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Abstract

This paper describes and analyzes a paradigm for scheduling com-
putations on a network of multiprocessors using large-grain data
ow
scheduling at run time. The computations to be scheduled must fol-
low a static 
ow graph, while the schedule itself will be dynamic (i.e.,
determined at run time). Many applications characterized by static

ow exist, and they include real-time control and digital signal process-
ing. With the advent of computer-aided software engineering (CASE)
tools for capturing software designs in data
ow-like structures, macro-
data
ow scheduling becomes increasingly attractive, if not necessary.
For parallel implementations, using the macro-data
ow method allows
the scheduling to be insulated from the application designer and en-
ables the maximum utilization of available resources. Further, by allow-
ing multitasking, processor utilizations can approach 100 percent while
they maintain maximum speedup. Extensive simulation studies are per-
formed on 4-, 8-, and 16-processor architectures that re
ect the e�ects
of communication delays, scheduling delays, algorithm class, and mul-
titasking on performance and speedup gains.

1. Introduction

1.1. Background

Data
ow methods have been criticized because of
extraordinary scheduling and communication over-
head, di�culties in specifying (or converting to) low-
level implementations, memory management obsta-
cles, synchronization issues, and other aspects of
hardware and software complexity (refs. 1 to 7).
These problems can be signi�cant drawbacks when
the data
ow is implemented at the instruction level
(refs. 4, 5, 8, and 9). By spreading the overhead
of the data
ow over computations on the order of
hundreds or thousands of instructions or more, the
data
ow complexity (both scheduling and commu-
nication) is no longer a limiting factor for perfor-
mance. We refer to data
ow at this level as macro-
data
ow or large-grain data
ow (refs. 1, 3, 4, 6, 7,
10, and 11). In addition to the bene�t of reduc-
ing the e�ect of overhead, macro-data
ow provides
a more natural means to describe applications aimed
at both parallel and serial implementations. The use
of computer-aided software engineering (CASE) tools
(refs. 12 to 14) for software design has become pop-
ular as a mechanism for designing software systems
according to a structured method. This method en-
tails creating functional decompositions in the form
of hierarchical levels of data
ow diagrams. Hence,
as designers begin to use these tools exclusively, it
becomes desirable for multiprocessing platforms to
e�ectively and e�ciently distribute the application
onto the available resources. Because of the hierar-
chical data
ow diagram structure, scheduling using
macro-data
ow techniques becomes straightforward.

One drawback of data
ow-based systems in the
past has been the problem of converting software
designs and implementations to a data
ow structure.
In fact, tools have been developed to automatically
generate data
ow diagrams from source code (refs. 7,
10, and 15). For example, in reference 7, exten-
sions to C++ permit automatic generation of the
data
ow graphs at run time (with additional over-
head). Therefore, the question remains, will the de-
signer, compiler, or run-time environment create a
more e�ective functional decomposition that can be
used to exploit parallelism? We assume that if the
programmer provides the breakdown as a natural
consequence of the design method, we should expect
a more e�cient use of resources (refs. 1 and 3).

The primary idea of data
ow scheduling (not
computation) is to put all jobs that are ready to be
scheduled in an execution queue (EQ), and when a
processor becomes available to execute these jobs,
they are removed from the queue and sent to the
available processor. As processors �nish jobs, they
notify the scheduler that they are available to per-
form subsequent work. Of course, as with any queu-
ing system, a queuing discipline must be chosen to
determine the order in which jobs in the queue are
dispersed (e.g., whether the order is \�rst-come, �rst-
served," \last-come, �rst-served," or priority based).

Most micro-data
ow EQ's consist of an instruc-
tion and some context information (i.e., a tag). Tags
allow dynamic schedules. A macro-data
ow sched-
uler consists of a very similar structure, but a sub-
routine location and the size are included as opposed



to a single instruction. This method assumes that
all processors have a local copy of the application.
If local memory size is a problem, other implemen-
tations can be used, but because this is a high-level
analysis, we will leave the details of the implementa-
tion to subsequent papers. This scheduling paradigm
makes the amount of work for control overhead neg-
ligible when compared with the amount of work con-
trolled. References 11, 16, and 17 describe an exam-
ple of an implementation of such a paradigm using
marked Petri-nets.

