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Abstract

The use of genetic algorithms for minimization of di�erentiable

functions that are subject to di�erentiable constraints is consid-

ered. A technique is demonstrated for converting the solution of

the necessary conditions for a constrained minimum into an un-

constrained function minimization. This technique is extended as

a global constrained optimization algorithm. The theory is applied

to calculating minimum-fuel ascent control settings for an energy

state model of an aerospace plane.

Introduction

Genetic algorithms for optimization (refs. 1 to 4) are nonderivative, nondescent, random-

search procedures for functional minimization, and their algorithmic structure is based on

biological concepts. Familiar descent-type minimization algorithms construct a sequence of

iterations, each of which modi�es the independent variable vector from the previous iteration.

Genetic algorithms, in contrast, construct a random sequence of generations in which a

population of codings of bounded independent variable vectors is modi�ed according to analogs

of biological cross breeding and mutation. Rather than �nalizing the value of the independent

variable in an iteration by satisfying a descent condition, the genetic algorithm employs a

\survival-of-the-�ttest" heuristic that assigns a greater likelihood of appearing in the subsequent

generation to the population elements that have lower objective function values than those that

have higher objective function values.

A growing body of experimental evidence exists (refs. 5 to 8), supplemented by formal results

(ref. 9), which indicates that genetic algorithms (GA's) are reliable methods for approximately

determining the global minimum of a function. These algorithms lack a strict descent require-

ment, and their search operates on a population of iterates rather than on a single sequence of

iterates. These features help prevent GA's from becoming \stuck" at local minima. On the other

hand, GA's do not exploit derivative information in the search. This property, coupled with the

fact that the algorithms operate on fairly coarse codings of the independent variable vector

(rather than on 
oating point numbers), tends to limit the applicability of GA's to \rough-cut"

analyses rather than highly accurate ones. When highly accurate solutions are required, GA's

can be useful to generate initial guesses for gradient or Newton algorithms.

There have been a number of e�orts in recent years to solve constrained optimization problems

using GA's. The most straightforward approach is to convert the constrained problem into

an unconstrained one by adding a penalty function on the constraint violation to the cost

function. Di�culties exist, however, which are associated with both \light" and \heavy"

penalty weightings, just as in the case of gradient-based optimization methods. When light

penalties are employed, they generally fail to accurately enforce the constraint. When extremely

heavy penalties are employed, that portion of the population which violates the constraints will

have a vanishingly small probability of reproducing itself in subsequent generations. This \die-

o�" of illegal population elements results in an e�ectively smaller population (i.e., subsequent

generations will have many replicates of the legal subset of the population and vanishingly few

from the illegal subset). The resulting reduction in \genetic diversity" can adversely a�ect the

performance of the algorithm.

This paper demonstrates a GA-based approach for solving nonlinearly constrained optimiza-

tion problems. The method, which is simple to implement and generic to structure, is applica-

ble to problems in which the cost function and the constraints are continuously di�erentiable.

Moreover, this method can be adapted to calculate the global optimizer under nonrestrictive



assumptions. The algorithmic performance of the approach is explored in two numerical experi-

ments. The �rst experiment compares the performance of the approach with a penalty function

formulation for a simple test problem, and the second experiment extends the comparison to an

aerospace performance optimization problem.

Symbols

B heavy penalty weight in numerical examples

B user-de�ned volume

b light penalty weight in numerical examples

CD drag coe�cient

CL lift coe�cient

CM aerodynamic moment coe�cient

CT thrust coe�cient

Cj set of j times continuously di�erentiable functions

c cost function

�c mean aerodynamic chord, ft

E speci�c energy

E set of equality constraints

err
x
� Euclidean norm of distance between real value of best population element and

known optimal solution point

f constraint function

g gravitational acceleration, ft/sec2

h altitude, ft

ISP speci�c impulse, sec

I set of inequality constraints

i; j; k; l indices

K penalty weight in global minimization formulation

L Lagrangian function

` line de�ned for search volume re�nement

m mass, slug

Npop number of population elements

Nsucc successful Newton-Raphson convergence

n number of free parameters

Pcross crossover probability

Pmutate mutation probability

p penalty function

Q1; Q2; Q3 �rst through third quartiles
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q dynamic pressure, lbf/ft2

Rj space of j-dimensional real vectors

rEarth equatorial Earth radius, ft

S reference area, ft2

T thrust, lbf

vec( ) operator concatenating elements as vector

x vector of free parameters

� angle of attack, deg

� system of equations for stationarity of Lagrangian function

�j de
ection of jth control e�ector, deg

� parameter de�ning transition from light to heavy penalty weight

� fuel equivalence ratio

� number of new local minima identi�ed in global minimization iteration

� Lagrange multiplier

� number of inequality constraints

� function returning Lagrange multiplier vector at optimum

� step-size scale factor in Newton-Raphson algorithm

� atmospheric density, slug/ft3

� user-speci�ed search volume

	 constrained minimization function

Subscripts:

