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Summary

This computational study is an exploration of

nonreacting high-speed mixing layers. The compu-
tations are made with a code based on an accurate
higher order algorithm and with su�cient grid points
to resolve all relevant scales. In each case, the free-

stream disturbance is introduced, and the calcula-
tions are run until a statistical steady state is reached
(2 or 3 sweeps, based on axial distance and convec-

tive speed). Then, 400 to 600 time samples of the

ow, at equal time intervals, are generated to obtain
statistical properties of the 
ow.

The studies are conducted at two convective Mach

numbers, three free-stream turbulence intensities,
three Reynolds numbers, and two types of initial
pro�les|hyperbolic tangent (tanh) and boundary

layer. These pro�les are used to interpret the e�ects
of corresponding parameters.

The boundary-layer pro�le leads to predictions of
transition processes much better than the tanh pro-

�le at disturbance intensities comparable to those in
wind tunnels. The transition Reynolds number pre-
dicted is about 0:18 � 106 and compares well with

experimental data. The spacing between the vorti-
cal structure normalized by the boundary-layer thick-
ness is about 3.5 (boundary-layer case) and 10 (tanh
case), whereas the observed values range from 1.5

to 2.5. The deduction of the growth-rate data from
the plots of growth versus the streamwise coordinate
is, in part, a�ected by the nature of free-stream dis-

turbance introduced and the regions of slight nega-
tive growth. Nevertheless, careful extraction of the
growth-rate information and comparison with the
experimental data of Papamoschou show that this

comparison is moderately good. The study of the
location of the disturbance shows that the growth
of the layer is suppressed if the shear-layer region

is excluded from the disturbance �eld. Calculations
with the boundary-layer case with no imposed distur-
bance show that the shear layer selectively ampli�es
the noise at a Strouhal number (based on momen-

tum thickness) of 0.007. This result can be used in
practice to excite the shear layer toward early tran-
sition. Studies of dependence on Reynolds number

show that the e�ects are negligible, and this may be
caused by the dominant inviscid structure of the 
ow
�eld.

Introduction

High-speed mixing layers have received signi�cant
attention in the past 5 years because of the poten-
tial applications in hypersonic plane scramjet com-

bustors, where the combustion process is supersonic.

Recent experimental results (ref. 1) indicate that the
growth rates of high-speed layers in relation to those

of incompressible shear layers are much smaller|by
a factor of 4 to 5. This reduction implies that much
longer lengths are needed to achieve the same level of
mixing and combustion e�ciency. This longer length

is obviously undesirable from a technological point of
view. Consequently, considerable attention is being
paid to the mixing phenomenon in supersonic mixing

layers|both nonreacting and chemically reacting.

Studies of stability of mixing layers (refs. 2
and 3) and direct simulation of temporally and spa-
tially developing mixing layers (refs. 4 and 5) are

the theoretical and computational approaches made
to understanding the behavior of the mixing layers.
Experimental studies of the high-speed mixing layers
are di�cult, and there are not many such studies.

These mixing layers have not been su�ciently ex-
plored for the distribution of mean and 
uctuating
quantities with nonintrusive diagnostic tools. The

only reliable sources of information available are the
growth rates measured from pitot traverses, Schlieren
pictures, and mean velocity measurements. Some ef-
forts atmodeling the mixing process have been made,

but a more precise understanding of the 
ow must be
obtained before the modeling e�orts are considered
valid.

In light of this scenario, direct numerical simula-

tion of the shear layers becomes an important tool
for understanding the mixing process. The classical
question of resolution of scales at high Reynolds num-
bers limits the exploration to relatively low Reynolds

numbers (�1 �104) based on shear-layer thickness
and mean velocity at the in
ow plane). But this
range is not much below the range of practical rel-

evance or importance. Thus, it should be possible
to perform these calculations and to make deduc-
tions of relevance and some importance to the be-
havior of mixing layers. Initially, studies will be

limited to two-dimensional simulations. While there
is the capability to make three-dimensional simula-
tions, it is important to understand two-dimensional

simulations before embarking on three-dimensional
calculations. In recent times, a few groups (refs. 4
and 6) have made direct numerical simulations of
shear layers, and much has been uncovered. The

present contribution is complementary in some as-
pects and presents new results on many aspects.

Symbols

a speed of sound

b.l. boundary layer

c constant



fi mass fraction of species i

h enthalpy

k turbulent kinetic energy

M Mach number

Mc convective Mach number

p pressure

R Reynolds number

RT transition Reynolds number

rms root mean square

St Strouhal number

T temperature

t time

tanh hyperbolic tangent

Up;U1 primary stream velocity

Us;U1 secondary stream velocity

u streamwise velocity

uc convective velocity

ud disturbance in streamwise direction

um streamwise mean velocity

v transverse velocity

vd disturbance in cross-stream direction

x streamwise coordinate

xm maximum extent of x �eld

xT transition distance

y transverse coordinate

ym maximum extent of y �eld


 ratio of speci�c heats

� mixing-layer thickness

� 0 growth rate

� Kolmogorov scale

� momentum defect thickness

� laminar viscosity

� density


 vorticity

Subscripts:

p primary

s secondary

Previous Studies

Experimental

Table 1 contains a list of references and some
brief details of the experimental work discussed in

them. This table has been constructed to determine
which experiments can be used for comparison with
the results of the simulation. Figure 1 shows the

experimental design used by these authors to obtain
their results.

Reference 7 is a critical summary of the data of
many early studies on both subsonic and supersonic
shear layers. The data of references 8 and 9 and their

nondimensional growth rate as a function of Mach
number are important. The growth rate is normal-
ized by that under incompressible conditions. It is

apparent from reference 10 that the incompressible
mixing-layer growth rate is uncertain to a signi�cant
extent (a factor of 1.8). Therefore, the quality of
the results of nondimensional growth rate versus M

is not assured, even though the primary result that
mixing-layer growth rate decreases with convective
Mach number Mc is unquestioned.

Experiments have been conducted on mixing lay-

ers (ref. 11) by using a splitter-plate con�guration
(�g. 1(a)). Measurements of mean velocity pro�le
and transition have been made for two con�gurations
at Mc = 0.325 and 0.515 (table 1), and the pressures

across the mixing layer are not the same. In one
case, they are di�erent by a factor of 1.3. Transi-
tion is measured in the following ways: (1) point of

change in slope of the plot of growth versus distance,
(2) examination of Schlieren pictures, and (3) point
of decay of the spectral intensity of the dominant
frequencies in the free shear layer as measured by

a hot-�lm probe. The transition locations, as mea-
sured by these criteria, are not necessarily the same|
they vary by about 35 to 45 mm. The transition

distance normalized by initial momentum thickness
is about 165 to 300� , depending on the 
ow condi-
tions and the transition Reynolds number based on
mean properties (and mean velocity), which is about

2:0 � 105 � 0:3 � 105.

The experiments of reference 12 are instructive in
many ways. Though the study is limited to a sin-
gle speed and the geometry used is not pertinent to

the two-stream mixing considered here, it gives an
appreciation of the free-stream turbulence and the
peak turbulence intensity inside the shear layer. The
measured free-stream turbulence is about 0.2 percent

for velocity 
uctuations and 0.1 percent for pressure

uctuations. The peak turbulence intensity increases
to 6 percent in the downstream region of the shear

layer. This study also presents the velocity spectra
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that can be used for detailed comparison . The appa-
ratus used by these spectra is shown in �gure 1(c).

The injection from the bottom wall helps balance the
pressure across the shear layer.

Papamoschou 's work (refs. 1 and 13 to 15) is by

far the most referenced work, essentially because of
a systematic e�ort to evolve appropriate parameters
for compressibility e�ects and to determine the ef-

fect of compressibility on mixing (growth rate of the
mixing layer). There were previous studies (both ex-
perimental and linear stability) on the subject, but
the status of understanding was not consolidated un-

til his work clari�ed issues and reinforced the impli-
cations of previous work on stability (ref. 2). The
principal result he obtained was the variation of the
nondimensional growth rate with convective Mach

number. Following the work of Roshko and others,
the dynamics of the mixing layer is argued to be af-
fected by the speed of large-scale structures relative

to the speed of one of the streams. The ratio of this
speed to the average acoustic speed is the convec-
tive Mach number Mc. The growth rate normalized
by that for incompressible conditions decreases by

a factor of about 4 to 5 when Mc increases to 2.
In these experiments, Papamoschou used nitrogen,
argon, and helium as test gases in a splitter-plate

con�guration (�g. 1(b)). Understandably, the test
durations were short, typically 1 to 2 sec, and the
measurements consisted of pitot surveys across the
mixing layer. The free-stream turbulence e�ects are

only indirectly inferred from wall pressure measure-
ments. One of the other details measured, but not
published, is the di�erence in the static pressure of

the two streams. This di�erence may well be small,
but it adds to the wave processes and, in a disturbed
environment, may a�ect transition.

Some preliminary measurements of a shear layer
of a single 
uid with two streams across a splitter
plate are reported in reference 16. A single measure-
ment of growth rate and velocity pro�le has been

reported, as well as a mean turbulence velocity of
5 percent in the mixing layer. Reference 16 also in-
dicates from the measurement of laser doppler ve-

locimetry (LDV) that the wave re
ections from the
walls can cause 
uctuations of 
ow velocities as high
as 4 percent.