Another drawback of either a micro- or a macro-
data
ow is that enough parallelization must be
present in a computation to keep the EQ from becom-
ing empty so that the processors remain busy at all
times. For a single user on a multiprocessor network,
it is a di�cult task to keep all the processors busy be-
cause most computations involve a signi�cant serial
fraction (i.e., a percentage of the computations that
must be done serially). Introducing multitasking to
the macro-data
ow environment provides completely
independent threads of work that may be done in
parallel. A macro-data
ow system that runs several
tasks may be viewed as a system running a standard
data
ow task, which has several times the ability to
be parallelized. Therefore, by adding tasks to the
system, we can increase the percentage of the total
work that can be parallelized (i.e., the parallel frac-
tion). This addition of tasks makes it less likely that
the EQ will become empty.

Further, another problem can occur using multi-
tasking when some tasks have more parallelization
than do others. If one task has a larger number of
processes which can be scheduled in parallel, these
processes tend to dominate the EQ, while tasks that
have a smaller number of processes which can be par-
allelized are left waiting in a long line to be scheduled.
To avoid this scenario, the scheduler must allocate
processors to tasks with a probability that is at least
proportional to the amount of inherent parallelism in
the tasks to be executed.

One �nal point is that the statistic of 100-percent
processor utilization can be misleading. Although
a processor may have work to do at all times,
some parts of this workload will involve waiting for
input/output (I/O) operations to be completed. One
solution to this problem is to schedule more than
one process to each processor (i.e., called multi-
programming). The processor then can perform a
context switch, during an I/O operation, to a sub-
sequent job. When the I/O operation is completed,
the processor switches back to the original job. Al-
though multiprogramming adds a small amount of
overhead at the local processor (i.e., switch time), it

is apparent that the e�ective utilization of the pro-
cessor will increase.

1.2. Problem Statement

The purpose of this paper is threefold: (1) to con-
duct a performance analysis of the macro-data
ow
scheduling method just described using common
workload structures as benchmarks, (2) to show how
multitasking can be used to increase processor uti-
lization, and (3) to describe how CASE tools natu-
rally lend themselves to this type of scheduling.

Speci�cally, this paper discusses three suites of
experiments. The �rst set uses the fork-join problem
to determine the e�ects of problem size on achiev-
able speedup and processor utilization. Speedup is
de�ned as the ratio of the latency on a single pro-
cessor system to the latency on a multiprocessor sys-
tem. Processor utilization is the fraction of time that
a processor is busy doing useful work. The second set
of experiments also uses the fork-join problem to re-
veal the e�ects of adding a multitasking capability to
the scheduler. Finally, the third set of experiments
reveals the e�ect of various scheduling and communi-
cation overheads on the performance of the scheduler
for three classes of problems: the fork-join, the binary
tree, and the diamond-shaped graph.

Section 2 describes the approach used to achieve
the prescribed goals. Section 3 describes in detail
the experiments performed. Section 4 presents the
simulation results obtained and the analysis of them.
Finally, section 5 presents the conclusions that can
be drawn.

2. Approach

2.1. Macro-Data
ow Scheduler Model

From a computational view, macro-data
ow is
purely data driven (ref. 7). However, viewed as
a scheduling mechanism, macro-data
ow is driven
both by the data and by the processor availability.
By forcing processor availability to drive the sched-
ule, we can optimize both speedup and processor
utilization.

For this analysis, the model that we evaluate con-
sists of two \�rst-come, �rst-served" queues that are
responsible for distributing work across an ideal net-
work with no communication delays. (However, in
section 4.4, we will show the e�ect of adding com-
munication delays.) The �rst queue contains those
jobs (processes) which are ready to be executed,
and the second queue contains identi�ers represent-
ing those processors that are available to do work.
Both queues are updated as the processors complete
the jobs and become idle. As long as neither queue
becomes empty, the network operates at 100-percent
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e�ciency. As described earlier, this approach models
a multitasking capability and reduces the probability
of having an empty queue.

