s) are numerator polynomials, practical restrictions can be put on them that

make the solutions tractable. Require the elements mij and nij to be minimal polynomials (i.e.,

they only involve either nonnegative integer powers of s or zero) and to be of the lowest possible

order and least possible number of terms. For example, mij or nij will not be allowed to involve

terms like s�1 or s0:5.

With these restrictions, reasonable solutions of the systems of equations for nonrepeated

parameters, such as b and c, are quite simple. A solution to the system for b is

l14 = 0 l24 = 1 m41 = 1 m42 = 0 (72)

and a solution to the system for c is

l15 = 0 l25 = 1 m51 = 0 m52 = 1 (73)

The solution to the system of equations for repeated parameters, such as a, is slightly more

involved since, even with the restrictions, there are many more possible solutions. The system

for a can be solved by making some \inspired guesses." Let

l11 = l22 = 1 l12 = l21 = 0 l13 = l23 = 0 m22 = s (74)

The remaining terms in the system for a then become

m11 = m12 = 1 m21 = 0 m31 = m32 = Arbitrary (75)

Since m31 and m32 are arbitrary let them both be 1, for example. With these values for the

numerator termsNyv(s) andNeu(s), the complete uncertainty dynamics representation becomes

�C = diag
�
a0; a0; a0; b0; c0

�
L
T
eu (s) =

�
1 0 1 1 0

1 s 1 0 1

�
(76a)

Lyv (s) =
1

s2 + ds + e

�
1 0 0 0 0

0 1 0 1 1

�
Lev (s) = [0]5�5 (76b)

with the associated sector radius matrix R from equation (66b).

Note that the third column of Lyv(s) is zero, and so the third appearance of the perturbation

a0 does not in
uence the plant responses. This implies that the third appearance of the

perturbation a0 is super
uous and may add unnecessary conservatism to the resulting system

sector bound. It can be dropped from �C without a�ecting the ability to appropriately represent

the uncertainty dynamics �Lyu(s).

A key question associated with the solution to equations (71a) presented above needs to be

addressed: Is there actually additional conservatism in the sector bound associated with an

excessively repeated perturbation parameter? This question can be answered by considering a

18



numerical example based on the solution presented in equations (76). Consider an alternate
choice for �C in which the number of repetitions of a0 has been reduced by one. A solution for
the uncertainty dynamics is

�C = diag
�
a0; a0; b0; c0

�
L
T
eu (s) =

�
1 0 1 0
1 s 0 1

�
(77a)

Lyv (s) =
1

s2 + ds + e

�
1 0 0 0
0 1 1 1

�
Lev (s) = [0]4�4 (77b)

with an appropriately reduced sector radius matrix R.

One would expect the uncertainty dynamics in equations (76) to result in a more conservative
uncertainty bound than that from equations (77) since, in equations (76), a0 can e�ectively
take on three di�erent values simultaneously rather than only two, as in equations (77). The
conservatism associated with the added degree of freedom is demonstrated in �gure 9. These
bounds are generated with equation (58)3, with the values for the system parameters given by

a = 5:4 b = 10:0 c = 25:25 d = 10:0 e = 100:0

ra = 4:5 rb = 2:0 rc = 5:0

Even though the bound obtained from equations (77) is less conservative than that from
equations (76), it still exhibits conservatism. Some of the conservatism is because a0 can still
simultaneously take on two di�erent values inside its sector, when in reality it can only have one
value. Additional conservatism is introduced when a0 is actually real valued, since the sector
bound assumes complex perturbations. This conservatism is evident when the sector bounds
are compared with an exact bound for the assumption of only real-valued perturbations, as in
�gure 9.

Figure 9. Conservatism of uncertainty bound due to perturbation representation.

3 A listing of the sector bound algorithm is presentedin appendix B.

19



The exact bound is obtained by using a constrained optimization procedure (Jacob 1972).
The procedure uses a nongradient search method to maximize the singular value of the additive
uncertainty matrix, � in �gure 5, associated with the uncertain parameters. In this case �
corresponds to the transfer function matrix between d(s) and u(s) (eq. (63)). The uncertainties
are represented as real perturbations about the nominal values of the uncertain parameters. The
maximum variations are symmetric about the nominal values and equal to the sector radii.

As shown above, conservatism is introduced into the sector bound when a perturbation
parameter is repeated more times than required. Therefore, it would be desirable to be able
to identify when a parameter is excessively repeated so that the conservatism can be reduced.
Alternatively, it would be useful to have a method by which the correct number of parameter
repetitions could be determined before the uncertainty dynamics are obtained. In that way
conservatism due to excessive repetitions could be eliminated.