CG center of gravity

( )e pertaining to elevon de
ection

( )pen pertaining to values returned by penalty function mimization

( )T pertaining to thrust

( )x partial derivative with respect to x

Acronyms and Abbreviations:

GA generic algorithm

KT Kuhn-Tucker conditions

max maximum

min minimum

NR Newton-Raphson algorithm

Symbols with superscript stars ( )�, tildes (~), plus signs ( )+, and zeros ( )0 indicate

optimal value, active constraints, pseudo-inverse functions, and solutions returned from the

global optimization algorithm interates, respectively. A bar above a symbol (�) indicates an

admissible search value.
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Problem Representation for Genetic Solution

We treat the problem of minimizing the C1 function c(x) subject to C1 constraints; that is,
x
� 2 Rn is sought such that

c(x�) � c(x) (1)

subject to

fi(x
�) = 0 (i 2 E) (2)

fj(x
�) � 0 (j 2 I) (3)

where E and I are the sets of indices of equality and inequality constraints, respectively.
Identifying the active inequality constraint index set as

bI =
�
j : j 2 I; fj(x

�) = 0
	

(4)

and de�ning

f̂(x�) = vec
n
fk(x

�) : k 2 E [ bIo (5)

assume that f̂ 2 R�, � < n, and

rank

(
@ f̂

@x

�����
x
�

)
= � (6)

If the above assumptions and equation (1) are true, then the Lagrange multipliers �� exist
(ref. 9) such that equations (2) and (3) are satis�ed:

@L(x;�)

@x

���
x
�;��

= 0 (7)

��j � 0 (j 2 I) (8)

��kfk(x
�) = 0 (k 2 E [ I) (9)

where

L(x;�) = c(x)�
X

k2E[I

�kfk(x) (10)

Equations (2) and (3) and (7) to (9), subject to equation (6), make up a typical statement
of the �rst-order necessary conditions for a constrained local minimum, or Kuhn-Tucker (KT)
conditions.

If �� were known, a GA could be used to satisfy the KT conditions by solving for the global
minimum (zero) of

	(x;��) =

nX
i=1

jLxi
(x;��)j+

X
j2E

jfj(x)j+
X
k2I

jminf0; fk(x)gj (11)

Note that, if one cast the �rst sum in equation (11) in the role of a cost function, then 	(x;��)
has the structure of a typical penalty function formulation, but it has the penalty weights in the
second two sums set to unity. The di�erence between the 	(x;��) and a penalty formulation
of the constrained minimization problem is twofold. The �rst di�erence is that in the typical
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case in which the solution is not known a priori, the optimal cost is unknown and may be
nonzero. In this situation, it is well known that the minimum of the sum of cost and weighted
penalty terms will vary with the selection of the penalty weighting parameters. In equation (11),
however, all terms go to zero at x

�; this situation results in the solution being invariant with
respect to the nonunity scaling of the second two sums in equation (11). This property is
advantageous because it eliminates ambiguity concerning the in
uence of penalty weightings
on the solution. The second di�erence is that the \cost" in equation (11) is a measure of the
constrained \stationarity" of the solution, rather than a direct measure of the performance.

Because �� is not generally known a priori, consider estimating �� in equation (11) during
execution of the GA. De�ne bI(x) = �

j : j 2 I; fj(x) � 0
	

(12)

as an index set of constraints which are active or violated at a given x, and

~f(x) = vec
n
fk(x) : k 2 E [ eI(x)o (13)

Now, estimate �� by �(x), where

�i(x) =

8>><
>>:

~�i(x) (i 2 E)

j~�i(x) (i 2 eI(x))
0 (i 2 I(x)� eI(x))

(14)

and
~�(x) = [~fT

x
(x)]+cx(x) (15)

where ( )+ denotes the pseudoinverse operator. Note that from equations ( 6) to (10),

�(x�) = �
� (16)

The use of absolute values in equation (14) is an algorithmic measure to reject constrained
stationary points that fail to satisfy equation (8). The KT conditions are satis�ed by solving

	[x; �(x)] = 0 (17)

The nonsmooth equation (17) is solved in the rest of the paper by using a GA to solve the
nonsmooth unconstrained minimization problem

x
� = argmin

x2�
	[x; �(x)] (18)

where � is the user-speci�ed bounded volume over which the genetic search takes place:

� = fx : (xi)min � xi � (xi)max (i = 1; :::;n)g (19)

In this context, the GA provides a robust means to identify candidate local minima, in the sense
of �nding points that satisfy the KT conditions. Furthermore, because the minimum value of 	
is known a priori, the GA can be stopped when j	j is \su�ciently small."

