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Abstract

A technique was developed to calculate the stress
intensity factor for multiple interacting cracks. The
analysis was veri�ed through comparison with ac-
cepted methods of calculating stress intensity fac-
tors. The technique was incorporated into a fatigue
crack growth prediction model and used to predict
the fatigue crack growth life for multiple-site damage
(MSD). The analysis was veri�ed through compari-
son with experiments conducted on uniaxially loaded

at panels with multiple cracks. Con�gurations with
nearly equal and unequal crack distributions were ex-
amined. The fatigue crack growth predictions agreed
within 20 percent of the experimental lives for all
crack con�gurations considered.

Introduction

The continued structural integrity of the aging
commercial transport aircraft 
eet is of great con-
cern to the aerospace community. The long service
life of these aircraft increases the possibility of a re-
duction or loss of structural integrity due to fatigue
cracking. Multiple-site damage (MSD), in particular,
is one form of fatigue cracking that presents special
problems to the aircraft maintenance operator as well
as to the structural analyst. MSD refers to the occur-
rence of several cracks close enough together to in-

uence each other and to a�ect the overall structural
integrity. The critical crack size for individual cracks
may be relatively small, making their detection with
existing nondestructive examination (NDE) methods
di�cult. The mutual in
uence of the adjacent cracks
increases the complexity of predicting fatigue crack
growth behavior.

The linear elastic fracture mechanics (LEFM) ap-
proach to predicting fatigue crack growth relates the
stress intensity factor to the crack growth rate. Stress
intensity factors can be calculated with a variety of
analytical and numerical techniques. Closed form so-
lutions generally exist for a limited number of simple
cases such as in�nite plate problems (ref. 1). Nu-
merical techniques such as �nite element or bound-
ary element analyses are often used for more com-
plex crack con�gurations (ref. 2). However, the large
number of crack tips potentially involved in analyzing
an MSD problem would require extensive computer
resources using �nite element analyses. Boundary
force techniques (ref. 3) require less modeling e�ort,
but can only model one crack. Approximate solu-
tions of MSD stress intensity factors were developed
by combining known solutions (refs. 4 and 5).

Numerical techniques could be used to calculate
stress intensity factors for the entire fatigue crack

growth life. However, the scale of modeling required
to capture the e�ect of both the local structural
details and the large-scale structural details would
be prohibitive in a life analysis where the stress
intensity factors are calculated many times as the
cracks grow. A more practical approach would be to
consider what in
uences the crack growth behavior
at di�erent stages of life. The damage tolerant life of
a structural component susceptible to MSD cracking
can be divided into three regions of crack growth:
local, MSD, and post-linkup. The local crack growth
region consists of the initial development of cracks at
a local structural detail, such as a rivet hole. The
cracks are strongly in
uenced by the local structural
details, but are too small to have a large in
uence on
adjacent cracks. The cracks in the MSD region are
strongly in
uenced by the adjacent cracks. The crack
in the post-linkup region behaves as a single long
crack in
uenced by the large-scale structural details.

The technique described in this paper examines
the crack growth life for the local and MSD regions
of crack growth. The post-linkup region was not
considered and would require large-scale analyses of
structural details, such as stringers, cutouts, and
riveted connections, using �nite element shell codes.
An alternating indirect boundary element (AIBE)
technique was developed herein to calculate the stress
intensity factor for multiple interacting cracks. A
hole correction factor was added to the AIBE solution
to reduce the detail of modeling required. This
technique was su�ciently fast and accurate to be
incorporated into a fatigue crack growth prediction
code.

This paper describes the AIBE technique of de-
termining stress intensity factors. The technique was
veri�ed by comparisons of the calculated stress in-
tensity factors with those determined from accepted
solutions, �nite element methods, and boundary el-
ement methods. Damage tolerant life predictions
were made with the AIBE technique in conjunc-
tion with a hole correction factor. The life predic-
tions were compared with MSD tests conducted on

at 2024-T3 aluminum alloy specimens with multiple
cracks propagating from a line of open holes.