In the above example, the solutions of equations (71a) clearly show that the third appearance
of a0 does not a�ect the system response. Recall, however, that the solutions are not unique.
Not all solutions so readily show that a0 is excessively repeated. For example, if the \inspired
guesses" in equations (74) are chosen so that

Lyv (s) =
1

s2 + ds + e

�
1 0 1 0 0
0 1 0 1 1

�
(78)

then one solution for Leu(s) is,

LT
eu (s) =

�
k1 0 1� k1 1 0
k2 s 1� k2 0 1

�
(79)

where k1 and k2 are arbitrary polynomials in s.

If k1 = k2 = 1, the third appearance of the perturbation a0 is not excited by any system
input and, therefore, has no e�ect on the system response. Similarly, if k1 = k2 = 0, the �rst
appearance of a0 has no e�ect on the system response. For other values of k1 and k2, the fact
that a0 only needs to appear twice is not obvious since each appearance of a0 is excited by the
system input u(s) and generates a perturbation to the system output d(s). Therefore, it is not
appropriate to use zero rows or columns alone to identify excessively repeated perturbations.

At present there is no reliable test using properties of the Lyv(s) and Leu(s) matrices to
identify excessively repeated perturbation parameters. The recommended approach is to start
with a single independent parameter and sequentially add repeated parameters until the system
of equations (e.g., eqs. (71)) can be solved, subject to the restrictions that the solutions be
minimal polynomials.

5.3 Denominator Uncertainty for a Multivariable System

The approach to solving the denominator uncertainty problem is identical to the approach
used for numerator uncertainties. The di�erences occur in the speci�c equations that need to
be solved. The next example addresses generic denominator uncertainties to highlight these
di�erences and to address the properties of the resulting system representation.

The system in equation (60) is considered once again, but in this case each of the denominator
coe�cients are uncertain and known to lie in sectors. That is,

d = d + d0 e = e + e0 (80)
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where d and e are the nominal values of d and e and d0 and e0 are the perturbations of d and
e. The sector bounds on the coe�cients are such that the perturbation is centered at the ori gin
with radius r (e.g., d0 is in a sector centered at zero with radius rd).

In this case the system frequency-domain input-output equation can be written as

(s2 + ds+ e)y (s) =

�
s+ a a
s+ b s2 + as+ c

�
u (s) �

�
d0s+ e0 0

0 d0s+ e0

�
y (s) (81)

The perturbation response is, therefore,

d(s) =
�
�

� (s)

� (s)
=

�1

s2 + ds+ e

�
d0s + e0 0

0 d0s+ e0

�
y (s) (82)

where �(s) is the denominator polynomial and � (s) is the matrix of numerator polynomials.
From the block diagram in �gure 4, equation (23a), and equation (82), one �nds that two
equations must be satis�ed by the choice of uncertainty dynamics matrices. These equations are

�

� (s)

� (s)

Nyu (s)

dyu (s)
=
Nyv (s)

dyv (s)
�C

Neu (s)

deu (s)
(83a)

�

� (s)

� (s)

Nyv (s)

dyv (s)
=
Nyv (s)

dyv (s)
�C

Nev (s)

dev (s)
(83b)

where

Lyu (s) =
Nyu (s)

dyu (s)
Lyv (s) =

Nyv (s)

dyv (s)
(84a)

Leu (s) =
Neu (s)

deu (s)
Lev (s) =

Nev (s)

dev (s)
(84b)

and where the N(s) terms represent matrices of numerator polynomials and the d(s) terms
represent denominator polynomials.

Choose dyv(s) = �(s) = dyu(s), consistent with the previous example, and choose dev(s) =
deu(s) = �(s). In this case equations (83) simplify to

�� (s) Nyu (s) = Nyv (s) �C Neu (s) (85a)

�� (s) Nyv (s) = Nyv (s) �C Nev (s) (85b)

As in the previous example, the solutions of equations (85) are not unique and, in order
to make the solutions more tractable, the same restrictions are placed on the elements of the
matrices Nyu(s), Nyv(s);Neu(s); and Nev(s). Thus, the elements of N(s) are required to be
minimal polynomials (i.e., they only have terms involving either nonnegative integer powers of
s or zero and are of the lowest possible order and the least possible number of terms).

The �rst step in solving equations (85) is to choose �C and its associated sector radius
matrix R. In this example, each uncertain parameter in �C must be repeated once, as if it is
associated with two independent sectors. The repeated perturbation parameters d0 and e0 are
required to characterize the overall e�ects of the uncertainty. Therefore, for this example,

�C = diag[d0; d0; e0; e0] R = diag [rd; rd; re; re] (86)
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One should expect the resulting sector bound to have some conservatism associated with the
repeated perturbation parameters.