For a more accurate model, we will study the ef-
fects of communication and scheduling delays on sys-
tem performance. This analysis will aid us to eval-
uate alternate methods of scheduling work, routing
messages, and implementing queues.

As stated in section 1.1, I/O needs to be addressed
for further utilization improvement. Several indepen-
dent jobs could be given to a single processor and, in
e�ect, multiprogrammed to keep all processors op-
erating at full speed. The model for I/O and the
techniques to multiprogram tasks have not yet been
created.

A high-level system design and simulation envi-
ronment was used to e�ectively analyze the schedul-
ing paradigm. This environment was provided by the
Architecture Design and Assessment System (ADAS)
toolset (ref. 18). This toolset enables a high-level de-
scription of both the architecture and the application
workloads, the discrete-event simulation of system
activity, and the acquisition of performance-related
data to facilitate the analysis.

2.2. Algorithm Description

To evaluate a wide range of applications, a
concise method of workload description was neces-
sary. Because work must be partitioned at the sub-
routine (process) level for a macro-data
ow sched-
uling paradigm, a simple data
ow diagram su�ces
(e.g., as shown in �g. 1). This diagram represents
the processes (P0, ..., P6) to be executed and the
order in which they must be executed. Other dia-
grams can be generated to represent speci�c prob-
lems (e.g., fork-join or binary tree). These data
ow
diagrams then can be converted to an ASCII repre-
sentation with the following format (in which �1 is
a terminator):

Number-of-tasks: 1

Number-of-processes: 7

P0-duration: 0.574

P0-sends-to: 1 2 3 -1

P1-duration: 0.983

P1-sends-to: 4 -1

P2-duration: 0.317

P2-sends-to: 4 -1

P3-duration: 4.583

P3-sends-to: 5 -1

P4-duration: 2.441

P4-sends-to: 6 -1

P5-duration: 7.092

P5-sends-to: 6 -1

P6-duration: 0.139

P6-sends-to: -1

This conversion is done for the set of tasks which
comprises a single workload. The resulting ASCII �le
contains both precedence information and complex-
ity approximations for each process within each task.
The code that is responsible for simulating the activ-
ity of the system reads this �le at startup to become
aware of the work that it must perform.

The workload description (either the data
ow
diagrams or the ASCII �le representation) can be
generated from the source code itself or as mentioned
in section 1, from a CASE tool speci�cation of the
application. For simulation purposes, approximate
process durations can be calculated from either a
single-processor implementation or the instruction
counts along with the benchmark instruction times.
Because this is a high-level analysis of the paradigm,
precision (or accuracy) is not a real issue at this
point. In fact, by varying process durations, we can
show the sensitivity of the overall performance to
di�erent granularities.

Task 0

P1 P2 P3

P4 P5

P6

P0

Figure 1. Sample data
ow diagram for single task.

3



SpawnProcess

Scheduler

Processor1 Processor2 Processor3

Processor4 Processor5 Processor6 Processor7

Processor0

Delay1 Delay2 Delay3

Delay4 Delay5 Delay6 Delay7

Delay0

Figure 2. ADAS model of macro-data
ow scheduler (with eight processors).

2.3. ADAS Architecture Model

As stated, the queue operation will be simulated
using the ADAS toolset. This toolset was �rst devel-
oped at the Research Triangle Institute (RTI) and is
now marketed by Cadre Technologies, Incorporated.
The version used for this analysis runs on a Sun work
station. The ADAS toolset allows a system designer
to evaluate alternative architectures with respect to
system performance and behavior.

An ADAS model consists of nodes, arcs, and to-
kens. Tokens are abstract entities (which can contain
data) which traverse through a data
ow diagram and
stimulate activity during the simulation. As tokens
pass through nodes in the data
ow diagram, some
function is performed, and the token is either ab-
sorbed or sent out along one of the arcs emanating
from the node.