Symbols

a half crack length

BFM boundary force method

C constant

d half centerline distance between
holes

dj half element length
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K stress intensity factor

Np number of cycles, predicted

Nt number of cycles, test

R stress ratio

S applied stress

s integration variable

w half specimen width

� constraint

�o 
ow stress

�n normal stress

� shear stress

Stress Intensity Factor Calculations

The use of linear elastic fracture mechanics to pre-
dict fatigue crack growth behavior requires the de-
termination of the stress intensity factor. The stress
intensity factor is in
uenced by geometric consider-
ations such as crack length, other adjacent cracks,
free boundaries, and holes. The various geometric
considerations will a�ect the stress intensity factor
di�erently as the crack grows. Consider, for exam-
ple, cracks propagating out of two open holes in an
in�nite body, as shown in �gure 1. The in
uence of
the hole is large when the ratio of half crack length
to hole radius a=r is small and then decreases as a=r
increases, while the in
uence of the adjacent crack
steadily increases, as shown in �gure 2.

The growth of multiple cracks in a structure
can be divided into three regions, each of which is
governed by di�erent geometric considerations. The
stress intensity factor of cracks in the local crack
growth region is strongly in
uenced by the local
structural details. The cracks in this region are
small, as would be the in
uence of any small adjacent
cracks. The stress intensity factors of cracks in the
MSD crack growth region are strongly in
uenced by
the adjacent cracks, and the e�ects of local structural
details diminish. The post-linkup region is in
uenced
strongly by large-scale structural details.

An alternating indirect boundary element (AIBE)
method was developed to calculate the stress inten-
sity factor for multiple interacting cracks. A correc-
tion factor was applied to the stress intensity factor
to account for the local structural details. Consid-
eration of the post-linkup region was not required
for the structural con�guration examined. The fol-
lowing sections describe the AIBE technique and the
hole correction factor.
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Figure 1. Cracks propagating from two sides of two holes in

an in�nite plate subjected to uniaxial loading.
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Figure 2. The in
uence of a hole and an adjacent crack on the
stress intensity factor for the cracks illustrated in �gure 1

(r=d = 0:15).

Alternating Indirect Boundary Element
(AIBE) Method

The stress intensity factors for multiple interact-
ing cracks were calculated with an alternating in-
direct boundary element (AIBE) technique. The
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AIBE method is based on the principle of superpo-
sition of stresses associated with cracks and free (or
loaded) boundaries. To illustrate the superposition
of stresses, consider a single crack in a semi-in�nite
sheet, as shown in �gure 3. (An MSD con�gura-
tion would be obtained by adding additional cracks
and free boundaries.) Figure 4 illustrates how su-
perposition was used to determine the stress func-
tions for a crack in a semi-in�nite sheet. The cracked
in�nite sheet with a uniform crack-face stress S is
shown in �gure 4(b). The uncracked in�nite sheet
subjected to a uniform remote stress S is shown in
�gure 4(c). Figure 4(d) shows the uncracked sheet

with the nonuniform stresses �bx(y) and � bxy(y) act-
ing on a line that corresponds to the free boundary
and the nonuniform stresses �cx(x) and � cxy(x) act-

ing along y = 0; jxj < a. The crack-face loading
(�g. 4(e)) is superimposed on the uncracked loading
(�g. 4(d)) to produce the stress-free crack face shown
in �gure 4(a).

Crac
k

x

y σx = 

0

τxy = 

0

Free
boundary

S

S

σy = 0

τxy = 

0

Figure 3. Semi-in�nite body with crack.
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(a) Cracked semi-in�nite sheet

with remote stress S.

(b) Cracked in�nite sheet with

uniform crack-face stress.

(c) Uncracked in�nite sheet with

uniform remote stress.
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(d) Uncracked in�nite sheet with nonuniform

stresses acting along free boundary and along
y = 0; jxj < a.

(e) In�nite sheet with crack-face loading.

Figure 4. Principle of superposition applied to a crack in a semi-in�nite plate.
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The formulation requires analytical expressions
for the stresses due to the loadings shown in �g-
ures 4(d) and 4(e). Analytical expressions developed
by Timoshenko and Goodier (ref. 6), Westergaard
(refs. 7), and Tada and Irwin (ref. 8) were used to
formulate the necessary expressions for the stress dis-
tribution.