Some experiments of supersonic shear layer have
been presented in reference 17. In this setup, the
shear layer begins from a backward-facing step, and
the 
ow structure in the downstream zone is altered

by inserting a ramp (�g. 1(d)). The ramp provides
a recirculation zone at near-zero speeds and helps to
maintain a smooth shear layer. The growth rates

from these experiments, with the incoming stream

deliberately made turbulent, are plotted along with
the previous data to reinstate the conclusion regard-

ing the reduced growth rate at supersonic conditions
(in terms of Mc). Transition experiments have been
conducted recently on a similar setup (ref. 18), but
the test section was made disturbance free to a large

extent. Measurements of transition Reynolds num-
ber show values from 3:63 � 105 to 5:3 � 105.

It is clear from the preceding discussion that
(1) the various experimenters have used di�erent ap-

paratus for creating a mixing layer, (2) the measure-
ments of the quality of the incoming stream are not
complete in most cases, and (3) the mixing layers are

subject to disturbance, acoustic and otherwise, at a
magnitude upward of 0.2 percent, and a pressure dif-
ferential across the layer of 1 to 1.3 in some instances.
Yet, the growth rates of the layer from the work of

most investigators, possibly in the turbulent range,
are put on the same plot, and evidence of these be-
ing nearly the same qualitatively and quantitatively
is presented (ref. 13). If these are true, then the

asymptotic growth rate is relatively independent of
tunnel characteristics and the disturbance environ-
ment. This aspect needs con�rmation through sys-

tematic experimental study in which the incoming
disturbance �eld is measured along with the features
related to growth rate.

Computational

The e�orts to model the 
ow, particularly to ex-
plain the reduced growth rate, are recent. These

e�orts have been related to stability, direct sim-
ulation, and a correlation of both. References 3
and 5 show that, at high speeds, the peak ampli-
tudes of the unstable waves decrease with increas-

ing Mc. Also, at high values of Mc , the three-
dimensional oblique disturbances tend to grow more
than the two-dimensional waves. This reduced am-

pli�cation of the disturbances may be responsible for
the delayed growth (in terms of distance from the
edge of the splitter plate) and, in general, the inabil-
ity of the 
ow to sustain the growth of disturbances.

Direct simulation of mixing layers has been con-

ducted in reference 6 for supersonic mixing layers
and in reference 19 for incompressible mixing lay-
ers. A high-order �nite-di�erence scheme is coupled

with �ne-resolution grids to capture the important
scales of the transport within the mixing layer in ref-
erence 6. The computations are aimed at establishing
the importance of Mc and elucidating the causes for

reduced mixing at high Mach numbers. The com-
putations use tanh pro�les and su�ciently large dis-
turbances on the cross-stream velocity at the in
ow

station. The in
ow disturbance magnitude is as high
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as 5 percent. While some conclusions are not af-
fected by this unnaturally large forcing, others are.

For instance, the mixing-layer thickness versus axial
distance shows a linear growth that tends, asymptot-
ically, to zero growth. This result has no parallel in
reality and is left unexplained. It is concluded from

the present simulation, as well as from reference 19,
that this result could be one of the e�ects of forcing.

The results for large Mach numbers indicate the

presence of thin shocks called eddy shocklets. The re-
duced mixing at high Mach numbers has been related
to the change in balance of terms involving baroclinic

and compressibility terms in the velocity equation.
Arguments of this nature were made in the temporal
simulations of reference 20; these arguments indicate
that baroclinic torque resulting from compressibility

causes distribution of vorticity; the di�usion of the
vorticity over a wider region results in weaker vortex
roll-up and slower growth.

Reference 19 contains numerical simulations on
incompressible mixing layers. The spread rate has
nonmonotonic behavior with distance for speci�c

cases, and this is related to the phase relationships
between forcing and the pairing processes. This
behavior is also related to the change in sign of
the Reynolds number stress. Speci�cally, in regions

where the spread rate decreases or remains nearly
constant with distance, the energy is transferred from
large-scale structures to the mean 
ow.

Reference 10, a review of free shear-layer mixing,
addresses several relevant issues. Many aspects of
this paper are for subsonic 
ows. The incompressible

shear-layer growth rate is expressed as

�0

x
= �00 = c�

�
1 � r

1 + r

�
(1)

where c� is a constant, possibly independent of veloc-
ity ratio r and/or the density ratio s . Based on cu-

mulative experimental evidence, it is concluded that
c� varies between 0.25 and 0.45. The large di�erence
is still unaccounted for. Experimental evidence from

incompressible 
ows is presented to indicate that the
growth rate is a strong function of Reynolds number
in a mixing layer.

The growth-rate dependence on Reynolds num-
ber seems to be a subject of some controversy.
Papamoschou discusses this question in reference 13;
he does not take a �rm position, but indicates that

he ignores the e�ect of Reynolds number. The reason
that the large dependence on Reynolds number ap-
pears di�cult to accept is that the mixing-layer phe-

nomenon, particularly in the early part, is largely

inviscid. Hence, one would expect weak Reynolds
number dependence at best.

The present work addresses the question of
Reynolds number dependence by changing the

Reynolds number through alterations of pressure
rather than velocity. This approach has been dis-
cussed by Dimotakis (ref. 10), and it is one of the
cleanest ways of changing the Reynolds number with-

out altering other aspects of the 
ow. For example,
changes of velocity also alter the initial boundary-
layer pro�les and have in
uences which have not been

evaluated until now. One of the aims of this work is
to treat this aspect as well.

Outline of PresentWork

The present work is a direct simulation of mixing
layers with di�erent reactive 
uids in the two adjoin-
ing streams. They are chosen so as to form a set for
reactive studies as well. The �rst part of the work

discusses the methodology for analyzing and inter-
preting the results of computation. The questions
concerning grid resolution and boundary e�ects are

discussed subsequently. The results of e�ects of free-
stream disturbance on the growth of the shear layer
at two di�erent values of Mc are then brought out;
both tanh and boundary layer, like initial pro�les,

are discussed. The various aspects|growth rates of
vorticity, velocity, mass fraction, and density; vor-
ticity plots and variation of turbulence quantities

through the 
ow �eld; and time and space spectra
of the 
uctuations|are examined to obtain insight
into the behavior of the mixing layer. The cases con-
sidered in the present work are shown in table 2.

The choice of the two cases is aimed at making cal-
culations, one at low Mc and another at a relatively
high value. For the two cases considered, Mc = 0:38

and 0.76. A fuel and oxidizer system was chosen in-
stead of single 
uid system to enable computations
with reaction as well (not reported herein). The tem-
perature of both streams is held the same, so as not

to additionally introduce a parameter through tem-
perature. The temperature for the present test is
2000 K, as it is representative of in
ow conditions

in a supersonic combustor of a hypersonic cruise ve-
hicle. Table 2 shows that the speci�c-heat ratio 


is nearly the same for both streams,

fuel

air

= 1:0133.

This similarity is because of the high temperature of

the stream and because the molecules involved are
diatomic in nature.

The in
ow-plane pressure is the same on both

sides of the mixing layer at 0.101325 MPa (1 atm).
Changes in Reynolds number are made by changing
the pressure above and below the nominal value by a

factor of 2. The convective properties are calculated
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from

Mc =

�
Mp �Ms

q
�p
s
�s
p

�

�

s

p

�1

4

�
1 +

q
�p
�s

� (2)

and

Uc =

p
�pUp +

p
�sUs�p

�p +
p
�s

� (3)

These are the de�nitions presented in reference 14.

They use the geometric average of the values of Mc

on the primary p and secondary s sides. The primary

side is de�ned as the one with the higher Mach

number, no matter what the speed. In equation (2),


 has little impact. If we ignore the 
 terms, then

equation (2) reduces to

Mc =

p
�sMp� p�pMsp

�p +
p
�s

(4)

As discussed previously, Papamoschou 's de�nition of

Mc (ref. 13) is

Mc =
Up � Us

ap + as
(5)

Equation (2) reduces to the above result if we recog-

nize that a =

p

p=�, and p and 
 are the same for

the two streams. The initial pro�les are chosen as a

tanh pro�le as follows:

um =
1

2
[(U1 +U�1)+ (U1 � U�1) tanh ky] (6)

The constant k is chosen as 1800 m
�1

, so that

the e�ective boundary-layer thickness, based on a

99-percent free-stream velocity criterion, is about

2 mm. For other numerical experiments, boundary-

layer pro�les are given by

um = U1 [1� exp (�k1y)] (y � ym=2) (7)

and

um = U�1 [1� exp (�k1y)] (y � ym=2) (8)

The constant k1 is chosen as 4000 m
�1

. The e�ective

boundary-layer thickness on each side is about 1 mm.

This pro�le is intended to simulate the normally

obtained experimental conditions.