Next consider the uncertainty dynamics numerator matrices. For dimensional consistency
Nyv(s) must be a 2 � 4 matrix, Neu(s) must be a 4 � 2 matrix, and Nev(s) must be a 4 � 4
matrix. Represent the numerator matrices as

Nyu (s) =

�
s + a a
s + b s

2 + as + c

�
=

�
k11 k12

k21 k22

�
(87a)

� (s) =

�
�11 �12
�21 �22

�
Nyv (s) =

�
l11 l12 l13 l14

l21 l22 l23 l24

�
(87b)

N
T
eu (s) =

�
m11 m21 m31 m41

m12 m22 m32 m42

�
Nev (s) =

2
64
n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44

3
75 (87c)

Substituting equations (86) and (87) into equations (85), expanding the elements, and
grouping like terms results in a system of equations for each uncertain parameter. For this
example, the two systems that result can be written in an indicial form as follows.

System for d:

skij = li1m1j + li2m2j (i; j = 1; 2)

slij = li1n1j + li2n2j (i = 1; 2; j = 1; 2;3; 4)

)
(88)

System for e:

kij = li3m3j + li4m4j (i; j = 1; 2)

lij = li3n3j + li4n4j (i = 1; 2; j = 1; 2; 3; 4)

)
(89)

Again, inspired guesses are used to solve these two systems of nonlinear equations. Let

l11 = l22 = 1 l12 = l21 = 0 l13 = l24 = 1 l14 = l23 = 0 (90)

The remaining numerator elements are determined next, sub ject to the imposed limitations
discussed above. As a result the complete uncertainty dynamics representation becomes

�C = diag[d0
; d0

; e0
; e0] (91a)

L
T
eu(s) =

1

s2 + ds+ e

�
s(s+ a) s(s + b) s+ a s+ b

sa s(s2 + as+ c) a s2 + as + c

�
(91b)

Lyv(s) =
1

s2 + ds+ e

�
1 0 1 0
0 1 0 1

�
(91c)

Lev(s) =
1

s2 + ds + e

2
64
s 0 s 0
0 s 0 s

1 0 1 0
0 1 0 1

3
75 (91d)

with the associated sector radius matrix R from equations (86).
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An example of the sector bound for the denominator uncertainty case (eq. (58)) is shown
in �gure 10. The same set of nominal values for the system parameters used in the previous
example are used here as well; however, in this case the uncertain parameters are d and e. The
nominal values and the radii for the uncertain parameter sectors are given by

a = 5:4 b = 10:0 c = 25:25 d = 10:0

e = 100:0 rd = 5:0 re = 40:0

Notice the conservatism associated with the need to treat the two uncertain parameters
as four independent sectors when compared with the \exact" bound (based on real-valued
perturbations). The exact bound is computed with constrained optimization, as in the previous
example.

It is also interesting to note that one of the su�ciency conditions for existence of the sector
bound (namely, �[RLev(s)] < 1) is violated for values of re greater than 50. In order to compute
a sector bound for re > 50, one could scale the inputs and outputs of the uncertainty dynamics
�Lyu(s) to reduce the norm of R.

Figure 10. Sector-based uncertainty bound for denominator uncertainty.

5.4 Multiple Parameter Uncertainties in a Second-Order System

The solution of the sector bound for a general system is accomplished by combining the
solution methods for numerator and denominator uncertainties. A general representation of the
uncertainty disturbance d(s) can be represented as a function of the inputs and outputs of the
true system:

d (s) = �1 (s) u (s) � �2 (s) y (s) (92)

The transfer matrices � i relate the inputs and outputs of the true system to the uncertainty
disturbance. The uncertainty disturbance expression in equation (92) can be combined with
equation (23a) to obtain a relation in terms of u(s) and v(s):

d (s) =
�
�1 (s)� �2 (s)Lyu (s)

�
u (s)� �2 (s)Lyv (s)v (s) (93)
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The uncertainty disturbance can be written in an alternate form by inspection of the block
diagram depicted in �gure 4:

d (s) = Lyv (s) �C [Leu (s) u (s) + Lev (s) v (s)] (94)

Equating the two expressions for the uncertainty disturbance (eqs. (93) and (94)) and grouping
the u-terms and v-terms results in two expressions that the uncertainty dynamics must satisfy:

�1 (s) � �2 (s)Lyu (s) = Lyv (s) �C Leu (s) (95a)

��2 (s)Lyv (s) = Lyv (s) �C Lev (s) (95b)

Note that the two expressions in equations (95) are algebraic in nature. They correspond
to a set of scalar equations that are nonlinear in the unknown transfer function elements. The
solutions of these equations are similar to those of the special cases discussed pre viously. The
solutions are not unique because the equations underspecify the solution. Analogous to the
previous examples, however, a solution is readily obtained by imposing the same practical
restrictions on allowable forms of the solution.