Uncracked in�nite sheet with nonuniform

line loading. The analytical expressions de�ned by
Timoshenko and Goodier (ref. 6) for the stresses at
any point (x; y) due to a concentrated force on an
in�nite body were used to formulate the equations
for the stresses in an uncracked in�nite sheet with
a nonuniform line loading (�g. 4(d)). In the Tim-
oshenko and Goodier expressions, the concentrated
force is applied at the origin of the local coordinate
system (x; y), as illustrated in �gure 5. The stresses
due to a force P acting in the x-direction are given
by:

�x =
P

2�

x

x2 + y2

�
� (3 + �) + 2 (1 + �)

y2

x2 + y2

�
(1)

�y =
P

2�

x

x2 + y2

�
(1� �) � 2 (1 + �)

y2

x2 + y2

�
(2)

�xy =
�P
2�

y

x2 + y2

�
(1� �) + 2 (1 + �)

x2

x2 + y2

�
(3)

The stresses due to a force Q acting in the y-direction
are given by

�x =
Q

2�

y

x2 + y2

�
(1� �)� 2 (1 + �)

x2

x2 + y2

�
(4)

�y =
Q

2�

y

x2 + y2

�
� (3 + �) + 2 (1 + �)

x2

x2 + y2

�
(5)

�xy =
�Q
2�

x

x2 + y2

�
(1� �) + 2 (1 + �)

y2

x2 + y2

�
(6)

where � is Poisson's ratio. The stresses due to normal
and shear stress distributions were obtained by divid-
ing the boundary into discrete elements and integrat-
ing equations (1){(6) over each element length (2dj),
as illustrated in �gure 6. The stresses due to a normal
stress distribution �n(s) are given by

�x =
1

2�

Z dj

�dj

x�n (s)

x2 + (y + s)2

"
� (3 + �) + 2 (1 + �)

(y + s)2

x2 + (y + s)2

#
ds (7)

�y =
1

2�

Z dj

�dj

x�n (s)

x2 + (y + s)2

"
(1� �)� 2 (1 + �)

(y + s)2

x2 + (y + s)2

#
ds (8)

�xy =
�1
2�

Z dj

�dj

(y + s) �n (s)

x2 + (y + s)2

"
(1� �) + 2 (1 + �)

x2

x2 + (y + s)2

#
ds (9)

where �n(s) is assumed to have a quadratic form as

�n (s) = C0 +C1s+ C2s
2 (10)

The stresses due to a shear stress distribution �(s) are given by

�x =
1

2�

Z dj

�dj

(y + s) � (s)

x2 + (y + s)2

"
(1� �)� 2 (1 + �)

x2

x2 + (y + s)2

#
ds (11)

�y =
1

2�

Z dj

�dj

(y + s) � (s)

x2 + (y + s)2

"
� (3 + �) + 2 (1 + �)

x2

x2 + (y + s)2

#
ds (12)

�xy =
�1
2�

Z dj

�dj

x� (s)

x2 + (y + s)2

"
(1� �) + 2 (1 + �)

(y + s)2

x2 + (y + s)2

#
ds (13)
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Figure 5. Concentrated forces P and Q in an in�nite body.

X
Y

Global
coordinate

system

σy

σ x

τx
y y

x

σn = C0 + C1s + C2s2

Element 
j

S

2
d j

Figure 6. A line element with a quadratic normal stress

distribution for an in�nite body (note that a similar

procedure is used for the shear stresses).

where �(s) is assumed to have a quadratic form as

� (s) = D0 +D1s+D2s
2 (14)

where Ci and Di (i = 0; 1; 2) are known for each ele-
ment and will be discussed later. A coordinate trans-
formation is performed on the calculated stresses
to be consistent with the global coordinate system
(X;Y ).

Cracked in�nite sheet with nonuniform

crack-face loading. From Westergaard (ref. 7), the

stresses in an in�nite sheet with crack-face loadings
can be written in terms of two stress functions, ZI

and ZII, as follows:

�x = ReZI � y lm
dZI

dz
+ 2lmZII + yRe

dZII

dz
(15)

�y = ReZI + y lm
dZI

dz
� yRe

dZII

dz
(16)

�xy = �yRe dZI

dz
+ ReZII � y lm

dZII

dz
(17)

The Westergaard stress functions, ZI and ZII, are
de�ned for point forces P and Q acting on a crack of
length 2a, as illustrated in �gure 7.

y

x

P

b

a

Q

σy

σx

τx
y

P

Q

X

Y

Global
coordinate

system

a

Figure 7. Concentrated forces P and Q acting on a crack in

an in�nite body.

ZI (z) =
P

�

p
a2 � b2

(z � b)
p
z2 � a2

(18)

ZII (z) =
Q

�

p
a2 � b2

(z � b)
p
z2 � a2

(19)

where z = x+ iy.