Table 3 shows the nondimensional parameters

relevant to the cases considered. Several instructive

features can be derived from tables 2 and 3. The

velocity of the airstream is lower than that of the fuel

for Mc = 0.38, but ismuch higher forMc = 0.76. The

momentum ratios shown in table 3 indicate that the

momenta are balanced for Mc = 0.38 but are greatly

in favor of the airstream for Mc = 0.76. The shear

layer therefore remains roughly in alignment with the

central axis in the �rst case, but bends over toward

the fuel side in the second case. The implications

for the computations are that the grid has to be

well resolved, even in the outer regions, if the details

are to be captured in the second case, or a twisted

stretched grid must be used. In fact, this problem

can be so serious that reactive 
ow computations do

give considerable di�culty in the second case unless

one of these strategies is adopted.

The second part of the work concerns the layer

thicknesses. The thicknesses, based on 99-percent

free-stream velocity, are about 1 mm on each side

of the splitter plate. The momentum defect thick-

nesses � for the tanh and boundary-layer pro�les are

very di�erent from each other. In the tanh case, it is

about 1.54 mm, and in the boundary-layer case, it is

about 0.102 mm. This large di�erence implies that

for the same streamwise grid length (e.g., 100 mm),

only about 64 momentum thicknesses can be cov-

ered with the tanh pro�le, but about 1000 momen-

tum thicknesses can be covered with the boundary-

layer pro�le. For small free-stream disturbance levels

consistent with experiments, no transition should be

expected for the tanh case, but signi�cant transition

should be expected for the boundary-layer case. This

situation can be altered if a free-stream condition of

high turbulence intensity is imposed. If the transi-

tion is caused early enough, the asymptotic growth

rate from this calculation would be representative

of turbulent boundary-layer growth. The Reynolds

number based on boundary-layer thickness is about

3:5� 10
3
to 1:2� 10

4
for the two Mach number cases.

Based on the convective speed, momentum thickness,

average density, and viscosity, then R = 360 to 550.

If the reference speed is changed to the di�erence

in speeds between the two streams, then R = 250

to 400. This last quantity is brought out because the

di�erence in velocities is used by some workers for

normalization purposes (ref. 6). These values are low

enough that the direct simulation approach with the

current-day computational aids is expected to lead

to realistic results.

For disturbances to be introduced with the in
ow

pro�les, several numerical experiments have been

conducted. The disturbance function is chosen as

ud = (U1 � U�1)

3X

i=1

ci sin!it (9)
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vd = (U1 � U�1)

3X

i=1

di sin !it (10)

The velocity variation with y at x = 0 is then given
by u = um + ud and v = vd. In most cases,

c2 = c3 = 0, !1 = 100 kHz, c1 = 0:04, d1 = 0:04,
d2 = 0:02, d3 = 0:01, !2 = 200 kHz, and
!3 = 300 kHz.

In a few preliminary runsmade with no in
ow dis-
turbance, the layer grew very little to about 100 mm.
There was only a trace of growth toward the end.

The time-sampled data at this plane were subjected
to spectral analysis, and the frequencies, with rel-
atively large amplitudes, were chosen and used in
equations (9) and (10). The choice of the amplitudes

is arbitrary and is made to ensure that the rms val-
ues of the 
uctuations are of a required magnitude.
The above disturbances (ud; vd) are introduced ei-

ther into a speci�c region of about 4 mm or over
the entire region. In some experiments, the distur-
bances are restricted to the fuel or oxidizer region
only. These calculations were performed to observe

the sensitivity of the mixing layer to the location of
the disturbances.

Code and Algorithms

The code used in the present calculations is the
SPARK combustion code developed at Langley Re-
search Center over the past 4 years. It solves

the Navier-Stokes equations, including energy and
species conservation. The models chosen to eval-
uate viscosity, thermal conduction, and mass di�u-

sion allow for a mixture of perfect gases. In the �rst
version, the code used a second-order spatially and
temporally accurate, two-step explicit MacCormack
scheme. (See ref. 21.) Subsequently, it has been mod-

i�ed to include a variety of higher order spatial al-
gorithms, including linear and compact algorithms
(fourth and sixth order) and various upwind algo-

rithms (third and �fth order). A brief description of
the algorithms is provided in the appendix. Based
on the supersonic streamwise characteristics of the
mixing layer, a third-order, upwind-biased algorithm

is used for the streamwise direction. A fourth-order,
central-di�erence algorithm (ref. 22) is used in the
cross-stream direction. The temporal accuracy is still

second order. This choice represents a compromise
between the accuracy of higher order numerical al-
gorithms and the robustness and e�ciency of lower
order methods.

Boundary Conditions

The problem is cast in the x-y coordinates, such

that the 
ow is oriented along the x-axis. The two

streams extend from y = 0 to ym=2 and ym=2 to
ym , where ym is the maximum extent of y. In the

streamwise directions, the boundary conditions at
x = 0 are the set values of u, v, p, T , and fi ,
since the in
ow is supersonic. The 
uctuations, when
introduced, are only in u and v. In a few experiments,


uctuations in p are also set. At the supersonic
out
ow plane x = xm , �rst-order extrapolation of
the primitive variables is used.

At y = 0 and ym, the gradient
@(property)

@y = 0 is

set. To ensure that the boundaries are far enough
for this condition to be valid, the outer regions

are chosen as 15 times the initial boundary-layer
thickness. Therefore, ym = 30 mm. A few numerical
studies have been conducted with ym = 50 mm. In

one case at Mc = 0.76, doubts were raised as to
whether the results were a�ected by the boundary.
In this case, the boundary line is set at ym = 100mm.
In all cases, the results obtained at ym = 30 mm were

reproducible and, to this extent, seem satisfactory.

Choice of Grids

It is intended that most scales of importance be
captured in the calculations. Numerical resolution of

the large-scale vortical structures presents no prob-
lem. However, the relatively �ne scales at which dis-
sipation through viscosity occurs need �ne grids for
capture. The Kolmogorov scale, which describes the

�ne scales, is related to the large scale (integral scale)
as follows:

�

�
= CR�

3
4 (11)

where R is the Reynolds number based on a charac-
teristic thickness. The Reynolds number of the 
ow
with the initial boundary-layer thickness as the rele-
vant scale varies from 3:5� 103 to 1:2 � 104 for the

problems treated. In the downstream region, where
the shear-layer thickness is larger, Reynolds number
goes up to 1:5 � 104. The constant C is to be es-

timated. The balance of dissipation and production
is used in reference 23 to estimate the constant as
typically 2.5 for incompressible 
ows. Recognizing
the fact that in compressible 
ows the disturbances

tend to have much lower growth rates|typically 2
to 3 times smaller than in incompressible 
ows|and
that the asymptotic structure retains this e�ect, the

constant is between 5 and 7. For a typical extent
of growth estimated from known data|� = 10 mm
and R = 1:0 � 104|� = 0:056 mm. The smallest
size of the computational domain is 0.025 mm. The

stretching of the grid makes the grid size increase
to 0.4 mm at a distance of 10 mm from the central
line. This increase does not ensure that all the scales

will be captured, as calculated in reference 17, but it
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does ensure that most scales of importance are cap-
tured. Since this is an important issue, the justi�ca-

tion for the choice of the step size is not limited to
this argument. The spectra obtained from two di�er-
ent �ne grids are compared to provide the necessary
justi�cation.

The number of grid points used in the y direction
varies from 101 to 176. Many results obtained here
are for 151 grid points over a region of 30 mm. A

grid compression factor of 10.0 allows the region of
10 mm to be covered with about 95 grid points.
The x direction is typically embedded with 0.5-mm
equispaced grids. Some numerical experiments with

a grid-point spacing of 0.25 mm were also obtained
to ensure that the results are grid-independent for
a large number of 
uctuating parameters that are

examined. The total number of grid points is 201,
251, or 301, depending on the region examined|50,
100, or 125 mm, respectively. In one case, a 200-mm
region was treated, because the growth of vortical

structures was virtually absent up to 125 mm. The
minimum step size chosen should, again, be able to
capture the scales. The vortical scales in the axial

direction are 3� to 4� . These scales are covered by
60 to 80 points, which is good in most cases where
the 
ow is in the transitioning stage, but marginal in
the boundary-layer case in a zone where turbulence

has set in signi�cantly.

Methodology and Tools of Examination

It is important to understand the 
ow behavior in

each of the cases computed. Since there is a variation
of the 
ow behavior in both space and time, there
is a need to analyze both. The spatial variation
is understood largely by contour plots of vorticity,

pressure, and fuel mass fraction. The presence of
shocks is best understood in terms of a quantity
called the \shock function based on pressure." Other

plots, including the v velocity|the divergence of
velocity|are usually less revealing with regard to
the presence of sharp changes of pressure in the

ow. However, this presentation is restricted to the

contour plots of pressure.

The speed of vortical structures (expected to be
near the convective speed) is obtained from pressure

versus x plots at some value of y near the center.
These plots are made at a few times that are su�-
ciently spaced apart. The rate of movement of the
point of peak pressure along the x-axis is the convec-

tive speed.