This latter characteristic can be useful in practice. Identi�cation of the appropriate generation
at which to terminate a GA minimization is an open research topic for general applications. For
this reason, the length of the GA runs in practical studies is often set by the patience of the
analyst or the availability of the computer resources. An objective threshold for termination can
signi�cantly shorten run times without loss of con�dence in the solution.
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Global Minimization Algorithm

The use of GA's to obtain solutions to the KT conditions, as expressed by equation (17),
supplies the basis for a global optimization algorithm that is subject to the following two
assumptions. Assumption 1 (i.e., smoothness) states that

c(x)

fi(x)

)
2 C1

�
i 2 E [ bI; x 2 ��

Assumption 2 states that solutions (x0;�0) of

�(x0;�0) =

"
Lx(x

0;�0)

f̂(x0)

#
= 0 (20)

are regular at all x0 2 �. These assumptions lead to the following assertion, which is proved in
appendix A: If assumptions 1 and 2 are true, then there are a �nite number of points x0 2 � at
which equation (20) is satis�ed.

The global constrained minimization procedure essentially consists of identifying all the local
constrained in
ection points fx0g of L and then accepting that point which returns the lowest
value of c(x0) as the globally minimizing solution. By this assertion, the survey will be completed
after a �nite number of identi�cations.

The set � can be surveyed for the global minimizer by a penalty function-based extension of
the approach for solving local necessary conditions. At the conclusion of a successful GA execu-
tion of equation (18) for a given �, there will be � � 1 roots returned, fx0g = fx

0

l
; l = 1; :::; �g,

thus corresponding to local solutions of the necessary conditions. The problem of solving equa-
tion (18) can then be reposed to ensure that the roots fx0g are excluded from the solution by
replacing 	[x;�(x)] with

	0(x; fx0g) = 	[x; �(x)]+K�(x; fx0g) (21)

where K > 0 is a user-chosen penalty weighting term and � is a function that becomes positive
when x is \close" to any point in the set fx0g but is otherwise zero. For example,

� =

(
1

�
x 2

�S�
l=1B(x

0

l
)
	�

0 (Otherwise)
(22)

where each B(x0
l
) is a user-de�ned volume surrounding the corresponding x0

l
. This approach can

be generalized for a global survey of � by using the GA to minimize the sequence of functions

	j(x) = 	[x; �(x)]+K�j�1 (j = 1; 2; :::) (23)

�i(x) =

(
0 (i = 0)

�(x;
Si�1

k=0
fx

0
gk) (i > 0)

(24)

where fx0gk is the set of local solutions identi�ed when minimizing 	k�1(x). The resulting
algorithmic structure is as follows:

1. Set j = 1. Set cost
0
� 1.

2. Generate a random population distributed over �.
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3. Execute a GA to minimize 	j(x) from equation (23). If the GA is unsuccessful in �nding
x such that 	j(x) � 0, go to step 8.

4. Collect fx0gj such that 	j(x)jx2fx0gj
� 0.

5. Set costj = min

(
costj�1; min

x2fx0gj

c(x)

)
.

6. If costj < costj�1, then set x0� = arg costj .

7. Set j = j + 1. Go to step 2.

8. If j > 1, accept x0� as global minimizer; if j 6> 1, abort.

The algorithm terminates when it is no longer able to identify values of x 2 � for which 	j � 0.
It is presumed that this occurs when all the local solutions have been identi�ed and included in
the penalty term of 	j 's.

Note that the proposed algorithm would still terminate in a �nite number of iterations even if
local nonunique roots of � exist, thus invalidating the assertion. The termination occurs because
the penalties K that exclude a growing union of �nite subvolumes from �. On the other hand,
the resolution of the algorithm to separately identify the closely spaced solution points depends
on the selection of the volumes B. Recall, however, that the motivation for selecting a GA over
a more accurate method is to robustly obtain a \rough-cut" answer. Therefore, it is not felt
that this latter concern prevents the algorithm from having practical utility.

The concept of using penalty functions to exclude known local minima from future iterations
of a global optimization algorithm has been established for descent-based methods (refs. 10
to 12). The penalty function employed in this work is similar to the \tunneling" technique
developed in references 10 and 11. In these references, the penalty varies smoothly toward
a huge value as x ! xl. Penalty functions of this type can lead to numerical di�culties in
algorithms that use gradient information for de�ning a search direction. These di�culties are
avoided in the present approach because of the nondescent nature of the GA.

Numerical Experiments

This section describes the numerical experiments that explore the performance of the GA-
based constrained minimization procedure developed in this paper. Because the procedure
involves more complexity than formulations in which constraints are enforced via penalty
functions, the GA-based solutions of equation (18) are compared with the GA-based solutions
of a \generic" penalty function problem formulation of the form

x
�
pen = argmin

x2�

8<
:c(x) +

X
k2E[I

p[x;fk(x)]

9=
; (25)

where

p[x; fk(x)] =

(
B � jfkj (jfkj > �)

b � jfkj (jfkj � �)
(26a)

when k 2 E and

p[x; fk(x)] =

(
B � jfkj (�fk > �)

b �maxf0;�fkg (�fk � �)
(26b)

when k 2 I. The parameters � > 0 and B � b > 0 are to be chosen by the user. This
formulation allows heavy penalties that strongly violate constraints and light penalties that
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\nearly" comply with constraints to be applied to x. Heavy penalties could be appropriate to
reject the \artifact" local minima in equation (25) which would not approximately correspond

to the solutions of the KT conditions for the underlying problem. The provision for lighter

penalties within the �-de�ned region of light constraint penalty is intended to provide a subset

of � in which the variation of c(x) is not dominated by the penalty terms.