The stress functions for crack-face stress distri-
butions were obtained by dividing the crack into
discrete elements and integrating equations (18)
and (19) over the length of each crack element (2dj),
as illustrated in �gure 8. The resulting stress
functions for each element are given by

5



X

Y

Global
coordinate

system

y

x

σn = C0 + C1s + 

C2s2

s
bj

Element 
j

aa

σy

σx

τ x
y

2d
j

Figure 8. A crack element with a quadratic normal stress distribution for a crack in an in�nite body (note that a similar procedure

is used for the shear stresses).

ZI (z) =
1

�

Z dj

�dj

�n (s)

q
a2 �

�
bj + s

�2�
z � bj � s

�p
z2 � a2

ds (20)

ZII (z) =
1

�

Z dj

�dj

� (s)

q
a2 �

�
bj + s

�2�
z � bj � s

�p
z2 � a2

ds (21)

Equations (19) and (20) could theoretically be in-
tegrated exactly, but numerical integration proved
to be computationally e�cient. A coordinate trans-
formation was performed on the calculated stresses
to be consistent with the global coordinate system
(X;Y ).

Stress intensity factor equations. The
mode I and mode II stress intensity factors due to
concentrated loads P and Q on a crack in an in�nite
body (refs. 7 and 8) are given by

KI =
Pp
�a

s
a+ b

a� b
(22)

KII =
Qp
�a

s
a+ b

a� b
(23)

The stress intensity factors for a crack face stress
distribution are determined by integrating equa-

tions (22) and (23) over the length of each crack
element (2dj) measured with respect to the dis-
tance from the element centroid to the center of the
crack (bj), as

KI =

Z bj+dj

bj�dj

1p
�a

�n (s)

r
a+ s

a� s
ds (24)

KII =

Z bj+dj

bj�dj

1p
�a

� (s)

r
a+ s

a� s
ds (25)

The total stress intensity factor solutions are ob-
tained by adding the contributions from each crack
element.

MSD con�gurations. A two-dimensional
cracked structure can be modeled with the alternat-
ing indirect boundary element (AIBE) method by de-
scribing the cracks and external boundaries with a
series of line segments or elements. The boundaries
must be continuous and the cracks contained within
the boundaries and not intersecting other cracks.
The quadratic elemental stress distribution was used
to reduce the number of elements (i.e., the number
of degrees of freedom) required to describe a crack
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problem. The quadratic stress distributions require
that the stresses be de�ned at three nodal points
in each element, s = �0:6dj, 0, and 0.6dj. The
solution is obtained by �rst assuming initial values
of the six stress coe�cients (eqs. (10) and (14)) of
each element. The initial value is not crucial, a
value of unity for each coe�cient is su�cient for

convergence, but using the results from a previous
solution (when available) will considerably reduce
the number of iterations. The stresses for each
element (three normal and three shear stresses) are
determined with the current stress coe�cients and
assembled into a vector of length 6n, where n is the
total number of elements, as

n
�old

o
=

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

...
� (0:6di�1)

�n (�0:6di)
� (�0:6di)
�n (0)

� (0)

�n (0:6di)

� (0:6di)

�n (�0:6di+1)
...

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

=

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

...
Di�1
0 +Di�1

1 (0:6di�1) +Di�1
2 (0:6di�1)

2

Ci
0 +Ci

1 (�0:6di) +Ci
2 (�0:6di)2

Di
0 +Di

1 (�0:6di) +Di
2 (�0:6di)2

Ci
0

Di
0

Ci
0 +Ci

1 (0:6di) +Ci
2 (0:6di)

2

Di
0 +Di

1 (0:6di) +Di
2 (0:6di)

2

Ci+1
0 + Ci+1

1 (�0:6di+1) +Ci+1
2 (�0:6di+1)2

...

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

(26)

An in
uence matrix [t] is formed using equa-
tions (7){(17) to determine the e�ect of the stresses

f�oldg of element i on the stresses f�newg at ele-
ment j. The in
uence matrix is a fully populated,
nonsymmetric 6n � 6n matrix. The new elemen-
tal stresses are de�ned such that the imposed stress
constraints f�imposedg are satis�ed, as given by

f�newg =
n
�imposed

o
� [t]

n
�old

o
(27)

The imposed stress constraints f�imposedg are ei-
ther zero for stress-free boundaries and cracks or
the applied stresses. Once the stress distribu-
tions f�newg are calculated, the stress intensity
factors are calculated with equations (24) and (25).