This ADAS toolset requires a data
ow graph
model that represents the operation of the macro-
data
ow scheduler and its interaction with the multi-
processor that it controls (�g. 2). To allow behav-
ioral simulation of an ADAS model, a functional
description of each node in the graph is required.
This description can be written in either the C or

Ada languages to represent how data (tokens) prop-
agate throughout the model. Once this code is writ-
ten and its behavior has been veri�ed, simulation of
the model can be performed. The following section
describes the functionality of each node in the model.

2.3.1. SpawnProcess node. At initialization,
the code associated with the SpawnProcess node
reads the ASCII �le that represents the work to be
done and sends the initial process of every task to the
scheduler. These tokens contain a task identi�er, a
process identi�er, and the process duration. After
initialization, this node waits for input from the
processors to determine when a process has been
completed. Once a process is completed, this node
sends any subsequent processes that only depend on
that process to the scheduler. This scenario continues
until all tasks have been completed, at which time no
outputs are generated and the simulation terminates.

2.3.2. Scheduler node. The scheduler node
contains two queues. The JobList queue contains
processes, sent from the SpawnProcess node, which
are ready to be scheduled. The PEready queue
contains the processor identi�ers of all processors
that are idle at the current time. (Initially, all
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processors are idle.) As long as both queues are not
empty, a process is removed from the JobList queue
and sent to the processor that is identi�ed at the top
of the PEready queue.

2.3.3. Delay nodes. The delay nodes simu-
late the communication delay associated with trans-
mitting a process description to a processor. These
nodes simply hold the processes for an amount of
time that is proportional to the size of the process
and the communication bandwidth. By varying the
communication bandwidth attribute, we can deter-
mine the e�ect of alternate interprocessor connection
topologies and routing methods on performance.

2.3.4. Processor nodes. The processor nodes
simulate the delay associated with actually executing
the process. These nodes hold the processor for an
amount of time that is proportional to the duration
of the process which is speci�ed in the token. The
duration value has been calculated for a speci�c
processor. To observe the e�ect of selecting di�erent
processors, we can scale this number by a factor
that represents the change in speed of the alternate
processor. After completing the execution of the
process, the SpawnProcess node is noti�ed. Also,
the PEready queue in the scheduler node is updated
to re
ect a new idle processor.

2.4. Simulation and Analysis

After describing the functionality of the nodes us-
ing the C language, the CSIM facility of the ADAS
toolset can be used to simulate the execution of the
scheduler-multiprocessor model. Input variables for
each simulation are both workload related (e.g., type,
size, granularity, structure, and iteration count) and
architecture related (e.g., scheduling overhead, in-
terprocessor communication overhead, and processor
throughput). During and after the simulations, the
following indices are recorded: task latencies, proces-
sor utilizations, network (e.g., bus) utilization, aver-
age queue sizes, and speedup gains.

During the analysis phase, the results of the sim-
ulation studies were plotted to show the e�ects of
changes in input parameters as well as in work-
load type. The speci�c phenomena that we wish
to observe include the e�ect of communication and
scheduling delays on speedup, the maximum speedup
achievable using this large-grain data
ow scheduling
paradigm, the processor utilization as a function of
algorithm size, and the bene�t of adding multitasking
and multiprogramming capabilities to the scheduler.

Experiments

For the experiments performed to date, three
classes of workloads have been used: fork-join algo-
rithms (i.e., problems), binary tree algorithms, and
diamond-shaped algorithms (�gs. 3 to 5). These
applications are diverse in structure and, hence,
place di�erent stresses on the scheduling process.
Also, they are widely accepted benchmarks for multi-
processing systems because they represent a large
segment of computationally intensive problem sets.