The GA used in this study was a simple GA, which was similar to that used in reference 8;

however, it included a modi�cation that was suggested in reference 13. In this modi�cation,

the best-valued population element from each generation was guaranteed survival into the next

generation. The real-valued independent variables were coded as 8-bit binary strings such that

x(string) = xmin + (xmax � xmin)
base10(string)

28 � 1
(27)

thus yielding a resolution of roughly 0.4 percent over the range of � for each problem. In both

experiments, the string representations for the vector-valued independent variables were formed

by concatenating the 8-bit substrings for each scalar. Key parameters a�ecting the performance

of a GA (ref. 3) are population size Npop, crossover probability Pcross, and mutation probability

Pmutate. All runs in this study were made with Npop = 30 and Pcross = 0:95, as per guidelines

from reference 3. This simple GA with the modi�cation from reference 13, however, appears to
bene�t from a more aggressive mutation rate than the Pmutate = 0:01 that was recommended in

reference 3. Some adjustment of this parameter was done in the experiments below.

The �rst experiment (denoted example 1 in the table titles of tables 1 to 5) compares the

performance of the generic GA penalty function approach with that of the GA solution of

reference 11, henceforth referred to as a KT solution, for the problem

c(x1; x2) = x2
1
+ x2

2

f(x1; x2) = x1 � x2 � 2 = 0

with the search volume

� = f�5 � x1 � 5 ;�5 � x2 � 5g

Monte Carlo experiments of 100 runs, each consisting of 100 generations, were performed

for the KT formulation (ref. 11), and for the penalty formulation for a number of combinations

of fB; b; �; Pmutateg. The performance results are given in tables 1 to 5. Table 1 displays the

KT performance for Pmutate = 0:01; 0:03; 0:05; 0:07, and tables 2 to 5, in turn, display the

GA penalty function results for each value of Pmutate. The performance of the GA in these

experiments was characterized by the number of runs that successfully satis�ed error thresholds

of the form err
x
� � k, where err

x
� is the Euclidean norm of the distance between the real value

of the best population element and the known optimal solution point x� = (1;�1). Tables 2 to

5 also display the median number of generations necessary for the successful runs to cross the

thresholds.

The comparison of table 1 with tables 2 to 5 immediately reveals that the KT formulation was

generally more successful in �nding the optimum for this problem and, when successful, tended

to �nd it more quickly, except in the case of Pmutate = 0:01. Note that, both for the KT and

penalty approaches, Pmutate = 0:05 and 0:07 returned signi�cantly better performance than the

lower values. The case Pmutate = 0:07 did not show any signi�cant advantage over Pmutate = 0:05

in the penalty function runs, and it actually resulted in a small performance degradation in the

KT experiment. If attention is restricted to the penalty results, then a closer examination of

tables 4 and 5 suggests that all the combinations of small b (b = 10) and relatively large �
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(� = 0:1 and 0.2) tend to outperform other parameter combinations, particularly for success in
the err

x
� � 0:1 criterion.

The success of these parameter combinations, which are cases 8, 9, 17, 18, 23, and 24
of tables 4 and 5, can be loosely interpreted in terms of the processes operating in the GA.
Although the comparatively heavy B penalties result in a population being \killed o�" outside
the region jf j < �, the high mutation rates tend to introduce enough \new genetic information"
to prevent the population elements x from stagnating; that is, they accumulate away from the
actual minimizing value of x simply because other population elements fall outside jf j < � and
were eliminated by the B penalty. Similarly, the combination of larger values of � and low b

was advantageous because it assigned more volume in the parameter space to the population
elements that could be expected to survive through enough generations to exchange meaningful
amounts of information through crossover operations.

The second experiment (denoted Example 2 in the table title of table 6) extends the com-
parison of KT and penalty function algorithm performance to a more challenging optimization
problem: selecting optimizing altitude and control settings for an energy-state approximation
(ref. 14) of the minimum-fuel ascent to orbit for the \Langley Accelerator" (ref. 15) aerospace
plane concept. In this experiment, a thrust-vectoring capability is added to the model. The
energy-state approximate solution for this problem is calculated by performing algebraic mini-
mizations for altitude and controls along a locus of speci�c energies E leading to orbital injection.
This experiment considers the algebraic minimization at a single value of E. The search variable
ranges are

�x 2 � =

8>>>>>>><
>>>>>>>:

�1 � � � 12

20 000 � h � 30 000

�20 � �e � 20

�20 � �T � 20

0:5 � � � 1:5

and the cost function is �dE=dm, where m is mass. At a given value of E, the nondimensional
cost is expressed as

c(�x) = V (E; h)ISP (�)

�
cos(�T + �)�

CD(�; �e)

CT (�)

�
1

E
(28)

where V =
p
2g(E � h) and g is the gravitational acceleration, which is assumed to be constant.