In order to see how the generalized solution approach can be applied to a problem with
physical signi�cance, consider the transfer function in equation (96). The nominal system is
unity but has unmodeled dynamics that are known to be in the form of a second-order damped
oscillator.4 This system has a true transfer function of the form

y (s)

u (s)
= G (s) =

!
2

s2 + 2�!s + !2
= G0 (s) + � (s) = 1�

s
2 + 2�!s

s2 + 2�!s+ !2
(96)

where the frequency ! and damping ratio � are uncertain but are bounded as follows:

0:4 � � � 0:8

22 � ! � 27 rad=sec

A sector bound for this example is computed two ways. The �rst way might be termed the
naive approach, in which each appearance of an uncertain parameter is treated as an independent
uncertainty. The second solution approach makes use of the physical structure of the system
to recognize that the same parameter appears in both the numerator and denominator of the
system transfer function. One would expect the second approach to give a less conservative
representation of the uncertainty, and this will be shown to be the case.

For the �rst case the system is modeled as shown in equation (97):

G1(s) =
a

s2 + bs+ c
(97)

The parameters a, b, and c are independent and related to ! and � in such a way that the
nominal parameter values and sector radii are

a = 606:5 b = 30:4 c = 606:5

ra = 122:5 rb = 12:8 rc = 122:5

That is, a and c lie in sectors centered at 606.5 with radii 122.5, and b lies in a sector centered
at 30.4 with radius 12.8.

4 This example is adapted from the examplein Stein andDoyle (1978).
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The perturbation matrix �C and the � matrices are given by

�C =

2
4

a0 0 0
0 b0 0
0 0 c0

3
5 �1 (s) =

a0

s2 + bs + c
�2 (s) =

b0s+ c0

s2 + bs + c
(98)

where the diagonal structure of the �C matrix is dictated by sector theory. One solution
of equations (95) for these values of �C; �1; and �2; with G1(s) substituted for Lyu(s), is
summarized in equations (99):

Lyv(s) =
1

s2 + bs+ c
[1; 1; 1] (99a)

L
T
eu(s) =

1

s2 + bs+ c
[s2 + bs+ c;�as;�a] (99b)

Lev(s) =
1

s2 + bs+ c

2
4

0 0 0
�s �s �s

�1 �1 �1

3
5 (99c)

The sector radius matrix for this case is

R =

2
4

ra 0 0
0 rb 0
0 0 rc

3
5 (100)

Notice that Lyv(s); Lev(s); and Leu(s) have the same denominator corresponding to the
characteristic polynomial of the nominal plant. This is not required but signi�cantly simpli�es
the solution and the structure of the uncertainty dynamics. This particular solution, once the
denominators are chosen, is determined by the choice of the elements of the numerator of the
Lyv(s) matrix. The remaining numerator terms are then speci�ed by the governing relations,
equations (95).

Also notice that the upper row of the Lev(s) matrix, the one associated with the uncertain
numerator parameter a, is zero. This is because the Lev(s) matrix is the feedback block inside
the uncertainty dynamics block diagram (�g. 4) and is required only when there is uncertainty
in the denominator parameters. Since a only appears in the numerator of G1(s) no feedback
around the �C matrix is needed.

The sector-based uncertainty bound corresponding to equation (54) for the above solution
(three independent parameters) is presented in �gure 11. The \absolute" uncertainty bound
determined by constrained optimization methods is also presented for comparison. Notice the
signi�cant conservatism associated with the sector-based bound, especially at low frequencies.
This conservatism can be attributed to several factors, as discussed previously. The source of
most of the conservatism, however, is the treatment of the parameters as three independent
uncertainties. This is demonstrated in the next example.
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Figure 11. Comparison of uncertainty bounds.

Consider the system modeled as shown in equation (101), in which the parameter a appears
in both the numerator and denominator. This accounts for the fact that in the actual system,
equation (96), this is indeed the case. The nominal parameter values and sector radii for a and
b are the same as for the previous case.

G2 (s) =
a

s2 + bs + a
(101)

The perturbation matrix �C and the � matrices for this case are given by

�C =

�
a0 0
0 b0

�
�1(s) =

a0

s2 + bs + a
�2(s) =

b0
s + a0

s2 + bs + a
(102)

A solution for the uncertainty dynamics for the two-parameter case, shown in equations (103),
is very similar to the three-parameter solution, with the exception that equations (103) are of
lower order:

Lyv (s) =
1

s2 + bs + a
[1; 1] (103a)

L
T
eu (s) =

1

s2 + bs + a

h
s
2 + bs;�as

i
(103b)

Lev (s) =
1

s2 + bs + a

�
�1 �1
�s �s

�
(103c)

The sector radius matrix for this case is also of lower order:

R =

�
ra 0
0 rb

�
(104)
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The sector-based uncertainty bound corresponding to equation (58) for the case of two
independent uncertain parameters is presented in �gure 11 along with the \absolute" uncertainty
bound and the three-parameter bound. Notice that this bound is considerably less conservative
than that of the previous case. This is attributable to the fact that the physical structure of the
true system is more accurately represented. Some conservatism remains, however, because of
the reasons cited previously. Conservatism is also introduced because the parameters a and b,
while treated as such, are not truly independent of one another, since both depend on the value
of !.