The �rst experiments use the fork-join class of
algorithms (e.g., �g. 3) to show the e�ects of problem
size and multitasking. Process durations are chosen
from a normal distribution. The fork and the join
(top and bottom, respectively) process durations
have a mean of 0.5 and a standard deviation of
20 percent; the durations of the processes between
the fork and the join have a mean of 4.0 and a
standard deviation of 25 percent. Communication
and scheduling delays are set to zero. The workload
is executed for 100 iterations, and the results are
averaged.

P0

P1 P2 P3 P4

P5

Figure 3. Fork-join algorithm example (with width of four
processes).

The subsequent experiments use all three work-
load classes (fork-join, binary tree, and diamond-
shaped) to show the e�ect of scheduling and commu-
nication overhead. Fork-join process durations are
chosen in the same manner as just described. Process
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P0 P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11

P12 P13

P14

Figure 4. Binary tree algorithm example.

P0

P1 P2

P3 P4 P5

P7

P8

P6

Figure 5. Diamond-shaped algorithm example.

durations for the binary tree and the diamond-
shaped algorithms are chosen from a normal distri-
bution with a mean of 1.0 and a standard devia-
tion of 10 percent. Communication and scheduling
overheads range from 0 to 50 percent of the dura-
tion of the process being communicated or scheduled.
Again, the workloads are executed for 100 iterations,
and the results are averaged.

4. Simulation, Results, and Analysis

4.1. Problem Size E�ects for Fork-Join

Class of Problems

The initial suite of experiments was aimed at
studying the e�ect of problem size on speedup or
task latency for a given multiprocessor architecture.
For these experiments, we assume that no scheduling
or communication overhead exists. Figure 6 shows
the results of experiments that were run using the
fork-join algorithm with increasing width (fan-out).
The fork-join algorithm is used because it represents
the most general class of problems encountered in
parallel applications.
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Figure 6. Speedup gains for fork-join algorithm.

The four curves in �gure 6 represent speedup
gains for three multiprocessor architectures as well
as for the optimal case in which one has an in�nite
number of parallel processors. Maximum speedup
is calculated using Amdahl's Law (ref. 19), which
states that the most speedup achievable depends on
the amount of inherent parallelism in the application.
The maximum speedup Smax is calculated using

Smax=
Ts

Tcp
(1)

where Ts is the time to execute the work in serial
(sequentially) and Tcp is the time to execute the
critical path. The critical path in this sense is
the path through the data
ow graph that takes the
longest to execute. Note that there is another factor
constraining speedup which is equal to the number
of processing elements in the architecture (i.e., for a
16-processor system, we can never exceed a speedup
of 16). We denote this maximum speedup Spmax.

For the four-processor architecture, speedup re-
mains close to 3.5 as the parallel fraction grows. (Re-
member, the parallel fraction is that percentage of
the problem which can be done in parallel.) Now, we
can introduce another measure E, which will cap-
ture the e�ciency of the scheduling paradigm to uti-
lize the available processing power. The term E is
de�ned as

E =
S

Spmax
(2)

where S is the speedup observed during the simu-
lation. For example, in �gure 7, the scheduling ef-
�ciency E of a single fork-join task with a width of
32 processes will be 0.875, 0.854, and 0.762 for the 4-,

8-, and 16-processor architectures, respectively. Ob-
viously, by increasing the amount of parallelism in
the load, we can increase these e�ciencies. However,
the important observation here is that regardless of
the load size, the e�ciency of the scheduler will be
high as long as the width of the fork is at least as
large as the number of processors (�g. 7). Further,
by implementing multitasking, we will show in the
next section that even for small tasks, high single-
task e�ciency can be achieved.
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Task width

E
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ci
en

cy
4 processors
8 processors
16 processors

Figure 7. E�ciency of scheduler for fork-join algorithm.

4.2. Multitasking for Fork-Join Class of

Problems

Next, we observe the e�ect of implementing multi-
tasking into our scheduling paradigm. Again, we
assume the ideal situation in which we have no
schedule or communication overheads and we can
generate speedup �gures that are annotated with the
multitasking data (�gs. 8, 9, and 10). In addition, all
tasks that make up a multitask job have equal width.