The process is repeated until the stress inten-
sity factor solution converges, typically de�ned as
changes of less than 0.5 percent. The solution could
be obtained directly by inverting [t], as given by

f�newg =
h
t�1

in
�imposed

o
(28)

However, the iteration method was more e�cient for
use in a life prediction code, which requires repeated
stress intensity factor solutions for a large number of
crack lengths. Rapid convergence of the solution is
obtained if the stress coe�cients from the previous

crack lengths are used as the initial values in the
current calculation.

Local Correction Factor

The stress intensity factor for cracks in the local
growth region is strongly in
uenced by local struc-
tural details. To describe these details explicitly
would add considerably to the size of the required
MSD model. Alternatively, one structural detail
could be modeled accurately, and a simple relation-
ship describing its in
uence on the stress intensity
factor could be developed. Such a relationship could
be incorporated into the MSD stress intensity factor
calculations.

One structural detail that has been extensively
analyzed is an open hole. The stress intensity factor
for cracks propagating from opposite sides of an open
hole in an in�nite plate can be written as

K = S
p
�aFh

�
a

r

�
(29)

Fh

�
a

r

�
=

r
1�

r

a

�
1:0 + 0:358

r

a
+ 1:425

�
r

a

�
2

� 1:578

�
r

a

�
3

+ 2:156

�
r

a

�
4
�

(30)

7



2a
1

2a
2

2a
3

2a
1

2a
2

2a
3

Calculated from AIBE

K1
L

K2
L K3

LK1
R K3

RK2
R

2r

KL Fh(     

)
1

a
1r KR Fh(     

)
1

a
1r KL Fh(     

)
2

a
2r KR Fh(     

)
2

a
2r KL Fh(     

)
3

a
3r KR Fh(     

)
3

a
3r

Figure 9. Illustration of use of the hole correction factor Fh(
a
r ) for cracks emanating from circular holes.

where r is the hole radius, S is the applied stress,
a is the half crack length, and Fh

�
a
r

�
is the hole

correction factor (ref. 9). The stress intensity factors
for a series of cracks emanating from a row of holes
would be the products of the hole correction factor
for each hole and the stress intensity factor for each
crack, as illustrated in �gure 9.

Stress Intensity Factor Veri�cation

The AIBE technique was veri�ed by comparing
the stress intensity factors calculated by AIBE with
those from an accepted solution, a boundary force
analysis, and �nite element analyses. The crack
con�gurations used both a single center crack and
multiple cracks in a �nite body. The use of the local
correction factor was examined by considering cracks
propagating from two holes.

AIBE Stress Intensity Factor Veri�cation

A center crack tension (CCT) panel subjected to
uniaxial loading perpendicular to the plane of the
crack was analyzed. The crack was divided into
12 elements, with smaller element lengths near the
crack tip, as shown in �gure 10. The boundary
mesh consisted of 72 elements, with smaller element
lengths near the corners and the edges closest to
the crack tip. (The symmetry of the con�guration
was not used to reduce the model.) The variation
in element sizes was necessary to account for the
steep gradients in the required balancing stresses that
occur at points of discontinuity in the boundary and
are not necessarily associated with steep gradients
in physical stresses. An accepted solution for the
stress intensity factor for a CCT specimen is given
by Fedderson in reference 10 as

K = S

r
�a sec

��a
2w

�
(31)

The stress intensity factor results from the AIBE
analysis agreed with the accepted solution within
1 percent for crack length-to-width ratios (a=w)
below 0.8, as shown in �gure 11.

2
h

2w

2
a

Figure 10. AIBE mesh used in the analysis of a center crack

tension specimen. h=w = 2.

A centered, inclined crack subjected to uniaxial
loading was also analyzed. The crack length was
constant with a=w = 1=3, and the orientation of the
crack with respect to the direction of loading was
varied from � = 0� to 85� (� = 0� being perpendic-
ular to the direction of loading). The mode I and
mode II stress intensity factors were calculated with
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Figure 11. Normalized stress intensity factor results for a

CCT specimen. h=w = 2.

the AIBE code and the BFM boundary force code
(ref. 3). The AIBE boundary mesh was the same as
that used in the analysis of the CCT con�guration,
and the crack mesh consisted of 12 elements oriented
at an angle �. The BFM mesh contained roughly the
same number of elements. The two methods agreed
within 0.7 percent for the mode I stress intensity fac-
tor and 0.3 percent for the mode II stress intensity
factor, as shown in �gure 12.