Expressions for the coe�cients ISP and C( ) and for all constants in this problem are given in
appendix B. Two equality constraints appear. The �rst constraint is a vertical acceleration
balance

1

mg

�
q(E; h)S

�
CL(�; �e) + CT (�) sin(�+ �T )

�
+m

�
[V (E; h)]2

rEarth
� g

��
= 0 (29)

where S is the reference area. The second constraint is a pitch moment balance

1

CT (�)xT
fCM(�; �e)�c+ xCG[CD(�; �e) sin� + CL(�; �e) cos�]g � sin �T = 0 (30)

where q = �V 2=2 is the dynamic pressure and xCG and xT are the moment arms. There is also
an inequality constraint on dynamic pressure, which is

1�
q

qmax

� 0 (31)
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where qmax = 2000 lbf/ft2. The speci�c energy (E = 105 ft) considered here approximately
corresponds to 
ight at Mach 2.

In this second example, KT and penalty function versions of the problem were again compared
in the Monte Carlo experiments. In this case, each experiment consisted of 100 trial GA runs,
with each run having 600 generations. Two evaluation criteria were employed to compare the
quality of the KT and the penalty results. The �rst criterion was the distribution of values of
	1(�x) from equation (23); these values were returned by the populations of �nal-generation �x's
from the KT and the penalty run sets. The second criterion informally quanti�ed the usefulness
of the GA results as initial guesses for high-accuracy Newton-type methods. This quanti�cation
was done by using the �nal-generation �x's from the GA's as initial guesses for a restricted-
step Newton-Raphson (NR) algorithm that solved a system of equations equivalent to the KT
conditions for this problem:

b	i(�x
�) = f[I � f̂x(f̂

T
x
)+]cxg

2
i + f̂2i = 0 (i = 1; :::;5) (32)

where f(�x) is the concatenation of equations (29) to (31), with equation (31) treated as an

equality and f̂T (�x) = [fT (�x) 00]. At the optimal solution,

(�x�)T = [1:0211; 20 385; 0:1789; 0:7182; 0:7688]

where the treatment of equation (31) as an equality constraint is justi�ed because the value of
its Lagrange multiplier is positive at �x�, thus taking on the value of �qmax = 6:1866.

The NR iteration took the form

�xk�1 = �xk + �ksk sk = �[ĝx(xk)]
�1ĝ(xk) (33)

where ĝx(xk) was approximated by a �rst-order forward di�erence formula, and the line search
parameter �k was chosen by the logic, iterated over j = 0; 1; :::, as

(�k)0 = minf2�k�1; 1g

(�k)j =

(
(�k)j=2 (ĝ[�xk + (�k)jsk] � ĝ(�xk�1))

Abort ((�k)j � �min)

9>>=
>>; (34)

where �min was chosen as 10�7. The algorithm was considered to have converged if the criterionP5
1 ĝi(�x) < 10�4 was satis�ed in 100 iterations or fewer.

First, GA minimization of the KT formulation was considered. A Monte Carlo set of 100
GA runs minimizing 	1(x) over � was calculated. Figure 1 displays the resulting distribution
of 	1 values, referred to as KT errors. The median 	1 for these runs is 	1 = 0.3821, which
corresponds to

(�xT0 )median = [0:8353; 24 980; �1:9608; 8:8627; 0:7745]

An examination of the �nal population elements from the set of trials revealed that, rather
than clustering around a point, the �e and �T components of the �x's were distributed along a
line. This distribution is not surprising, given the correlation in the e�ects of �e and �T on
pitching moment. There was also a signi�cant linear trend of the de
ections with �. Figure 2
displays relationships.

Figure 3 gives the corresponding distribution of � and � as functions of h. The trends in
these variables are not as strong as those seen in the relations among �, �e, and �T . Part of the
reason for this is that the qmax constraint (eq. (31)) only weakly a�ects the performance for this
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model, even though q at the maximum altitude is little more than one-half of qmax. Note that
the trends in �gure 3 are explained by the reduction of q with the increase in altitude. A larger

� is called for because of the dimunition in lift, and a slightly larger � is called for to balance

the reduction in cos(�T + �) and the increase in CD(�; �e) in equation (28).

In 100 trials, the lowest value of 	1 achieved was no better than 0.0979; this occurence can be

explained by the properties of 	1 for this problem and by the characteristics of the crossbreeding

and reproduction operations in GA's. Near its minimum, 	1 is least sensitive along the locus

whose projection into (� � �e � �T )-space is depicted in �gure 2. In the reproduction operation

of the GA's, population elements away from this locus have signi�cantly higher 	1 values and,

therefore, are assigned a signi�cantly lower probability of surviving into the next generation. The

GA \crossbreeding" operation modi�es pairs of population elements by swapping substrings from

binary codings of both elements. When \near-optimum" values of 	1 are distributed along a

surface, rather than a point, the swapping generally results in moving the modi�ed elements

away from the surface. These elements, in turn, lose reproduction probability and disappear

from the population.