The examples presented above were used to demonstrate the manner in which conservatism
enters the sector-based uncertainty bound. In addition, the examples led the development of
a general form for the equations that govern the uncertainty dynamics �Lyu (eqs. (95)). The
nonuniqueness of the solution to the governing equations is one source of conservatism that was
demonstrated in the �rst example. The need to repeat single uncertain parameters multiple
times is another source of conservatism that was demonstrated in the second example. The need
to treat multiple dependent parameters as independent is yet another source of conservatism
that was demonstrated in the third example. The need to repeat some parameters and treat
dependent parameters as independent can in most instances be traced to the requirement that
the perturbation matrix �C be diagonal.

The examples have also shown that the sector-based uncertainty bound provides a means
to readily compute, in closed form, a frequency-dependent characterization of the in
uence of
individual uncertain parameters on the overall frequency response of an LTI-MIMO system.
This characterization of the system uncertainty can be directly applied to robustness tests and
robust control design tools.

6 Concluding Remarks

This paper has addressed several aspects of applying sector stability theory to the problem
of characterizing plant model uncertainty. Sector properties were applied to linear multivariable
systems with Safonov's approach. A general matrix representation for linear, time-invariant,
multivariable systems was presented to facilitate the application of the sector properties. The
resulting sector-based uncertainty bound was combined with a representative singular-value
robustness condition to obtain a useful robustness measure that accounts for known uncertainty
in the plant model. Finally, the sector-based approach was applied to several forms of parameter
uncertainty to highlight the speci�c issues involved in applying the sector-based approach to
linear, time-invariant, multivariable systems and to identify properties of the sector bound
associated with fundamental forms of plant model uncertainty.

Based on the results obtained, the characteristic advantages and limitations of the sector-
based approach are clari�ed. Three primary advantages of the sector-based approach become
evident: the approach provides a way to e�ectively describe overall plant model uncertainty when
bounds on individual model parameters are known, the approach is multivariable by nature and
so directly applies to linear multivariable dynamical systems, and the approach is compatible
with established singular-value-based robustness measures.

The major limitations associated with this approach are the conservatism of the resulting un-
certainty bound and the di�culty in solving the systems of nonlinear equations that determine
the uncertainty dynamics. Conservatism may be introduced by the diagonal matrix representa-
tion of the uncertain parameters required to apply sector concepts to the uncertainty modeling
problem. Each uncertain parameter is assumed to be independent of all other uncertain param-
eters. Conservatism is introduced whenever repeated parameters are required. Mathematical
conservatism is introduced by the process of merging the sector bound with singular-value con-
cepts. This conservatism can be attributed to two main factors: the merging process requires
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the use of inequalities, and the uncertainties are assumed to be complex valued with an arbitrary
phase angle (i.e., bounded only in magnitude). Another factor that may have some e�ect on
the degree to which the sector bound is conservative is associated with the nonuniqueness of the
uncertainty dynamics representation. The systems of nonlinear equations associated with the
uncertain parameters can be readily solved, as shown in the examples, but they are underspeci -
�ed. The level of conservatism is increased if the solution of the nonlinear equations results in
excessively repeated uncertain parameters.

A feature of the methodology that has not yet been exploited e�ectively is the nonuniqueness
of the solution to the uncertainty dynamics equations. There may be a \best" solution that
minimizes the overall e�ect of the various forms of conservatism on the accuracy of the sector-
based uncertainty bound. The additional degrees of freedom might be able to be used to generate
such a solution, which results in the least conservative sector bound. Solution methods that
exploit the sector approach and result in the least conservative uncertainty bound are sub jects
for future research.

NASA Langley Research Center

Hampton, VA 23665-5225

January 21, 1992
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Appendix A

Proofs

Proof of Lemma A1

Lemma A1. Given two complex matrices A and B such that A is n � n; A
�
� A, and

A > 0 (i.e., positive de�nite), B is r � n, rank (B) = r, and r � n,

~A =
�

h
BA

�1
B
�
i�1

(A1)

then,

A � B
� ~AB (A2)

(i.e., x�Ax � x
�
B
� ~ABx).