To determine a statistical time behavior, it is nec-
essary to time sample the 
ow, preferably at equal

time intervals. The SPARK2D code calculates the

time step based on a numerical stability criterion
(CFL). It varies signi�cantly in the early part of the

calculation but settles down to a value with a 
uc-
tuation of about 5 percent. To take these features
into account and the fact that the 
ow must attain a
statistical steady state before sampling is performed,

the code is run for each case for a duration of about
three convective sweeps of the 
ow. Each sweep takes
a time given by xm=Uc; this is about 50 msec for the

Mc = 0.38 case and 30 msec for the Mc = 0.76 case.
The time step is typically 0.005 �sec; therefore, it
takes 20000 to 30 000 time steps before statistical
steady state is achieved. A total of 400 to 600 time

samples of the 
ow �eld involving p, u, v, T , �, fi ,
and vorticity, in the most important y region and
at speci�c x stations, are stored at equal time inter-

vals. These samples are subsequently analyzed by
a separate statistical package speci�cally developed
for this purpose. The results from this package in-
clude several quantities: the mean and root mean

square of 
uctuations of all the parameters, Reynolds
stress and other correlations of velocity with tem-
perature, mass fractions and pressure, average thick-

ness estimated by various means, probability density
function of the passive scaler (mass fraction of H2)
and other parameters as needed, time spectra, and
x spectra (wave-number plot) for the variables de-

sired. The intention was to obtain the spectra in the
y direction, but this ob jective was impeded by the
problem of calculating the error-free integrals of the

variables known at speci�c points (unequal intervals
in y) with harmonic functions. These calculations
produced a signi�cant amount of high-frequency
noise, even though a simple quadrature rule was used.

The x spectra obtained from data of equal intervals
were su�cient to draw inferences. The shear-layer
thickness was obtained for u, vorticity, density, and

H2 mass fraction. Of these, only vorticity tends to
zero at y ! �1, and the others tend to nonzero
�nite values. Therefore, the thicknesses are de�ned
by

�u =
(U1� U�1)

(dumean=dy)max

(12)

with similar de�nitions for density and mass fraction
of H2, with the velocity u replaced by the correspond-
ing quantities. For vorticity thickness, the de�nition

is given by

�
 =

R
1

�1

dy


max
(13)

where 
 is vorticity.

De�ning � as in equations (12) and (13) turned
out to be reasonable for several cases. However, in

the case of the boundary layer and in some cases of
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tanh pro�le, the preceding de�nitions gave what ap-
peared to be inconsistent results. In the transitional

regime (a regime where the vortical structures begin
to interact and lead to other structures of smaller and
larger sizes), the development of the pro�les was such
that the peak gradients of mean quantities did not

possess a monotonically decreasing trend. A small
kink in the pro�le, as can be seen in some of the plots
of mean quantities described subsequently, upset the

monotonicity of the gradients. As such, a spurious
decrease of the growth of the layer was indicated,
even though an examination of the plot of the mean
pro�le did not show such a behavior. For this reason,

a thickness based on a 98.5-percent free-stream value
was obtained and presented.

Results and Discussion

Hyperbolic-Tangent Pro�le

Figure 2 shows a typical result of a structure
superimposed on the grid and the grid distribution.
The maximum size of the vertical structure is about

10 mm, the minimum grid size is 0.025 mm, and the
grid size at the outer edge of the structure is 0.4 mm.

Figure 3 contains the plots of growth rates with

axial distance for the nominal case (Mc = 0.38) along
with a �ner y grid and a �ner x grid. All the cases
are for a region 100 mm (in x) by 30 mm (in y). The
nominal case is for 201 by 101 grid points. The �ner

y-grid case has 151 grid points. The �ner x-grid case
has 301 grid points. The growth rates are obtained
by averaging 250 time samples. The di�erences in

the results of �gure 3 are the results of averaging and
predictions of grid resolution at the levels employed
for the nominal case.

Figure 4 contains similar plots to examine the

in
uence of the boundary. The y region of 30 mm
is extended to 50 mm. Again, the di�erences seen
are simply the result of statistical averaging, and

the boundary of y = 30 mm should be satisfactory.
The question of the outer y boundary being kept at
ym = 30 mm (15 mm away from the center of the
shear layer) becomes more serious for the Mc = 0.76

case, because, in this case, the changes in pressure
are much larger than in the Mc = 0.38 case, and
boundary e�ects on the radiation of these pressure

waves could be more signi�cant.

Figure 5 contains the contour plots of vorticity
and pressure for the small domain (ym = 30 mm
with the mixing layer centered at 15 mm) and the ex-

tended domain (ym = 100 mm with the mixing layer
centered at 50 mm). These plots use the same scale
and same range of vorticity at about the same time,

though not identical. The fact that the vorticity plots

look identical may be misleading. Also, the fact that
the pressure plots retain nearly identical behavior is

a better indication that the outer-boundary set at
ym = 30 mm is reasonable. Other data involving
means and 
uctuations in the central 10 mm region
show di�erences less than 3 percent|not very much

larger than errors of statistical averaging, which are
about 2 percent. The veri�cation of grid resolution
and boundary e�ect based on growth rates, means

of 
ow variables, and contour plots of pressure was
thought to be more complete with the examination
of time and wave spectra.

Figures 6 and 7 refer to time and space spectra
for u and v shown at the initial and �nal stations.
The plot at the initial station shows the frequencies
used to excite the layer in u and v. The spectrum

approaches a function with a sharper peak by us-
ing a larger number of samples. The di�erences in
spectra seen in other cases are the usual statistical

di�erences. The spectra show more than a two-order
range of frequencies from about 12 kHz to 1.5 MHz.
The peak energy containing eddies have a frequency
between 40 and 100 kHz. The quantity shown as

amp is the root of kinetic energy of u 
uctuations
in the speci�c frequency range. The dominance of
the initial disturbance at a frequency of 100 kHz is

seen 50 mm downstream, but generation of both sub-
harmonic and higher harmonic frequencies is taking
place. At 100 mm downstream (60�), the amplitude
of the initial disturbance has come down from 100

to about 50 m/sec, and the other lower frequencies
have increased in amplitude substantially (i.e., from
about 5 m/sec to as much as 20 to 50 m/sec). Also,

the higher frequency spectrum is populated.

Figure 8 contains the velocity-vector plots, con-
tours of vorticity, and pressure and mass fraction of

H2 for the tanh pro�le case at Mc = 0.38. These
results are included to illustrate the relationship be-
tween various quantities. The mass fraction of hy-
drogen follows the vorticity plot, which shows that

mixing is related to the vortical structures. The pres-
sure plot shows that the pressure is lowest near the
center of the vortical structures and peaks between

the structures.

The in
uence of intensity of 
uctuations on the
growth of vortical structures is shown in �gure 9.

With no in
ow disturbances, the growth is negligible.
The viscous entrainment in the laminar range is,
indeed, extremely low. With an increased level of
disturbances at 0.92, 1.84, and 3.68 percent (rms

value), the instability begins at smaller distances,
and the growth of vortical structures is stronger.
If the growth of the structures was associated with

the transition process, then it could be inferred that
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the process has occurred at about 80 to 90 mm at
0.9 percent rms disturbance. For realistic transition

distances of the order of 40 to 50 mm, the intensity of

uctuation needed is of the order of 3 percent. This
is very large compared with the kind of free-stream
disturbances expected in wind tunnels or free 
ight.

This feature is strongly related to the nature of the
initial pro�le.

Figures 10 and 11 contain the corresponding plots
forMc = 0.76. These plots are included for compari-
son with those forMc = 0.38. The growth rate of the
vortical structures for 3.6 percent 
uctuation seems

as large as for the Mc = 0.38 case.

Figure 12 shows the e�ect of the location of the
disturbance on the growth of the shear layer. Dis-

turbances in the free stream away from the shear
layer seem to have little in
uence on the growth of
the layer. Inclusion of the shear layer into the dis-

turbance �eld makes all the di�erence, as seen from
the third and fourth plots. Though a careful exam-
ination of these plots shows that the disturbance in
the air side (lower) leads to slightly larger structures,

a generalization is not possible with the limited re-
sults available. Disturbances set around a region
that does not include the shear layer are not su�-
cient to realize the e�ects of the disturbance �eld.

It is necessary to include the shear layer and a re-
gion of about four times the layer thickness to obtain
the full e�ect of the disturbances. This result may

have important practical implications in terms of
mixing-enhancement techniques. To explicitly state
the result, the introduction of disturbances around
the shear layer in a frequency range anywhere from

50 to 150 kHz should be able to cause signi�cant
enhancement of mixing. The frequency range pre-
scribed here has been obtained after a study of a

wider range of parameters than discussed herein.

Figure 13 shows the mean pro�les of u versus
y as a function of axial distance for Mc = 0.38.

The growth of the layer is shown by the dotted
lines. The distinct change of growth rates with
distance is noticeable. Since the �rst part of the
growth is laminar, a similarity plot on the basis

of u versus y=
p
x is presented in �gure 14. The

laminar similarity seems to be well obeyed for this
range. A plot containing data up to 100 mm showed

that no laminar similarity exists in the latter portion
(not shown here). The turbulent 
ow similarity is
on a basis of u versus (y � y0) = (x� x0). In this
coordinate, y0 is the center of the mixing layer and

x0 is the virtual origin. The value of x0 is not known
a priori. Figure 13 shows that the virtual origin x0
lies at approximately 0.015 m. Collapsing the data in

terms of this similarity variable is shown in �gure 15.