The next con�guration analyzed was that of two
collinear cracks in a �nite plate. The cracks were
oriented perpendicular to the direction of loading
and located along the centerline of the specimen, as
shown in �gure 13. The length of both cracks was
held constant (a=w = 0:0625) and the distance be-
tween them (2d) was varied. The stress intensity
factors were calculated with the AIBE code and the
FRANC �nite element code (ref. 11). The AIBE
boundary mesh was the same as used in the earlier
examples, and each crack mesh consisted of 12 ele-
ments. Because of symmetry, the �nite element mesh
modeled one quarter of the specimen and consisted
of 475 6-noded triangular elements. The stress inten-
sity factor results of the two methods agreed within
1 percent, as shown in �gure 14.

Stress Intensity Factor Hole Correction
Veri�cation

The use of a correction factor for the stress in-
tensity factor was examined by comparing the stress

AIB
E
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Figure 12. Normalized stress intensity factor for a single
centered crack in a �nite body, with the crack orientated

at an angle � (� = 0� being perpendicular to the direction

of loading) h=w = 2; a=w = 1=3.
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Figure 13. Illustration of multiple crack con�guration used

in the stress intensity factor veri�cation. h=w = 2;

a=w = 0:0625.
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Figure 15. Illustration of the multiple open hole with cracks

con�gurationused in the stress intensity factor veri�cation.

r=d = 0:15; r=w = 0:0125.

intensity factor calculated from the AIBE technique
with the hole correction factor with results from a
�nite element analysis. The con�guration considered
was that of cracks propagating from two holes in a
�nite plate, as shown in �gure 15. The AIBE pro-
gram calculated the stress intensity factor for the two
cracks in a �nite plate. This solution was multiplied

by the hole correction factor for cracks propagating
from an open hole (eq. (29)). The stress intensity
factor for either of the two inner crack tips calcu-
lated by the AIBE analysis with and without the hole
correction factor is compared with results from the
FRANC �nite element code (ref. 11), as shown in �g-
ure 16. Because of symmetry, the �nite element mesh
modeled one quarter of the specimen and consisted
of 444 6-noded triangular and 8-noded quadrilateral
elements. The stress intensity factor results from the
AIBE method with the hole correction factor agreed
within 1 percent with the �nite element results, as
shown in �gure 16.
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Figure 16. Stress intensity factor for the inner two crack tips

shown in �gure 15.

Experimental Procedure

MSD fatigue crack growth tests were conducted
on �ve 304-mm-wide 2.29-mm-thick 2024-T3 alu-
minum alloy specimens subjected to remote uniform
stress, as shown in �gure 17. The specimens con-
tained 10 holes, which were 3.8 mm in diameter and
spaced 25.4 mm apart on centers. Cracks were de-
veloped by cutting small notches (0.7 mm long by
0.2 mm high) and cycling at the intended fatigue
stress until distinct fatigue cracks were propagat-
ing from both sides of each hole. The experiments
were conducted under constant amplitude loading
(71 MPa) at a stress ratio of R = 0:0 and a fre-
quency of 5 Hz. In three specimens (A6-02, A6-04,
and A6-05) the center two holes were connected by a
saw cut after precracking, as illustrated in �gure 18,
to simulate linkup of two adjacent cracks. The initial
crack lengths after precracking are given in table I.
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linkup of two adjacent cracks.

Life Prediction Procedure

Fatigue crack growth predictions require a de-
scription of the stress intensity factor and the
baseline crack growth rate behavior. The stress in-
tensity factors used in the predictions were obtained
from the AIBE analysis with the correction factor for
an open hole in an in�nite plate for the con�guration
shown in �gure 17.