Proof. De�ne

B
y =
�
A
�1
B
�
h
BA

�1
B
�
i�1

(A3)

which is the right pseudoinverse of B with respect to A. Then,

~A =
�

h
BA

�1
B
�
i�1

=
h
BA

�1
B
�
i�1

BA
�1
B
�
h
BA

�1
B
�
i�1

=
h
BA

�1
B
�
i�1

BA
�1
AA

�1
B
�
h
BA

�1
B
�
i�1

=
h
B
y
i�
AB

y (A4)

Now consider

x
�
h
A�B

� ~AB

i
x = x

�
Ax� x

�
B
� ~ABx

= x
�
Ax� x

�
B
�
h
B
y
i�
AB

y
Bx

= x
�
Ax� x

�
h
B
y
B

i�
A

h
B
y
B

i
x (A5)

where x is an appropriately dimensioned complex vector. In addition, since BB
y = I (by

de�nition) and since

h
B
y
B

i h
B
y
B

i
= A

�1
B
�
h
BA

�1
B
�
i�1

BA
�1
B
�
h
BA

�1
B
�
i�1

B

= A
�1
B
�
h
BA

�1
B
�
i�1

B

= B
y
B (A6)

then B
y
B is a projection such that

B
y
Bx = x

�?(B)
(A7)

where x
�?(B)

is a vector that lies in the orthogonal complement of the null space of B. Both the

null space of B and its orthogonal complement are spaces of lower dimension than those of A.
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Any vector x can be written as the sum of two components, one that lies in the null space of
B;�(B); and one that lies in its orthogonal complement, �?(B); so that

x = x
�(B) + x

�?(B) (A8)

As a result,

x�
�
A�B� ~AB

�
x = x�Ax� x

�?(B)Ax�?(B)

= x�
�(B)Ax�(B) (A9)

Since A is given to be positive de�nite and since x
�(B) lies in a space of lower dimension than

A, then

A�B� ~AB � 0 (A10)

(positive semide�nite) and so

A � B� ~AB (A11)

Sector Bound Existence Tests

In this section simple tests to check for the existence of a system sector bound are developed
and proven. In order to calculate a system sector bound several matrices need to be formed.
Some of these matrices require the inverses of other matrices to exist. It is advisable to check
for the existence of these matrix inverses before attempting to determine the sector bound itself.
Two tests are developed to determine the existence of these matrix inverses.

Existence test for Q�1
v . The inverse of Qv must exist in order to calculate the matrices in

equations (40). For a matrix to have an inverse it must be de�nite. Since Qv is Hermitian it
must be positive de�nite. This fact is used to develop the existence test.

Since Qv must be positive de�nite,

x�Qvx > 0 (A12)

, x� [I� L�evR
�RLev]x > 0 (A13)

, x�Ix� x�L
�

evR
�RLevx > 0 (A14)

Now if x�x 6= 0, then

,
x�L�evR

�RLevx

x�x
< 1 (A15)

Using the Euclidean norm notation gives

,
kRLevxk

2
E

kxk2
E

< 1 (A16)

which is guaranteed to be true if the following singular-value inequality is satis�ed:

( � (RLev) < 1 (A17)

Therefore, equation (A17) is a simple test for the existence of Q�1
v .
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Existence test for Qn. Since Qn is de�ned to be the inverse of a matrix product, that
inverse must exist. Recall that

Qn =
�

�
LyvQ

�1
v L�yv

�
�1

(A18)

For Qn to exist, Q�1
n must exist and LyvQ

�1
v L�yv must be positive de�nite. Assume that the

existence of Q�1
v has already been established.

SinceQ�1
v exists, it must be full rank and it can be factored (e.g., by Cholesky decomposition).

Let the factors be de�ned by

Q�1
v =

�
FF� (A19)

Therefore, it must be shown that
LyvFF

�L�yv > 0 (A20)

Note that Qv is square and let its dimension (and rank) be n. Then the dimension (and rank)
of F is also n. Note also that Lyv is not necessarily square; let its dimensions be m�n. Clearly
then, LyvFF

�L�yv is an m �m matrix. Such a matrix is only positive de�nite if (1) m � n and
(2) rank(Lyv) = m.

If m > n, then LyvFF
�L�yv is de�cient because the rank of Lyv can be at most n and so the

rank of LyvFF
�L�yv can be at most n as well. Also, since the matrix product LyvFF

�L�yv is
Hermitian it will be positive de�nite if it is full rank. Therefore, if condition (1) is satis�ed and
the rank of Lyv is m, then LyvFF

�L�yv is of full rank.

Both of the tests presented above can be readily performed numerically. They should be
performed as part of the algorithm used to determine system sector bounds to ensure that the
problem is properly formulated and that the bound resulting from such an algorithm is valid.
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Appendix B

Sector Bound Algorithm

The sector algorithm is coded with command �les for MATRIX�,5 a commercially available
linear systems analysis and design package. Three separate command �les are used: safsys.dat

is used to set up the uncertainty dynamics matrices, safbnd.dat is used to set up the sector
bound matrix, and calcs.dat is used to actually compute the sector-based uncertainty bound.
An additional command �le, logdist.dat, is used to create a frequency vector with points evenly
distributed on a logarithmic scale.

safsys.dat

The command �le safsys.dat is problem speci�c and needs to be customized for each solution
of the uncertainty dynamics matrices (i.e., Lyu;Lyv;Lev; and Leu). A listing of safsys.dat for
the denominator uncertainty example from section 5.3 is presented below.