Determination of convective speed is based on the
speed of the structures. The movement of the vorti-

cal structures also causes a movement of the pressure
versus x pro�les. The plots of p versus x at a spe-
ci�c y station for Mc = 0.38 and 0.76 are shown in
�gures 16 and 17. Even at Mc = 0.38, the changes

of pressure are, by no means, insigni�cant; they vary
between 0.07 and 0.14 MPa. ForMc = 0.76, the pres-
sure variation is between 0.045 and 0.17 MPa. The

free-stream pressure is 0.101325 MPa; therefore, the
pressure variation over the free-streamvalue is signif-
icant. The 
ow has shocks and regions of expansion.
One of the interesting features of the 
ow is that the

regions of shocks occur between structures and over
them. The 
ow pattern seen here is di�erent from
those observed in reference 6 for air at comparable

values of Mc. The shapes of the pressure x plots
seem to be the same at various times, certainly at
the times shown in �gure 16. On the other hand, the
shape of the pressure variation forMc = 0.76, shown

in �gure 17, does not remain the same, and there
are serious distortions in the shapes for much shorter
times than the sweep time. Convective speeds ob-

tained from the structures based on a procedure de-
scribed previously are presented in table 4, and the
results from the standard formula are also shown.
There seems to be a di�erence of 100 m/sec in the

�rst tanh case, where Mc = 0.38. There is a much
smaller di�erence in the boundary-layer case; it may
be good enough for showing the convective speeds.

For the high values of Mc , the di�erence in the two
results is even larger (�250 m/sec). In one sense, this
di�erence is understandable because of the dilatation
of structures. In another sense, it re
ects the possi-

ble invalidity of the formula at high values ofMc . In
view of this uncertainty, a calculation was made for
a composition with 30 percent H2 by mass in the fuel

stream and with the convective speed evaluated. In
this case, the density ratio (�5.1) was intended to
verify the nature of the previous results. However,
even in this case, the di�erence between the speed of

the structure and the result from the formula seems
di�erent by about 100 m/sec. Perhaps the expected
accuracy of the formula can be no better than 3 to

4 percent. In the case of Mc = 0.76, the result for
uc is di�erent by 7 percent, and the basic issue of
dilatation of structures a�ecting the result remains.
Hence, the use ofMc , in a manner other than desig-

nating the condition, needs to be examined carefully.

Figures 18 and 19 show the growth of the layer

computed from formulas described previously for u,
�, and H2 mass fraction. The thicknesses seem to
decrease after some growth. The fact that growth

decreases, is, by itself, not very surprising. Forced
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shear layers show such trends (ref. 19), but typically
at less than 10 percent. The dips in some quantities

in �gures 18 and 19, particularly the latter, are more
than this magnitude. Careful examination showed
that these dips are related to the way that mean pro-
�les of various quantities behave during transition.

A small kink in the transitioning mean pro�le can
cause the presence of a local gradient smaller than
in the downstream location. This di�erence causes a

slightly larger growth rate. It may likewise turn out
downstream that, although the growth rate is larger,
there is a lower estimate of the growth. The combi-
nation of these events produces curves of the shapes

seen in �gures 18 and 19. The growth rates that
can be extracted from these plots are discussed sub-
sequently, along with results of the boundary-layer

pro�le.

Figures 20 to 26 refer to the statistics of 
uctuat-

ing quantities. Figure 20 shows the variation of the
rms value of u in the �eld. The top portion shows
the variation along x at a particular y station. Al-

though the information contained in the top portion
is embedded in the two-dimensional plot, it is ex-
plicitly brought out for a clearer appreciation. At
larger intensities of 
uctuation, the 
uctuations de-

crease over a part of the 
ow �eld before the ampli�-
cation process takes control. The 
uctuation pro�le
with y is not symmetric. A front is apparently cre-

ated (�50 mm) and is strengthened to a sharp peak
on the air side. The intensity of 
uctuations seems
to settle down to values of about 6 to 8 percent, ir-
respective of the initial 
uctuation intensity. This is

one indication of the fact that the subsequent region
of the 
ow is becoming independent of the initial dis-
tribution of the 
uctuation.

Figure 21 shows the variation of v 
uctuations.
The instantaneous values of the v velocities seem

very large, as large as 400 m/sec, and they have a
large deviation on either side of zero. These veloci-
ties cause the 
ow to show up as large structures on
a vorticity plot. The velocity-vector plots in �gures 8

and 10, where the vector is changing directions, are
also re
ective of these cross-stream velocities. The
changes in velocity directions in a supersonic 
ow re-

sult in shock waves, and these cause large pressure
variations in the mixing layer. The mean velocity,
however, is not large by comparison (�15 m/sec).
The peak rms value of a v 
uctuation is 8 percent,

which is comparable to the peak rms value of u 
uc-
tuations. This feature is also reminiscent of fully
turbulent 
ows. The 
uctuation peaks toward the

air side (lower). The mean and rms density are pre-
sented on an x-y plot. The initial change of density
from 0.075 to 0.175 kg/m3 is evident from the mean

density plot. The growth of the layer from zero thick-
ness is clearly visible. The rms value of the � pro�le

acquires a top-hat pro�le with a maximum of 34 per-
cent. The intensity aspect of the density pro�le is
that the top-hat pro�le is acquired around the tran-
sition region; broadening of the pro�le is the only

thing that happens farther downstream.

The mean and rms temperature variations are
shown in �gure 23. The temperature pro�le in the

present calculation is, like a passive scalar and unlike
H2 mass fraction, a�ected by gas dynamics. There
are changes in the mean temperature to the extent
of 25 to 30 K, a decrease from the set initial value.

The extent of the change of temperature must be
understood in terms of energy exchange between
random energy and ordered energy. If the inviscid

global gas dynamics equation is used along stream
lines as follows:

cpT +
V

2

2
= Constant (14)

we can di�erentiate; then, �T � �V�V=cp, where
V is the magnitude of the vector velocity. For typical
values (V � 2250 m/sec, �V � 20 m/sec, and cp �

1800 J/kg-K) �T � 25 K, a value consistent with
the change shown in the upper plot of �gure 23. The

uctuation of the rms value of T seems to stabilize

around 3 percent. This 
uctuation is induced by the

uid mechanical e�ects; there are no other energy-
exchange mechanisms. Figure 24 shows the plot of
mean and rms values of H2 mass-fraction pro�les;

rms mass fraction is not normalized. Therefore, the
peak rms normalized by the mass fraction of the
input fuel stream is about 0.2 percent. While the plot

of the mean pro�le looks similar to that of density
(in a reversed manner), the variation of the rms
H2 mass fraction seems quite di�erent from that of
density. The curve looks like aGaussian distribution.

The relationship between mean-density and mass-
fraction pro�les is expected because density changes
are caused only by molecular weight changes induced

by H2 di�usion into the airstream.

Figure 25 shows the plot of vorticity and Reynolds
shear-stress �elds. The Reynolds shear-stress pro-
�le appears to be growing in size and magnitude at

100 mm (64� downstream). This trend shows that
the transition process is incomplete. An attempt is
made to examine the validity of the Baldwin-Lomax
model for turbulence. In this model, the shear stress

is represented by �u
0

v
0 = Constant [�m(�



2
m)],

where �
 is the vorticity thickness, 
m is the mean
vorticity, and primes denote 
uctuations about the

mean. The constant is calculated from the actual
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values of the left- and right-hand terms and plotted

in �gure 26. These calculations were made for both

101 and 151 grid points to establish the validity of

the results. As shown in the plot, the \constant" is

constant over a region of the mixing layer but de-

parts from it signi�cantly, particularly in the peak

shear-stress area. The fact that the 
ow has not de-

veloped into a fully turbulent regime may be partly

responsible for this departure. If a magnitude must

be used for the constant, it would be about 0.015.

Furthermore, what is still not clear is what in
uence

the assumption of constancy has on the prediction of

growth rates of turbulent shear layers. These issues

have to wait for calculations of modeled equations.

Boundary-Layer Pro�le

Figure 27 shows the plot of the vorticity contours

for a range of initial disturbances from 0 to 3.68 per-

cent. The contour plots of vorticity appear thinner

than for the tanh case, because, unlike the tanh case,

vorticity changes signs across the shear layer. Note

the di�erence in the scales between the boundary-

layer and tanh cases.

The plots are very informative. With no im-

posed 
uctuations, there seems to be an onset of

instability at about 80 mm from the splitter plate,

and a few vortical structures have begun to develop.

The spacing of the vortical structures seems much

smaller than for the tanh case. The average spac-

ing for the boundary-layer case is about 6 mm and

23 mm for the tanh case. The spacing is normal-

ized with respect to initial-layer thickness (2 mm)

and is 3.0 for the boundary-layer case and 11.5

for the tanh case. The observed spacing ratio is

about 2 (ref. 13). This is the �rst indication that the

results of the boundary-layer pro�le show more real-

istic results than the tanh pro�le. The point where

the �rst vortical structure gets developed, which may

be taken as indicative of the beginning of transition,

moves substantially to lower x values with the impo-

sition of small, but realistic, disturbance levels. The

transition distances are 35, 27, 25, and 20 mm at

progressively increasing disturbance levels.