Table I. Measured Initial Half Crack Length for the

Constant Amplitude Fatigue Tests

Crack length, mm

Hole Crack

number tip A6-01 A6-02 A6-03 A6-04 A6-05

1 aL 2:90 3:61 2:84 2:82 3:48

1 aR 2:87 3:02 2:62 3:23 2:95

2 aL 3:25 4:52 3:00 3:63 5:08

2 aR 3:25 4:19 2:31 4:34 4:09

3 aL 3:63 3:30 3:99 4:75 3:23

3 aR 3:63 3:45 3:96 5:18 2:84

4 aL 2:62 3:48 3:51 5:16 3:15

4 aR 2:62 3:76 2:90 5:13 3:05

5 aL 3:15 16:0 3:76 17:0 16:2

5 aR 3:15 � 2:34 � �

6 aL 2:57 � 2:41 � �

6 aR 2:57 16:0 3:33 17:0 16:2

7 aL 2:39 3:15 4:62 3:51 3:25

7 aR 2:39 2:74 4:06 3:53 3:45

8 aL 2:46 2:69 2:77 3:96 3:28

8 aR 2:44 2:82 3:48 4:04 3:20

9 aL 3:30 3:45 3:84 3:89 3:73

9 aR 3:30 3:76 5:08 3:78 3:94

10 aL 3:00 2:79 2:97 2:95 3:10

10 aR 3:00 3:30 3:51 3:43 3:81

�Linkup between adjacent cracks.
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The baseline fatigue crack growth rate behavior
for 2024-T3 aluminum used in the crack growth
predictions was obtained from references 12 and 13
from constant amplitude tests on center crack tension
specimens. The e�ects of fatigue crack closure were
taken into account by calculating the crack opening
stress So from an equation (ref. 14) based on a
two-dimensional closure model (ref. 15), as given by

So

Smax

= A0 +A1R +A2R
2 + A3R

3 (R � 0) (32)

So

Smax

= A0 +A1R (R < 0) (33)

A0 =
�
0:825� 0:34�+ 0:05�2

� h
cos
�
�Smax

2�o

�i1=�
(34)

A1 = (0:415� 0:071�)
Smax

�o
(35)

A2 = 1� A0 �A1 �A3 (36)

A3 = 2A0 +A1 � 1 (37)

where

Smax maximum applied stress

R stress ratio (minimum stress/maximum
stress)

�o 
ow stress (average between uniaxial
yield stress and uniaxial ultimate tensile
strength, 410 MPa for 2024-T3)

The constraint factor � simulates the three-
dimensional constraint. A value of � = 1:73 was
found to be appropriate for 2024-T3 aluminum alloy
(B = 2:29 mm) (ref. 15).

The crack opening stress, given by equation (32),
was used to calculate an e�ective stress intensity
factor range for the baseline crack growth rate data.
The e�ective stress intensity factor range is given by

�Ke� =
�K

1�R

�
1� So

Smax

�
(38)

Crack growth rate da=dN and e�ective stress inten-
sity factor range �Ke� data were determined for use
in the life predictions, as given by table II.

The life prediction started with the initial dis-
tribution of the 20 crack tips. The stress intensity
factor and �Ke� were determined for each crack tip,
and the crack growth rate da=dN obtained from the
baseline behavior (table II). The crack tip with the
largest crack growth rate (da=dN)max was grown a

Table II. E�ective Stress Intensity Factor Range Against

Crack Growth Rate for 2024-T3 (refs. 12 and 13)

�Ke� , da=dN ,

MPa-m1=2 m/cycle

1.42 3:56� 10�10

2.41 3:00� 10�9

3.29 6:10� 10�9

6.18 1:00� 10�7

10.95 4:32� 10�7

27.38 1:78� 10�5

49.29 2:54� 10�4

�xed increment (�a = 0:12 mm), and the required
number of applied load cycles �N was determined
as follows:

�N =
�a

da=dNmax
(39)

The crack growth increments for the remaining crack
tips were determined from the number of applied load
cycles as

�ai =
da

dNi
�N (40)

where i is the crack tip number. The process was
repeated until the net section stress was equal to
the yield stress. The increments of applied load
cycles �N were added to obtain the predicted cycles
to failure Np.

Life Prediction Results

The MSD fatigue tests were cycled to failure
with optical crack length readings made periodically
throughout the tests. The average initial half crack
length and the observed cycles to failure are given
in table III. The average half crack length was the
sum of the tip-to-tip crack lengths divided by 20,
regardless of whether any linkup of the cracks had
occurred.

Table III. Summary of Constant Amplitude Fatigue Tests

Average

initial Nt

half crack Cycles

Specimen length, to

ID mm failure

A6-01 2.926 58740

A6-02 �4.303 26430

A6-03 3.368 46210

A6-04 �4.864 15600

A6-05 �4.400 25920

�Holes 5 and 6 were connected by a saw cut.
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As described above, life predictions were made
for each specimen by using the baseline crack growth
rate behavior given in table II, �Ke� calculated
with equation (38), and the crack opening stress
calculated with equation (32). The predictions, in
terms of the ratio of predicted Np to test Nt cycles,
are given in table IV. Three methods were used to
calculate the stress intensity factor: AIBE, AIBE
with the hole correction factor, and the solution for
cracks propagating from a single hole in an in�nite
body. The AIBE method accounts for the boundary
and crack interaction e�ects. The hole correction
factor accounts for the e�ect of the hole without
explicitly modeling each hole. The stress intensity
factor solution for a hole neglects all crack interaction
e�ects.