/ /
// Command File - safsys.dat
// ===========================
/ /
// Author : Martin R. Waszak
// Date : 6/29/90
/ /
// Description : Formulate the representation of the system for use
// in calculating Safonov’s sector uncertainty bound.
/ /
// The formulation is problem dependent and must be reprogrammed
// for every new problem to be addressed.
/ /
// This formulation only applies for the denominator uncertainty
// example case which appears in section 5.3.
/ /
a = 5.4; b = 10.0; c = 25.25; d = 10.0; e = 100.0;

svar = jay�omega(i);

den = svar��2 + d�svar + e;

ns = 2;nv = 4;
g0 = 1/den�[svar+a, a; svar+b, svar��2+a�svar+c];
gyu = 1/den�[svar+a, a; svar+b, svar��2+a�svar+c];
geu = 1/den�[ svar�(svar+a), svar�(svar+b), svar+a, svar+b;...

svar�a, svar�(svar��2+a�svar+c), a, svar��2+a�svar+c]’;
gyv = 1/den�[ 1 0 1 0; 0 1 0 1 ];
gev = 1/den�[ svar, 0, svar, 0 ; 0, svar, 0, svar;1, 0, 1, 0; 0, 1, 0, 1];

clear svar den a b d c e
return

5
MATRIX� is a registered tradename of IntegratedSystemsInc.
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safbnd.dat

The command �le safbnd.dat is problem speci�c and needs to be customized for each choice
of the perturbation matrix �C. The sector radius matrix is determined from the individual
parameter sectors associated with the uncertain parameters represented in �C. A listing of
safbnd.dat for the denominator uncertainty example from section 5.3 is presented below.

/ /
// Command File - safbnd.dat
/ / ===========================
//
// Author : Martin R. Waszak
// Date : 6/29/90
/ /
// Description : Formulate the sector radius matrix associated
// with the sector bounds on each of the uncertain elements.
/ /
// This formulation only applies for the denominator uncertainty
// example case in section 5.3.
/ /
r = diag([5.0,5.0,40.0,40.0]);
return

calcs.dat

The command �le calcs.dat computes the sector-based uncertainty bound described in
equation (58). It applies for all forms of uncertainty dynamics (e.g., additive, multiplicative
re
ected at the plant input, and multiplicative re
ected at the plant output). A listing of
calcs.dat is presented below.

/ /
// Command File - calcs.dat
// ==========================
/ /
// Author : Martin R. Waszak
// Date : 6/29/90
/ /
// Description : Calculate a singular value bound on model
// uncertainty based on sector stability theory.
/ /
// Remarks : This algorithm can determine sector bounds, for both
// modeled parameter uncertainties and for unmodeled dynamics
// with known structure but with uncertain parameters, where
// the uncertainties can be represented by sectors.
/ /
// The variable names do not correspond to the matrices
// defined in the theoretical sector formulations.
// They do have some relationship with the ‘standard’
// notation, however. They have been altered
// to improve the computational aspects of the algorithm.
/ /
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// Inputs : logdist.cmd - command file to formulate frequency vector
// evenly spaced on a log scale
// omega - vector of frequencies (from logdist.cmd)
// n - number of frequencies
/ /
// safsys.dat - command file to formulate
// system representation
// g0, gyu, gyv,
// geu, gev - system matrices (from safsys.dat)
// ns - size of the nominal system (from safsys.dat)
// nv - number of component uncertainties
// (from safsys.dat)
/ /
// safbnd.dat - command file to formulate sector
// component uncertainty bound matrix
// r - matrix of sector bounds
// (from safbnd.dat)
/ /
// Outputs : bs - system sector bound
/ /
// Modified : 7/7/88 - to correct the expressions for ‘t1’ and ‘t2’
// : 4/18/89 - to modify the sector bound equation; bs(i)
// : 7/12/89 - to calculate svd(r*gev) for existence test
// : 6/29/90 - to apply for additive uncertainties
/ /
//=================================================================
/ /
// Obtain frequency vector evenly spaced on a log scale
/ /
wmin=0.1;wmax=100;npts=300;exec(‘logdist.cmd’)
n=300;
/ /
// Perform the bound calculation for each frequency (FOR LOOP)
/ /
display(‘Forming system matrices and bounds - (this will take a while)’),...
for i=1:n;...
...//
...// Obtain the special sector system representation
...// and matrix of element sector bounds
exec(‘safbnd’); exec(‘safsys’);...
...//
...// Calculate the necessary matrices
t1 = r�gev; t2=r�geu;...
...// Calculate svd(r�gev) which should be < 1 for existence
sv1=svd(t1);...
if sv1(1) > = 1.0 then display(‘existence test violated’), return, end,...
m1 = inv( eye(nv) - t10�t1 ); m2 = inv( eye(nv) - t1�t10);...
q =real( gyv�m1�gyv0); p = real( t20�m2�t2 );...
gc = gyu + gyv�m1�t1’�t2;...
...//
...// Calculate Cholesky factors
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cfq = chol(q); cfp = chol(p);...
...//
...// Calculate singular values of appropriate matrices
sv1 = svd(gc - g0);...
sv2 = svd(cfq); sv3 = svd(cfp);...
...//
...// Calculate sector bound and then loop back for another frequency
bs(i) = ( sv1(1) + sv2(1)�sv3(1) ) ; end
/ /
display(‘All done! - sector bound stored in ”bs” ’)
/ /
clear g0 gc gyu gyv geu gev ns nv m1 m2 t1 t2 n p q r
clear cfq cfp sv1 sv2 sv3 sv4
return