The data from the four-processor con�guration
(�g. 8) show us that we can maintain a near-constant
speedup for a given number of tasks, regardless of
how much inherent parallelism exists within each
task, as long as the intratask parallelism is approx-
imately equivalent across the tasks. For example,
the curve representing the speedup for two tasks in
�gure 8 
attens after an intratask width of four pro-
cesses. The speedup remains at or near 2.0. While
the per-task e�ciency is only 50 percent, the pro-
cessors are doing twice as much work compared with
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the single-task scheduling that has a 78-percent e�-
ciency. This implementation is not necessarily good.
Actually, by putting the two tasks together (concate-
nation) and running them as a single larger task,
we could get the 78-percent e�ciency (S = 3.1) be-
cause the speedup remains almost constant as the
task complexity increases.

The real payo� for implementing a multitasking
scheduler becomes evident when there is not su�-
cient parallelism in a single task to e�ectively use the
processing power that is available. When this occurs,
we can increase the parallel fraction by permitting
multiple tasks to run concurrently. For example, �g-
ure 8 shows that when the intratask parallelism is
low (with a width of two processes), we achieve al-
most the same speedup whether we execute one or
two tasks (S = 1.630 and 1.615, respectively). This
speedup is also very near the maximum speedup that
is achievable (Smax = 1.640).
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Figure 8. Multitasking speedup gains for fork-join algorithm

(with four processors).

This behavior is even more apparent in the 8-
and 16-processor systems (�gs. 9 and 10). Notice
in �gure 9, when there is a small inherent paral-
lelism (with a width of two processes), we achieve
nearly the same speedup (S = 1.63, 1.57, and 1.46,
respectively) whether we execute one, two, or four
tasks. This again is near the maximum achievable
speedup (Smax = 1.64). Further, with more process-
ing power, intratask parallelism can increase and still
sustain similar speedup. Figure 9 shows that even if
the width is four processes, we can execute one or
two tasks concurrently and maintain speedup (S =
2.92 and 2.64, respectively) near the maximum level
(Smax = 2.945). Figure 10 further reveals this trend.

With 16 processors, we can maintain speedup with
a larger number of tasks as well as with tasks of in-
creased complexity.
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Figure 9. Multitasking speedup gains for fork-join algorithm

(with eight processors).
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Figure 10. Multitasking speedup gains for fork-join algorithm

(with 16 processors).

Another way to view the bene�t of multitasking
is to look at the processor utilizations with respect
to the speedup gains and the amount of total work
that can be done (�gs. 11, 12, and 13).

In �gure 11, notice that either one or two \nar-
row" (with a width of two processes) tasks can
be completed without overutilizing the processors
(40 and 80 percent, respectively), thereby maintain-
ing the speedup gain shown in �gure 8. However,
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Figure 11. Average processor utilizations for fork-join algorithm (with four processors).
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Figure 12. Average processor utilizations for fork-join algorithm (with eight processors).
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Figure 13. Average processor utilizations for fork-join algorithm (with 16 processors).

once the processors do become overutilized (with four
or eight tasks), multitasking no longer helps on a
four-processor system. Again, this observation sup-
ports the data in �gure 8. We conjecture that for
small systems, it is best to use multitasking only
for tasks that have a small parallel fraction (width).
For tasks with a large parallel fraction, the nature of
the data
ow scheduler will optimize the achievable
speedup if the tasks are done sequentially and not
concurrently.

Ideally, through the use of multitasking, we would
like to keep the levels (i.e., the number of entries)
of both queues (i.e., JobList and PEready) close
to equal. Maintaining near-equal levels in these
two queues minimizes the amount of idle time for
each processor. If the queue containing the ready
jobs backs up, the processors become overutilized;
whereas, if the queue containing the idle processor
identi�ers backs up, the processors are underutilized.
This ideal level should be no more than the number
of processors in the system.