To address this di�culty, �e and �T were transformed to tailor the search volume � to the

behavior of 	1 such that

�e = `e(�) + ~�e �T = `T (�) +
~�T (35)

where the coe�cients in
`e(�) = (c1)e�+ (c2)e

`T (�) = (c1)T� + (C2)T

)
(36)

were calculated by least-squares �ts over the data from the Monte Carlo experiment. The values

for the coe�cients and for the residuals measure

s( ) =

vuut100X
i=1

h
`( )(�i) � (�( ))i

i2
(37)

were (in degrees)
(c1)e = 288:2072

(c2)e = �4:2551

se = 3:6505

(c1)T = �291:4726

(c2)T = 8:6639

sT = 7:9568

The new search vector was chosen as ~xT = [�; h; ~�e; ~�T ; �], and the search volume was rede�ned

as

~x 2 ~� =

8>>>>>>><>>>>>>>:

0:1127 � � � 2:7832

20 227 � h � 31 356

�3:6505 � ~�e � 3:6505

�7:9568 � ~�T � 7:9568

0:7381 � � � 0:8194

The bounds in e� for �, h, and � were chosen as the sample mean values �1:5 times the sample

standard deviation. The bounds on ~�e and ~�T were �se and �sT , respectively.

Again, a Monte Carlo set of 100 runs was performed. Figure 4 displays the distribution of
	1 for this experiment. The median value of 	1 for this set of runs was (	1)median = 0:0627,

and the lowest value was (	1)best = 0:0074, with the corresponding control vectors

(�xT1 )median = [1:0867; 23 064; 1:9988; 1:2944; 0:7699]
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(�xT1 )best = [1:2543; 25770; 2:1832; 1:8149; 0:7722]

expressed in the original �x coordinates. Figure 5 gives the distribution of �, �e, and �T , along
with the boundaries of e�, shown as straight lines.

The GA-generated KT solutions were next used as initial guesses for the NR algorithm.
Eighty-two of the NR runs converged from the �rst set of 100 GA solutions, based on optimization
over the full �. Ninety-eight of the NR runs converged of the second set, based on optimization
over the restricted e�. For comparative purposes, the NR algorithm was executed for 100 initial
guesses that were chosen from a uniform distribution over �. Twenty-three of the NR runs
converged in this case. We infer that the use of a genetic algorithm to minimize 	1 provided an
e�ective means of generating an initial guess for the NR algorithm for this example.

Once the performance of the KT approach for this problem was established, the penalty
scheme (eq. (25)) was applied to the problem of minimizing equation (28) subject to equa-
tions (29) to (31). Sequences of 100 Monte Carlo runs were performed with Pmutate = 0:05 for
the various penalty parameter combinations from the �rst example. Each of the sequences of
runs was begun from the same random number seed. Because cases 1 to 3 and 10 to 12 (all
of which used the penalty weighting b = 104) performed poorly in the �rst example, they were
eliminated from consideration in this experiment.

Table 6 summarizes the algorithm performance for these cases. This table displays the
minimum, �rst through third quartile, which is displayed as Q1; Q2; Q3, and the maximum
values of the KT cost function 	1 which is evaluated at the penalty function solution points. In
addition, table 6 displays the number of successful NR convergences, denoted by Nsucc, achieved
using the solutions as initial guesses. As was observed in the �rst example, cases 8, 9, 17, 18, 23,
and 24 tended to provide better results than those of other parameter combinations, in the sense
that 	1 errors tended to be smaller and Nsucc tended to be larger than with other combinations.

Cases 23 and 24 were the most successful pair in producing good initial guesses for the NR
runs. The slight advantage seen in these latter two cases may be attributed to their employment
of the smallest B penalty weight in the study. Because of the small B weight, the nonconstraint-
compliant population elements are granted a somewhat higher likelihood of reproduction and
are, thus, more likely to enhance the\genetic diversity" of the population. Nonetheless, the most
striking characteristic of the data in table 6 is that even the best results from the penalty runs
compare poorly with the results of the KT experiments. The former solutions are less \close"
to the optimum than those of the latter, in the sense of vanishing 	1, and they did not provide
particularly reliable initial guesses for subsequent NR solutions.

Figure 6 displays the detailed 	1 cost distribution for case 23. Figure 7 gives the distribution
of �, �e, and �T from these runs, along with the optimal solution and the case 23 solution that
returns the lowest value of the penalty-based cost function from equation (25). Note that this
distribution is markedly di�erent from those in �gures 2 and 4. Although the best penalty-based
solution,

(�xTpen)best = [1:1926; 233 017; 0:2354; 0:8630; 0:7591]

is fairly close to �x�, the overall trends of the penalty solutions are signi�cantly di�erent from
the KT solutions. Comparing �gures 2 and 4 with �gure 7, note that there is a strongly linear
trend between �T and �e in all sets of solutions, but the slope of the penalty solution trends is
opposite in sign to the KT solution trends and much di�erent in slope magnitude. Also, the
variation of � in the penalty function solutions is much smaller than that in the KT solutions.