logdist.dat

The command �le logdist.dat is used to generate a logarithmically distributed frequency vector

in a range between speci�ed minimum and maximum values.

/ /
// Command File - logdist.cmd
// ============================
/ /
// Author : Martin R. Waszak
// Date : 4/12/88
/ /
// Description : This function calculates a range of points that
// are uniformly distributed on a log10 scale. It is ideally
// suited for use in plotting things on a log scale
// (for example - bode plots, singular value plots, etc.).
/ /
// Inputs : The following temporary variables must be defined
// in your matrix-x stack. They will be cleared from the stack
// after the vector of points is formed.
/ /
// npts = # of data points
// wmin = minimum value of the range of values
// wmax = maximum value of the range of values
/ /
// Outputs : The range of logarithmically distributed
// values will be output in the following vector -
/ /
// omega = vector of range of values
/ /
// Remarks : Since this is a command file, the variables used
// here are global (not local) and care must be taken that
// these variable names are unassigned in your calling
// program.
/ /

35



// Modified : 6/29/88 - to display notification that calculation has
// begun
// 6/30/88 - to improve documentation and improve
// generality
/ /
//=================================================================
/ /
display(‘Calculating a vector of points evenly spaced on a log scale.’)
/ /
for i=1:npts; omega(i) = wmax��(i/npts) � wmin��((npts-i)/npts);
/ /
display(‘The logarithmically distributed range of -’)
npts
display(‘values with minimum value -’)
wmin
display(‘and maximum value -’)
wmax
display(‘is stored in the column vector “omega.” ’)
display(‘Note : wmin, wmax and npts have been cleared from the stack.’)
clear wmin wmax npts
return
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Nomenclature

A arbitrary matrix (complex or real valued depending on application)

B arbitrary matrix (complex or real valued depending on application)

C(s) sector center matrix

c sector center; uncertain parameter

d uncertain parameter

d(s) perturbation response

deu(s) denominator polynomial of Leu(s)

dev(s) denominator polynomial of Lev(s)

dyv(s) denominator polynomial of Lyv(s)

e uncertain parameter

e(s) input to perturbation matrix �C

F(s) matrix of complex-valued functions

f(�) function of (�)

G(s) nominal plant transfer matrix

K(s) feedback compensation

ki arbitrary polynomial

kij i; j element of N
yu(s)

Leu(s) transfer matrix that transforms the vector of system inputs

Lev(s) transfer matrix that allows parameters in �C to appear in denominator of the
uncertainty dynamics

Lyu(s) transfer matrix for the nominal plant model

Lyv(s) transfer matrix that transforms the output of the perturbation block into the
perturbation response

lij i; j element of Nyv(s)

mij i; j element of Neu(s)

Neu(s) numerator of Leu(s)

Nyv(s) numerator of Lyv(s)

nij i; j element of Nev(s)

Pn de�ned in equation (44b)

Pv de�ned in equation (34)

Qn de�ned in equation (44c)

Qv de�ned in equation (28a)

R(s) sector radius matrix

Rv de�ned in equation (28b)

r sector radius
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r(�) sector radius for parameter (�)

Sv de�ned in equation (28c)

s Laplace variable

T(s) linear, time-invariant, multivariable operator

Tn de�ned in equation (44a)

Tv de�ned in equation (30)

t independent variable

u(s) plant input vector

u(t) arbitrary real function of t

v(s) output from perturbation matrix �C

x arbitrary vector compatible with A

y(s) plant output vector

� uncertainty representation

~� second term on right side of equation (44a)

�(s) uncertainty dynamics denominator polynomial

�C perturbation matrix

�c perturbation from sector center

�Lyu uncertainty dynamics

�(�)(s) matrices of uncertainty dynamics numerator polynomial

�(�) maximum singular value of (�)

�(�) minimum singular value of (�)

! frequency

� uncertain parameter; damping ratio

(�̂) Fourier transform of (�)

(�) nominal value of (�)

(�)0 perturbation of (�)

(�)� complex conjugate transpose of (�)

j � j absolute value of (�)

k � k2 2-norm

k � kE Euclidean norm of (�)

h(�); (�)i inner product
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