Figures 12 and 13 reveal the e�ect of adding pro-
cessing power (8- and 16-processor systems). Note, in
these cases, \narrow" tasks can be executed concur-
rently to e�ectively utilize all processor bandwidth
and maintain speedup (�gs. 8 and 9). Also, the

\fatness" of tasks can increase and maintain speedup
as long as the utilization is not too high.

All this information supports Amdahl 's Law that
speedup is constrained by parallel fraction, and it
also shows the e�ect of limited processing power on
the attainable speedup. Perhaps the most reveal-
ing evidence of the relationship between these two
determinants (the parallel fraction and the available
resources) is shown in �gures 14 and 15.

The solid lines in �gure 14 represent workloads
with di�erent degrees of multitasking. In �gure 15,
each individual workload is shown along with its pro-
jections (the dashed lines) onto a two-dimensional
grid. We can see that by introducing multitasking to
an underutilized system, we can e�ectively increase
the parallel fraction and, thus, do more work at the
same level of speedup. Multitasking becomes ine�-
cient (in terms of the e�ective speedup) only when
the processing power constraint is exceeded (with
a utilization of approximately 100 percent) and the
speedup deteriorates. Of course, this situation as-
sumes that the tasks are of near-equal complexities.
If this is not the case, the scheduler could use pri-
orities or weighting factors to preclude \fairness" to-
ward allocating work to resources. From �gure 15,
we see that to get the most work done at the highest

10



Utiliz
atio

n
Task width

S
pe

ed
up

S
pe

ed
up

1 task
2 tasks
4 tasks
8 tasks

Figure 14. Bene�ts of multitasking (with 16 processors).

speedup, we should use a width of approximately 32,
16, 8, and 4 processes for 1, 2, 4, and 8 tasks, re-
spectively. These guidelines allow us to avoid over-
utilization while we maintain speedup.

4.3. Scheduling Overhead E�ects

This suite of experiments will attempt to show
the e�ects of scheduling delays. We will use all three
workload classes discussed in section 3 (e.g., fork-
join, binary tree, and diamond-shaped problems).
These simulations were all run on the 16-processor
architecture model.

The data in �gure 16 were taken while simulating
a single task of each type. All three tasks have the
same order of complexity (i.e., the fork-join, binary
tree, and diamond-shaped problems have 258, 511,
and 529 processes, respectively). The di�erences,
with respect to the scheduler, are the amount of com-
munication that must take place and the number of
instantiations of the scheduling mechanism required.

Two interesting phenomena can be observed in
�gure 16. First, note the initial 
atness of each
curve. Both the binary tree and the diamond-shaped
algorithms can maintain a near-constant speedup as
long as the scheduling overhead is less than 8 percent;

beyond that, the speedup drops o� in an exponential
decay. The fork-join application can incur up to
20 percent overhead while losing only about 6 percent
of its speedup (13.7 down to 12.5) before it too begins
to exponentially decay.

This near-constant behavior at small overheads
is due to the number of scheduling events Se that
must occur during the execution of a speci�c algo-
rithm. For the macro-data
ow scheduler described,
Se is equal to the number of levels in the data
ow
representation of the workload. For asymmetrical
data
ow graphs, Se would be the number of pro-
cesses in the longest path through the graph. The
larger the Se, the more work the scheduler must do
and, hence, the more e�ect that the scheduling over-
head will have on the speedup. The curves shown
in �gure 16, although having similar complexity (the
number of processes), have di�erent values of Se. For
example, Se for the fork-join problem will always be
just three; those for the binary tree problem will be
log2 n (where n is the number of processes at the
top of the tree), and those for the diamond-shaped
problems will be 2n � 1 (where n is the number of
processes at the center level of the diamond).

11



(a) 1-task processor. (b) 2-task processor.

(c) 4-task processor. (d) 8-task processor.

Figure 15. Two-dimensional projections of �gure 14.
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Figure 16. Speedup gains and scheduling overhead with 16
processors).

These data reveal that for certain classes of work-
loads, the e�ect of scheduling overhead on speedup

can be minimal. Also, they show that scheduling
overhead can have a serious e�ect (exponential de-
cay) on speedup once it gets beyond a certain thresh-
old. However, up to this threshold, speedup can be
maintained near a constant.