The single large jump in the transition distance

occurs from 80 mm to 35 mm for a change in dis-

turbance level from 0 to 0.115 percent. Subse-

quent increases in disturbance level seem to have

progressively less in
uence. The transition dis-

tance, normalized by momentum thickness, is 345

for a 0.115-percent disturbance level and 265 for a

0.23-percent disturbance level. The experimentally

observed transition distance is 165 to 300� (table 1).

Transition distances up to 700� are quoted for various

cases in reference 13. The transition Reynolds num-

ber can be computed based on RT = �avgucxT =�avg .

When �avg = 0.125 kg/m
3
, uc = 2150 m/sec, and

xT = 0.04 m, RT is 0:18� 10
6
. The value of uc used

here is from the standard equation and is not the

value obtained from the calculations. The di�erence

between the two values is no more than 5 percent,

and this di�erence is quite small for the estimation

of R. The transition RT given in reference 9 is

0:2� 10
6
� 0:03� 10

6
. The results from reference 18

were quoted previously to be between 0:36� 10
6
and

0:53 � 10
6
. These values are based on free-stream

velocity. If they are based on the convective speed

of the structures, which, in this case, is half the

free-stream speed, the transition Reynolds number

is 0:18 � 10
6
to 0:26 � 10

6
. Again, the comparison

seems good between the experimental values and the

predictions. Thus, the present results with boundary

layer as the initial pro�le seem to predict realistic

transitional features at realistic disturbance levels.

The transition behavior is more vividly depicted

on time-spectra plots shown in �gure 28 for three

x and y stations. The spectra are shown for both

0- and 0.115-percent disturbance-level cases. The

upper plot shows the time spectra at x = 0. The

disturbance seen in this �gure at x = 0 is consistent

with the description of initial-disturbance structure

discussed previously. The peak disturbance is about

1 to 2m/sec in the central zone. Atx= 50mmdown-

stream, the amplitudes are 10 to 20 m/sec and are

50 to 90 m/sec at x = 100 mm downstream. The

mean velocity has also increased from near zero

to as high as 1500 m/sec during this transition.

The nature of the plot at the downstream stations

shows that most other frequencies, both subharmonic

and the higher harmonics, are excited perhaps more

strongly than indicated with the tanh pro�les. The

plots, with respect to the case involving no distur-

bances, show that the 
ow has picked up noise that

was generated numerically. Interestingly, the distur-

bance is selectively ampli�ed, and peak growth oc-

curs at about 150 kHz, which implies that the shear

layer is sensitive to disturbances at this frequency.

This result can be expressed in termsof a nondimen-

sional quantity, St = �f=uc, where f is the frequency.
For � = 0.102 mm and uc = 2150 m/sec, St = 0:007.

Perhaps St = 0:007 as a criterion for excitation is

valid over a much larger range of parameters. In

reference 24, a quantity called \preferred mode" is

indicated in jets and mixing layers, and the Strouhal

number is between 0.002 and 0.012. It is stated in ref-

erence 24 that \mixing layers can be manipulated ef-

fectively with very low forcing levels|0.01 to 0.1 per-

cent of the average velocity|provided the excitation
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is applied at the proper frequency." This comment is
entirely consistent with the observations of the

present computations.

Figure 29 shows the plots of pressure versus x for
three successive times. The extent of the pressure


uctuations is the same as in the tanh case, but,
consistent with the vorticity plot, the pro�le has
many more waves within the same range of x. The

convective speed, computed from the movement of
the pressure waves with time, is presented in table 4.
Aswas also indicated previously, this value compares
well with that from the formula.

Figure 30 shows the plot of the mean u pro-
�les and the minimum u velocity versus x. A
plot of minimum u with a nondimensional x de-

�ned by xmn = x=(�R�) is presented in reference 11.
The Reynolds number uses the average of the unit
Reynolds number on both sides. The plot shows that

at about xmn = 1, the asymptotic value is reached.
Substituting the values of various quantities and ob-
taining x, a value of x that corresponds to xmn = 1,
yields x = 45:5 mm. The upper plot of �gure 30

shows that the asymptotic value of u seems to have
been reached at x = 40 to 50 mm.

Figure 31 shows the plot of the rms value of u

over the �eld. The rms value of u increases from
a relatively low value of 0.1 percent, builds up to
around 10 percent, and then seems to saturate at

this level throughout the �eld after the transition
process starts. A careful examination shows that
the rms value of u versus y seems to have attained
similarity around 90 mm (900�). The rms value

of v seems to peak and decay downstream of 600�
(�g. 32). The mean v is near zero throughout the
�eld. The instantaneous v goes up to �100 m/sec.

The mean and rms values of density are shown in
�gure 33. Unlike the tanh case, the rms pro�les do
not seemto have the top-hat shape, and the variation
with y is asymmetric. The peak rms goes up to

20 percent, and the mean-density pro�le appears
to be approaching similarity. The temperature and
H2 mass-fraction pro�les are presented in �gures 34

and 35. The mean pro�les are similar to those
obtained for the tanh case. The rms pro�le shapes
are slightly di�erent, but the features|namely, the
peaking of rms intensity and subsequent decay in the

axial direction and magnitudes|are about the same
as for the tanh case.

The growth data for the boundary layer are pre-

sented in �gure 36. As explained previously, the
growth was obtained by using the u pro�le. The
results for most 
uctuations show a region of small

decay before the growth is established; this decay

may be due to a coupling between the in
ow dis-
turbance structure and the 
ow instability. For large


uctuations, the growth rate is approximately linear.
In the other cases, a growth rate can be derived in
the range where there is no decay or constancy. Sur-
prisingly, the slope obtained for these cases is nearly

the same. These growth-rate data are presented in
table 5. The results obtained for other tanh cases are
also shown in this table. The growth-rate trends for

various 
uctuation intensities are not the same. In
all cases, the growth rates were estimated from the
slopes in the latter part of the x range. The linear
growth rate for the lower intensity 
uctuations may

not have been achieved. The growth rates based on
H2 mass fraction or density are the same for all the

uctuation intensities. The data forMc = 0.76 were

derived from similar considerations. Again, there are
variations. An estimate of the mean value of the
growth rate was obtained and is included in the ta-
ble. Further, the growth rate is divided by that for

the incompressible case (eq. (1)) to obtain the com-
pressibil ity e�ects as in the results of reference 13.
These data are presented in �gure 37 with experi-

mental results. While there is signi�cant variation of
the numerically obtained result, the reduction of the
growth rate with Mc is unmistakable. It may well be
that if the simulations are carried out for much larger

values of xm=�, the growth-rate data would lead to
a more consistent picture.

Figure 38 shows the terms of the conservation
equations of u, v, and energy. The only dominant
terms are the unsteady and convective terms. The

pressure-gradient terms are about 25 percent of the
convective terms. The viscous terms seem insigni�-
cant on the scale shown, but the 
ow is not necessar-
ily inviscid. The 
ow is a�ected by 
uctuations not

evident in the plot of instantaneous quantities. These

uctuations lead to a stress like the viscous stress
(the Reynolds stress), which is known to be impor-

tant. To determine their importance, the terms must
be averaged and the relative orders of magnitude
must be examined. This determination shows that
the Reynolds stress terms constitute up to 30 per-

cent of the convective terms. Figure 39 con�rms the
validity of these results in terms of the variation of
pressure; variation of pressure a�ects Reynolds num-

ber. Changing the Reynolds number by a factor of 4
causes little change to the vortical structures and the
mean growth rates. Data for incompressible shear
layers for local Reynolds number with �xed x (in

the case considered 0.45 m downstream), in which
a change in Reynolds number from 4:3 � 104 to
6:7 � 104 shows a visible change in growth rate, are

presented in reference 10. Since the full experimental
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details of this work are unpublished, the resolution
of the issues involved in the experiments must await

discussion at a future time.

Conclusions

This study is an exploration of the direct numer-
ical simulation of high-speed mixing layers. After
establishing the validity of the approach to resolving
the mixing layer and the methods of exploring the

structure of the mixing layer, the issues concerning
the e�ects of free-stream disturbance intensity, the
nature of the pro�les, and the role of Reynolds num-

ber are studied. The following conclusions are drawn
from the present study:

1. The calculations show that the pro�le of the

hyperbolic tangent calls for unnaturally large distur-
bance levels (�3 to 4 percent) to initiate transition
in the 
ow. Boundary-layer pro�les, on the other

hand, show transition Reynolds numbers of about
0:18� 106; these numbers are consistent with the ex-
perimental results at disturbance levels of the order
of 0.1 percent. The transition Reynolds number does

not strongly depend on disturbance intensity over a
range up to 0.2 percent.

2. The asymptotic turbulence intensities attained

in the shear layer for the boundary-layer case (10 per-
cent) are larger than for the hyperbolic-tangent
(tanh) pro�le (6 percent), and the same trend is true

for Reynolds number stress.

3. Convective Mach numbers derived from the
pressure versus streamwise coordinate plots show sig-

ni�cant di�erences from those computed with stan-
dard formulas to a large extent at high convective
Mach numbers. These di�erences are related to the
signi�cant changes in the shape of the vortical struc-

tures in the 
ow �eld with time. This feature makes
the idea of a convective Mach number less represen-
tative in distinguishing 
ows of di�erent compress-

ibility at high convective Mach numbers.