12



The solution �x� was tentatively veri�ed as a global optimizer for this example by performing
100 of the 600-generation GA runs that minimize 	2 from equation (23), using the ~x coordinates
from equations (35) and (36), and

B(~x�) =

8>>>>>>><
>>>>>>>:

� = ��

h = h�

~��e � se � ~�e � ~��e + se

~��
T
� sT �

~�T �
~��
T
+ sT

� = ��

This form of 	2(~x) was intended to deny the locus of the (�e ; �T ) pairs from the 	1 search to the
GA. The best value of 	2 from this set of runs was 1.2715. Because this number is considerably
higher than the worst value of 	1, we infer that no other local minima were identi�ed and,
hence, �x� is the global minimizer.

Summary of Results

This paper has examined the use of a simple genetic algorithm to solve minimization problems
for di�erentiable functions that are subject to di�erentiable equality and inequality constraints.
The �rst-order necessary conditions for a constrained minimum have been adapted to convert a
given constrained minimization problem into an unconstrained minimization of a nonsmooth
function whose minimum value is zero and whose minimization is equivalent to satisfying
the �rst-order necessary conditions for the original problem. The unconstrained nonsmooth
minimization is carried out using the genetic algorithm.

This solution approach was exercised and compared with a penalty function formulation
for two constrained minimization problems. In the �rst problem, the approach signi�cantly
outperformed the penalty function technique over a range of penalty function tuning parameters.
In the second problem, the approach provided signi�cantly more accurate solutions than the
penalty function technique, despite numerically challenging features, such as correlated control
variables.

NASA Langley Research Center

Hampton, VA 23681-0001

March 14, 1994
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Appendix A

Proof of Assertion

Assume that an in�nite number of solutions x̂k exist in � with corresponding values of
�̂k = �(x̂k) from equation (15). This assumption and the fact that � is closed and bounded
implies that fx̂kg will contain an accumulation point �x 2 �. Construct a sequence of points
x̂k ! �x, and consider variation of k�[~x; �(~x)]k along the lines

~xk(�) = (1 � �)�xk + �x̂ (0 � � � 1) (A1)

By the extreme value theorem, for each k, there exist �k that satisfy

�k = max
�
k�f~x(�); �[~x(�)]gk (A2)

As k !1,
�k

�kkx̂k � �xk
!

�
@k�(x)k

@x

����
�x

;
x̂k � �x

kx̂k � �xk

�
(A3)

If �k 6= 0 as k!1, assumption 1 of the assertion is violated. Because of assumption 1

�k �Mkx̂k � �xk (A4)

for some constant M > 0. This implies that �k ! 0 as k !1, so that

rank

�
@�(x)

@x

�
x=�x

< n (A5)

from equation (A3). Equation (A5), however, implies that there exists �T = [�xT ; ��T ] 6= 0 such
that

r�(x;�)j�x;�=�(�x)� = 0 (A6)

which violates assumption 2. This contradiction proves the assertion.
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Appendix B

Smoothed Aerospace Plane Model

This appendix describes the smooth analytical adaptation of the piecewise linear tabular

\Langley Accelerator" vehicle model described in reference 15. The following aerodynamic and

propulsion coe�cient expressions are intended for 
ight conditions between Mach 2 and 2.5:

CL(�; �e) = �0:0062 + 0:0242�� 0:00067�e + (0:896� 10�7)��e

CD(�; �e) = 0:0261� 0:000206�+ 0:000526�2 � 0:000025��e+ 0:0000124�2e

CM (�; �e) = 0:00102� 0:0032�� 0:0002�2+ 0:0005�e

ISP (�) = 3713 + 1208� � 1740�2

CT (�) = 0:0062+ 0:1316�� 0:0182�2

where all angles are expressed in degrees. The variation of these quantities with Mach number

has been ignored for simplicity. Figures 8 to 12 display the errors between the above analytical

expressions and the linearly interpolated values from reference (22); the values are normalized

by the latter and expressed as percentages. The vehicle -related constants appearing in the text

are as follows:
S = 3603 ft2

�c = 80 ft

xCG = 14:01 ft

xT = 61:99 ft

m = 4800 slugs

Figure 13 displays the geometry of the vehicle. Finally, the atmospheric density model for this

study is

�(h) = �0 exp(��h)

where �0 = 0:002378 slug=ft3 and � = 0:0000547 1=ft.
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Table 1. E�ect of Mutation Probability
on KT Performance in Example 1

Successes (median generations)

Pmutate err
x
� � 0:10 err

x
� � 0:05 err

x
� � 0:01

0.01 70(12) 49(18) 38(28)
.03 91(16) 75(23) 72(41)
.05 98(14) 83(31) 64(39)
.07 98(15) 78(25) 64(42)

Table 2. Penalty Function GA Performance for Pmutate = 0:01 in Example 1

Successes (median generations)

Case B b � err
x
� � 0:10 err

x
� � 0:05 err

x
� � 0:01

1 1020 104 0.05 2(5) 1(20) 1(20)

2 1020 104 .10 3(29) 1(29) 1(29)

3 1020 104 .20 3(9) 2(64) 2(64)