With the simplistic nature of this macro-data
ow
scheduling paradigm (i.e., a queue), we feel that the
expected overhead would be low (less than 5 percent)
which, according to these data, would allow us to
maintain the speedup achievable with no overhead.

4.4. Communication Overhead E�ects

We now look at the e�ects of interprocessor com-
munication delays. Here, we use the same three
workload classes that were used in section 4.3: a
fork-join problem with 258 processes, a binary tree
problem with 511 processes, and a diamond-shaped
problem with 529 processes; all these workloads exe-
cute on the 16-processor architecture model. A much

12



more consistent behavior can be seen (�g. 17). For
each class of workload, a period of near-constant
speedup (with an overhead of less than 7 percent)
exists, which is followed by an exponential decay in
the speedup gain.

The di�erences in speedup here are due to the
amount of communication which must be done by
each class of algorithm. This amount is directly
proportional to the number of edges in the data
ow
diagram that represents the workload, as shown in
the following table:

Workload Edges

Fork-join . . . . . . . 2(n� 2)

Binary tree . . . . . . 2(n� 1)

Diamond shaped . . . 2(n�
p
n)

Here n is the number of processes in the workload.
These data (�g. 17) show that for tasks with near-
equivalent complexity (i.e., the number of processes),
the fork-join problem will perform best (S = 13.667),
followed closely by the binary tree problem (S =
13.05), and then the diamond-shaped problem (S =
9.798). Notice that these data re
ect our conjecture
about the number of edges because, for this case, the
numbers of edges are 512, 510, and 1012 for the fork-
join, binary tree, and diamond-shaped problems,
respectively. In general, the fork-join problem will
have 2(n � 2) edges (the fewest), the binary tree
problem will have 2(n � 1) (just two more), and the
diamond-shaped problem will have 2(n �

p
n).
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Figure 17. Speedup gains and communicationoverhead (with

16 processors).

Therefore, we believe that for values of n much
greater than

p
n, the behavior of the three workloads

will be similar. However, for small values of n, the
e�ect will be much more signi�cant.

It is apparent from this analysis that the com-
munication overhead has a greater e�ect on perfor-
mance than does the scheduling delay, which is due
in part to the nature of the macro-data
ow paradigm
for scheduling work (i.e., near optimal). This e�ect
also occurs because the number of edges will be much
larger than the number of scheduling events for most
large problems. Therefore, although we have shown
the e�ciency of this scheduling paradigm, we are still
faced with �nding ways to implement fast reliable
communication.

5. Conclusions

This paper presents a performance analysis of
a macro-data
ow mechanism that can optimally
schedule work onto a set of distributed processors
using large-grain data
ow representations of the
workload as input. With the emergence and ac-
ceptance of computer-aided software engineering
(CASE) tools, whose underlying structure for soft-
ware designs is functional decomposition into data-

ow diagrams, generation of this input form becomes
straightforward.

Performance analysis results, obtained via simula-
tion, are presented which reveal the e�ects of problem
size and class on speedup and processor utilizations.
Also shown are the bene�ts of including a multi-
tasking capability to increase the e�ective paral-
lel fraction of the workload. By adding the multi-
tasking capability, we show that more work can be
done with the same speedup gain while increasing
the processor utilizations.

Finally, we present quantitative data that show
the e�ects of scheduling and communication over-
heads. In both cases, a period of constant speedup
exists (as the overhead increases), which is followed
by an exponential decay in the speedup. The rate of
this decay depends on the parameters that determine
the amount of scheduling (the number of scheduling
events) or the communication (the number of edges)
that must take place for a given workload. Note that
one of the salient features of macro-data
ow is a re-
duced number of required communication and sched-
uler events.

Future work will include looking at the multi-
programming of individual processors to reduce the
e�ect of large input/output delays, investigating the
implementation issues, and further analyzing the
performance of speci�c applications.
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