4. The estimates of the growth rates from the
latter region in growth versus streamwise coordi-

nate plots are straightforward in most cases, and the
growth rates that are normalized with incompress-

ible growth rates decrease with the convective Mach
number. This decrease is consistent with known ex-
perimental results. The spread in the results is prob-
ably the result of the limited axial extent of the �eld

explored.

5. Reynolds number has negligible e�ects on the
growth and structure of the mixing layer for the range
of Reynolds number considered. This result is not

surprising in view of the dominance of inviscid e�ects
over viscous e�ects.

6. The utility of the direct simulation approach in
examining turbulence models is brie
y demonstrated

on the Baldwin-Lomax model. The constant in the
relationship between the Reynolds shear stress and
the mean vorticity varies signi�cantly over the region.

For a subset of the region, the constant remains
about the same from a value of 0.015. These kinds
of studies can be performed with the data base that
is archived for this purpose.

The relative utility of tanh and boundary-layer
pro�les in studies of mixing layers needs to be con-

sidered. The tanh pro�le has the obvious advantage
of leading to analytical solutions to stability prob-
lems that are vital for making generalizations. The

boundary-layer pro�le, which is closer to reality in
experiments, has the disadvantage of not being close
to the solution of the steady problem; therefore, it
is not amenable to classical stability treatment. If

one intends to capture the transition processes and
compare them with experiments, there is no alterna-
tive to the boundary-layer pro�le. Thus, the tanh

and boundary-layer pro�les both have their regions
of importance in the study of mixing layers.

NASA Langley Research Center

Hampton, VA 23665-5225

April 1, 1992
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Appendix

Numerical Algorithm

For supersonic 
ows, no other algorithm has been
more widely used than the method discussed in ref-
erence 25. Over the last 20 years, this method has
been repeatedly compared with other codes and with

experimental data. Recent e�orts have been made to
improve the accuracy of the method by increasing the
spatial truncation error to fourth order and thus re-

ducing some of the dispersive errors of the method.
A fourth-order variant of the original MacCormack
algorithm (a �ve-point linear stencil) has been ad-
dressed in references 22 and 26. These references

show that increased resolution is obtained for a broad
class of problems with the fourth-order method.

In the last decade, a wealth of upwind algorithms
have been developed. These methods incorporate nu-
merical stencils which align with the direction that

information is propagating in the 
ow. This prop-
agation is usually accomplished by decomposing the
governing equations into a form in which each charac-
teristic wave can be di�erenced in an upwind manner.

Numerous implementations of these methods have
shown a great deal of success in resolving supersonic
problems of practical interest. In spite of the success

of upwind algorithms for the Euler equations, di�cul-
ties exist for their use in supersonic chemically react-
ing 
ow problems. Speci�cally, the chemistry system
is extremely di�cult to formulate along characteristic

directions, and many of the upwind methods are not
easily generalizable with chemically reacting 
ows.

The basic characteristics of central- and upwind-
di�erence algorithms, as well as the bene�cial at-
tributes of higher order algorithms, can be observed

in a two-dimensional model problem (referred to as
the color problem) designed to demonstrate numeri-
cal di�usion and dispersion. (See ref. 27.) Di�erent
numerical algorithms are compared with an exact so-

lution and with each other to determine the charac-
teristic of each. The test problem used in this study
is the two-dimensional advection of a scalar �eld de-

�ned by the equation

@	

@t
+

@(U	)

@x
+

@(V 	)

@y
= 0 (15)

with

	(x; y; 0) = 	o(x; y) (16)

and with suitable boundary conditions. The velocity

vector was chosen to be a solid-body rotation de�ned

by

U = �
y

V = 
x

)
(17)

with 
 = 2�, so that one complete revolution of the

ow occurred in one unit of time. The domain that

was used corresponded to the domain �1 � x; y � 1.
Dirichlet or �rst-order extrapolations were used for
the boundary conditions for 
ows entering or exiting
the domain. The boundaries were located suitably

far from the regions of interest so that the lower or-
der treatment did not a�ect the quality of the results.
The grid used 100 by 100 uniformly spaced points on

which to solve the governing �nite-di�erence equa-
tions. All calculations were integrated in time un-
til the initial distribution had rotated exactly once.
The distribution was then compared with the initial

distribution by using two error norms: the L1 or
maximum error norm, and the L2 norm.

Figure 40 shows the initial distribution on the

grid used in this study. The initial value of 	 was
chosen to be 1 in the interior of the \L-shaped" body
and 0 elsewhere. This distribution is discontinuous
and is a serious test of the dispersive properties of an

algorithm. Reference 28 shows that this discontinuity
seriously degrades the accuracy of the solutions and
that the error (L1 or L2) decays no better than �rst

order with increasing spatial resolution, regardless of
the spatial accuracy. With higher order algorithms,
the error is con�ned to a narrower region about the
discontinuity and thus contributes to a slightly better

L2 norm. This distribution was chosen to more
closely approximate the discontinuous behavior of
the Euler equations.

Figures 41 and 42 show the results obtained after

one complete revolution of the initial distribution
with the standard MacCormack and fourth-order
Gottlieb-Turkel algorithms. Contours ranging from

0 to 1 are plotted in steps of 0.05 (21 contour levels).
The sharp distinction between regions initially at a
value of 	 = 1 and the surrounding regions at 	 = 0
is no longer apparent. The dispersive nature of the

algorithm has distorted the solution dramatically.
The regions inside the innermost contour level are
at values greater than 1 and are numerical in nature.

The convection of the initial discontinuity is much
better accomplished with the fourth-order method.
The outer boundary of the initial distribution is
nearly replicated with the fourth-order schemes. The

contour levels in the interior regions of the solution,
where 	 < 1, indicate that the numerical dispersion
is present. Thus, although the fourth-order schemes

track the discontinuity with much greater accuracy,
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they still exhibit signi�cant over and undershoots
near the discontinuity.

Figure 43 shows the same test problem with the
third upwind-biased algorithm. In all these cal-
culations, the stencil was oriented in the upwind

direction, and was therefore varied in each of the
four quadrants of the test problem. The third-order
upwind-biased algorithm produces a clean solution

after one complete rotation. The location of the dis-
continuity is somewhat di�used at the corners rela-
tive to the fourth-order central-di�erence algorithms,
but the two-dimensional dispersion present in the

central-di�erence algorithms is eliminated.

When the quantitative features of the upwind al-
gorithms are compared with the central-di�erence al-

gorithms, it is apparent that the fourth-order scheme
tracks the discontinuities more accurately than does
the upwind algorithm, but it has far more two-

dimensional overshoots and undershoots than the up-
wind algorithm. Except for the di�used corners of
the discontinuity, the third-order upwind algorithm
provides a very accurate solution. The algorithms

of at least third-order accuracy provide signi�cant
improvement over the second-order central-di�erence
algorithms.

To quantify some of these observations, the error
after one complete revolution of the initial distribu-
tion was calculated. Both the L1 norm (shown by

the maximum or minimum of the solution over the
entire domain) and the L2 norm are presented. Ta-
ble A1 shows all the algorithms, the maximum and
minimum values of 	, the L2 norm, and the CFL

at which the calculations were performed. The Lmax
and Lmin norms for the upwind case are reduced by
the higher order algorithms, especially for the upwind

algorithms. Also, the L2 norm for the third-order
upwind and the fourth-order schemes is nearly the
same. These observations are characteristic of the
comparison between upwind and centered schemes.

With higher order schemes, the e�ciency and robust-
ness achieved in solving realistic problems decrease.
The third-order upwind-di�erence and fourth-order

central-di�erence schemes represent truncation lev-
els that compromise the extremes of accuracy versus
e�ciency.

The SPARK2D code used in the present study
incorporates a combination of upwind- and central-
di�erence schemes. The numerical simulation of the
supersonic mixing layer is ideally suited for the use

of upwind-biased algorithms in the streamwise direc-
tion. Because the 
ow is supersonic, all the eigenval-
ues are oriented in the same direction. The equations

can be di�erenced in an upwind manner without a

characteristic decomposition. A third-order upwind-
biased algorithm has been chosen as the numerical

algorithm for the streamwise direction. It shows low
phase errors and acceptable levels of numerical dissi-
pation, with extremely good characteristics for cap-
turing discontinuity.