Table IV. Summary of MSD Fatigue Crack Growth

Life Predictions

Analysis method

Hole in AIBE with

in�nite hole

plate AIBE correction

solution, only, factor,

Test Test type Np=Nt Np=Nt Np=Nt

A6-01 Nearly equal MSD 1.66 1.30 1.20

A6-02 Unequal MSD 1.46 0.93 0.93

A6-03 Nearly equal MSD 1.76 1.24 1.14

A6-04 Unequal MSD 2.10 1.13 1.13

A6-05 Unequal MSD 1.47 0.94 0.94

Average 1.69 1.11 1.07

The crack growth behavior for the two MSD tests
with nearly equal initial crack lengths (no saw cut,
A6-01 and A6-03) are shown in �gures 19 and 20.
The crack growth behavior of each of the 20 crack tips
was predicted and the average crack length plotted
as a function of the applied cycles. The fatigue crack
growth predictions using the three stress intensity
factor calculation methods are shown in both �gures.
Neglecting the crack interaction e�ects resulted in
a prediction of the crack growth lives that was as
much as 75 percent greater than observed. The AIBE
method overpredicted the fatigue crack growth lives
by as much as 30 percent, primarily because the
holes will elevate the stress intensity factors when
the cracks are small. The AIBEmethod with the hole
correction factor gave the best predictions, predicting
lives that were only 20 percent greater than the
experimental results.
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Figure 19. Predicted and actual fatigue crack growth behavior
for MSD cracking test A6-01 (nearly equal MSD cracking).
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Figure 20. Predicted and actual fatigue crack growth behavior

for MSD cracking test A6-03 (nearly equal MSD cracking).
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for MSD cracking test A6-02 (unequal MSD cracking).
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Figure 22. Predicted and actual fatigue crack growth behavior

for MSD cracking test A6-04 (unequal MSD cracking).
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Figure 23. Predicted and actual fatigue crack growth behavior

for MSD cracking test A6-05 (unequal MSD cracking).

The predictions of the crack growth behavior for
the three MSD tests containing saw cuts to simulate
crack linkup (unequal initial crack lengths, A6-02,
A6-04, and A6-05) are shown in �gures 21{23. The
fatigue crack growth predictions made from the three
methods are shown in comparison with the test re-
sults. The fatigue crack growth rates for the unequal
MSD cracking tests were governed by the growth of
the longest crack. The crack length was such that
the hole had only a small e�ect on the stress inten-

sity factor; thus, the AIBE method and the AIBE
method with the hole correction factor gave about
the same life. Neglecting the crack interaction e�ects
overpredicted the lives by as much as 100 percent,
primarily because of the crack interaction and linkup.
The ratio of predicted to test life (Np=Nt) is given in
table IV for each of the tests.

Conclusions

The ability to evaluate the structural integrity of
aircraft structures with multiple-site damage (MSD)
is of great concern to the commercial transport air-
craft industry. An e�cient technique was developed
to calculate stress intensity factors for multiple in-
teracting cracks. The alternating indirect boundary
element (AIBE) accurately models multiple interact-
ing cracks and approximates the local structural de-
tails with a correction factor. This approach was
veri�ed through comparison of stress intensity fac-
tors calculated from accepted solutions, �nite ele-
ment methods, and boundary force analyses. The
AIBE technique, in conjunction with a correction
factor for cracks propagating from holes, was used
to predict the fatigue crack growth life for multiple
cracks propagating from a line of holes. The predic-
tions were compared with experimental observations
and the following conclusions were made:

� The AIBE analysis is an accurate method of
calculating the stress intensity factors for multiple
interacting cracks.

� The use of the AIBE analysis in conjunction with
a local correction factor will result in accurate
stress intensity factors for multiple interacting
cracks propagating from local structural details
such as holes.

� The fatigue crack growth life predicted from the
AIBE analysis with a hole correction factor was
within 20 percent of the experimentally observed
life of tests conducted on 
at panels with multiple
cracks propagating from open holes.

NASA Langley Research Center
Hampton, VA 23681-0001

July 9, 1992
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