Table A1. Error Norms From Di�erent Schemes

Scheme Order Lmax Lmin L2 CFL

MacCormack � t2;�x2; �y2 1.429 �0:378 7 :76 � 10�4 1
(ref. 25)

Gottlieb-Turkel � t2;�x4; �y4 1.337 �:239 5 .19 2/3
(ref. 22)

Third upwind � t
3
; �x

3
; �y

3 1.148 �:108 5 .29 1

Extremely strong gradients exist in the cross-
streamdirection. A higher order numerical algorithm
is ideally suited for this direction. S ince the 
ow in

this direction is always subsonic, central-di�erence
methods are ideally suited. The fourth-order method
of reference 22 is used in the cross-stream (and nor-
mal for the three-dimensional case) direction. The

numerical algorithm in two spatial dimensions can be
described by the model equation Ut + Fx + Gy = 0
as

Ui; j = Un
i; j �

�t

6 �x

�
2Fi+1;j +3Fi;j � 6Fi�1;j + Fi�2;j

�

�
�t

6�y

�
�Gi;j+2 + 8Gi;j+1 � 7Gi;j

�

Un+1
i =

1

2

�
Un
i + Ui;j �

�t

6�x

�
2F i+1;j + 3F i;j

�6F i�1;j + Fi�2;j

�

�
�t

6�y

�
7Gi;j � 8Gi;j�1 +Gi; j�2

��

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(18)

The fourth-order Gottlieb-Turkel scheme is stable for

CFL � 2
3 and thus limits the maximum allowable

CFL. The Gottlieb-Turkel scheme is not applicable at
the grid point next to the boundary and must rely on

a standard MacCormack di�erence formula at that
point. S imilarly, the upwind scheme is not de�ned
at the �rst and second axial grid points and relies on
a �rst-order upwind scheme at that point. Explicit

numerical damping, which is often added to codes
for engineering calculations, was not used here for
reasons of accuracy. The only numerical dissipation

present was that generated by the algorithm itself.
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Code Validation

The �rst step in validating the code was to deter-
mine if the numerical methods used in the SPARK2D
code are capable of resolving the linear growth of
the two-dimensional mixing layer. It is essential

that all the aspects of the linear regime of the
mixing layer be well resolved for grids comparable
to those used in this study before addressing the

far more di�cult nonlinear problem of vortex roll-
up and chemical reaction. Linear stability theory
predicts that the temporally developing compress-
ible two-dimensional mixing layer (air into air) is

unstable for a velocity pro�le that is initially speci-
�ed as a hyperbolic-tangent axial-velocity distribu-
tion. In the initial stages of the instability (the

linear regime), the growth of the unstable modes is
exponential. For these calculations, accurate eigen-
modes are provided from a spectral linear stability
code developed in reference 3. From these eigen-

modes, nondimensional growth rates and characteris-
tic frequencies were calculated. This nondimensional
growth rate provided a reliable measure of the accu-

racy of the �nite-di�erence algorithm being tested.

The temporal growth of the two-dimensional mix-
ing layer is simulated by assuming the 
ow to be pe-

riodic in the streamwise direction. The period corre-
sponds to a wavelength of x = 0:6283 mm (the mode
that grows most rapidly, as determined from the lin-

ear analysis). The initial velocity distribution is spec-
i�ed as U (x; y; 0) = u

1
tanh

� y
�

�
, V (x; y; 0) = 0:0,

T(x; y; 0) = 293 K, and P (x; y; 0) = 1 atm. Source
terms were added to the Navier-Stokes equations, so

that the momentum and energy equations would pre-
serve the free stream. The resulting Reynolds num-
ber of the 
ow is 0:187�103, based on the layer thick-

ness, where U1 = 100 m/sec. The Mach number is
0.30. The width of the half-layer D is 2:5�10�2 mm,
and the half-width of the domain is 100 times the
layer thickness. The grid in the streamwise direction

is uniform, while the grid in the cross-stream direc-
tion is highly stretched. The transformation of the
grid ensures that about half of all the y grid points

are located within the initial mixing-layer width.

For these studies, the unstable modes in the layer
were allowed to grow from the numerical instabilities

produced by the machine round-o� errors. Expo-
nential growth of these modes was seen in all cases

after an initial transient period. The \linear" regime
was characterized by the growth period, during which
the product of perturbation quantities was still neg-
ligible. For these tests, that period was arbitrarily

between 2:5 � 10�5 and 2:75� 10�5 sec and corre-
sponded to disturbance amplitudes three to �ve or-
ders of magnitude larger than machine round-o� er-

rors. A grid convergence history of the numerical
method was used to determine its formal accuracy
and to ascertain the grids necessary to resolve this
fundamental phenomenon.

The most unstable mode in this problem grows
at an exponential rate, with an exponent determined
from linear stability theory to be 0.140000 in non-
dimensional units. This rate was used as the \ex-

act" growth rate for these conditions. A series of four
grids were then de�ned, each with a grid density that
was a constant multiple of the previous grid. Three

algorithms|MacCormack (ref. 25) at CFL = 1:0,
Gottlieb-Turkel (ref. 22) at CFL = 0:5, and DCPS
(ref. 27) at CFL = 0:5| were then run on identi-
cal grids, and the nondimensional ampli�cation rate

was determined from an integration of the energy
spectrum. (The integral of the fundamental mode
over the entire domain was monitored in time. The
change, with respect to time, yields the ampli�cation

rate.)

In �gure 44, the ampli�cation rates of the three

methods are plotted against
�
Nmax
N

�4
to show quar-

tic accuracy. The symbols N and Nmax are the num-
ber of grid points and the maximum number of grid
points used in the study, respectively. Here, the

fourth-order spatial accuracy of the spatial derivative
from each method is indicated by the linear conver-
gence of the solution to the predetermined ampli�ca-
tion rate. The Gottlieb-Turkel scheme and the DCPS

algorithm both converge with fourth-order accuracy.
It is apparent from these results that, even for coarse
grids (10 grid points per wavelength), the fundamen-

tal features of the linear growth of the mixing layer
are resolved. There should be no question that the
grids used in these studies are su�cient to resolve the
linear regime of the two-dimensional mixing layer.
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Table 1. Data and Results of Previous Investigations

Reference 11 Reference 11
Quantity (case 1) (case 2) Reference 13 Reference 16

M1=M2 2.8/2.15 2.7/1.67 3.1/1.7 and others 1.95/1.33
U1=U2, m/sec 655/580 630/515 Ratio = 1.4 500/380

�1=�2 , mm 2.0/2.0 1.6/1.4 0.44/0.36 2.0/2.3
�1=�2, mm 0.123/0.152 0.12/0.125 0.042/0.069 NA
p1=p2, Pa 2089/2294 2895/3673 NA Nearly same
T1=T2, K 130/174 134/206 NA 169/220

Mc 0.325 0.515 0.6 0.31
Gases Air/air Air/air N2=N2 and other gases Air/air

Comments u pro�le takes more u pro�le takes more Growth rate by pitot Growth rates
than 80 mm to go than 80 mm to go surveys; Transition measured

near equilibrium; near equilibrium; � 40 to 60 mm as 0.011
Transition � 165� ; Transition � 300�;
dominant frequency dominant frequency

� 93 kHz � 130 kHz

Table 2. In
ow Parameters

[T = 2000 K; p = 0.101325 MPa; � (tanh case) = 1.54 mm; � (boundary -layer case) = 0.102 mm]

Composition Parameter Case 1 Case 2

Fuel: �, kg/m3 0.075 0.075
0.1H2 + 0.9N2 u, m/sec 2670.0 2670.0

M 2.0 2.0


 1.3133 1.3133
a, m/sec 1336.0 1336.0
� , mm 1.0 1.0

�, kg/m-sec 5:5 � 10�5 5:5 � 10�5

Oxidant: �, kg/m3 0.175 0.175
0.232O2 + 0.768N2 u, m/sec 1814.0 4330.0

M 2.1 5.25


 1.296 1.296
a, m/sec 864.3 864.3
� , mm 1.0 1.0

�, kg/m-sec 6:2 � 10�5 6:2 � 10�5

uc , m/sec 2150.0 3670.0
Mc 0.385 0.76

18



Table 3. Nondimensional Parameters

Parameter Case 1 Case 2

xm=� 64 (100 mm, tanh) 64 (100 mm, tanh)

100 (150 mm, tanh) 100 (150 mm, tanh)
130 (200 mm, tanh) 130 (200 mm, tanh)
1000 (100 mm, b.l.) 1000 (100 mm, b.l.)
1500 (150 mm, b.l.) 1500 (150 mm, b.l.)

Temperature ratio (fuel/oxidant) 1.0 1.0

Pressure ratio (fuel/oxidant) 1.0 1.0
Density ratio (fuel/oxidant) 0.429 0.429
Velocity ratio (fuel/oxidant) 1.45 0.616
Momentum ratio (fuel/oxidant) 0.90 0.163

R�;fuel 3640 3 640

R�;air 5120 12 220

R� = �auc�=�;tanh 5518 11 100
R� = �auc�=�;b :l: 360 630

Table 4. Convective Speeds

uc; m/sec uc , m/sec from
Mc Composition from formula vortical structures

0.38 tanh 0.1H2 + 0.9N2 2150 2260 � 50
0.38, b.l. 0.1H2 + 0.9N2 2150 2190 � 30

0.76, tanh 0.1H2 + 0.9N2 3670 3400 � 150
0.38, tanh 0.3H2 + 0.7N2 2543 2648 � 50

Table 5. Growth Rates

Fluctuation,
Mc percent � 0u;�

0


 �0H2
; � 0� Mean �0 � 0=�00

3.68 0:03� 0:003 0:05� 0:002

0.38, 1.84 :05� 0:002 :05� 0:002 0.05 0.77 to 0.83
tanh .92 :06� 0:020 :05� 0:002

3.68 0:075� 0:005 0:07� 0:005
0.76, 1.84 :04 � 0:003 :04� 0:003 0.04 0.45 to 0.50
tanh .92 :04 � 0:002 :04� 0:005

3.68 0:055� 0:002
0.38, .92 :055� 0:005 0.055 0.84 to 0.91
b.l. .46 :055� 0:005

.115 :055� 0:005
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