4 1020 102 .05 11(8) 8(19) 6(38)

5 1020 102 .10 15(8) 13(25) 11(37)

6 1020 102 .20 12(18) 9(41) 9(41)

7 1020 101 .05 9(10) 8(30) 7(62)

8 1020 101 .10 10(12) 7(7) 6(42)

9 1020 101 .20 12(14) 7(59) 6(66)

10 106 104 .05 11(9) 6(34) 6(34)

11 106 104 .10 6(4) 3(9) 3(11)

12 106 104 .20 9(5) 5(9) 5(57)

13 106 102 .05 10(12) 7(19) 7(43)

14 106 102 .10 10(8) 6(24) 6(28)

15 106 102 .20 13(10) 7(27) 6(44)

16 106 101 .05 10(24) 8(28) 7(29)

17 106 101 .10 6(8) 6(22) 5(34)

18 106 101 .20 14(9) 9(33) 9(45)

19 104 102 .05 3(2) 1(60) 1(60)

20 104 102 .10 6(16) 4(43) 4(46)

21 104 102 .20 3(2) 1(23) 1(23)

22 104 101 .05 9(5) 6(29) 6(34)

23 104 101 .10 10(6) 5(25) 5(25)
24 104 101 .20 17(11) 10(22) 10(30)
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Table 3. Penalty Function GA Performance for Pmutate = 0:03 in Example 1

Successes (median generations)

Case B b � err
x
� � 0:10 err

x
� � 0:05 err

x
� � 0:01

1 1020 104 0.05 15(51) 8(52) 8(52)

2 1020 104 .10 15(40) 10(62) 10(62)

3 1020 104 .20 18(52) 13(73) 13(73)

4 1020 102 .05 21(38) 14(40) 13(59)

5 1020 102 .10 27(39) 18(46) 17(56)

6 1020 102 .20 34(28) 23(46) 22(49)

7 1020 101 .05 29(34) 23(62) 23(62)

8 1020 101 .10 29(51) 20(55) 19(58)

9 1020 101 .20 35(35) 27(57) 27(57)

10 106 104 .05 26(39) 20(54) 19(56)

11 106 104 .10 27(31) 22(53) 21(56)

12 106 104 .20 28(28) 19(56) 18(62)

13 106 102 .05 27(59) 19(66) 19(66)

14 106 102 .10 39(36) 28(56) 28(56)

15 106 102 .20 37(49) 27(62) 27(62)

16 106 101 .05 29(37) 22(52) 22(54)

17 106 101 .10 34(54) 27(63) 27(67)

18 106 101 .20 41(37) 28(64) 26(64)

19 104 102 .05 26(51) 18(68) 18(68)

20 104 102 .10 28(44) 20(62) 20(62)

21 104 102 .20 33(39) 23(60) 23(60)

22 104 101 .05 33(56) 28(66) 28(66)

23 104 101 .10 37(38) 26(66) 26(68)

24 104 101 .20 48(60) 30(74) 28(76)
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Table 4. Penalty Function GA Performance for Pmutate = 0:05 in Example 1

Successes (median generations)

Case B b � err
x
� � 0:10 err

x
� � 0:05 err

x
� � 0:01

1 1020 104 0.05 28(52) 15(43) 13(56)

2 1020 104 .10 34(51) 23(59) 21(71)

3 1020 104 .20 39(48) 24(64) 23(59)

4 1020 102 .05 36(39) 26(56) 23(56)

5 1020 102 .10 47(60) 33(60) 29(60)

6 1020 102 .20 53(62) 34(76) 30(76)

7 1020 101 .05 52(46) 39(48) 38(54)

8 1020 101 .10 55(44) 37(69) 32(72)

9 1020 101 .20 66(50) 49(71) 43(67)

10 106 104 .05 42(57) 24(59) 21(58)

11 106 104 .10 33(52) 24(65) 21(67)

12 106 104 .20 33(40) 27(50) 24(54)

13 106 102 .05 41(48) 27(62) 25(48)

14 106 102 .10 56(56) 39(72) 36(72)

15 106 102 .20 47(59) 35(75) 30(68)

16 106 101 .05 38(58) 26(70) 24(66)

17 106 101 .10 50(46) 34(64) 26(64)

18 106 101 .20 66(44) 40(56) 37(63)

19 104 102 .05 48(45) 38(56) 35(59)

20 104 102 .10 40(44) 27(64) 25(64)

21 104 102 .20 49(45) 37(59) 35(59)

22 104 101 .05 45(51) 29(51) 27(54)

23 104 101 .10 62(47) 42(50) 38(55)

24 104 101 .20 60(56) 38(70) 34(70)
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Table 5. Penalty Function GA Performance for Pmutate = 0:07 in Example 1

Successes (median generations)

Case B b � err
x
� � 0:10 err

x
� � 0:05 err

x
� � 0:01

1 1020 104 0.05 35(52) 18(53) 15(60)

2 1020 104 .10 39(58) 22(71) 20(76)

3 1020 104 .20 38(43) 20(52) 20(52)

4 1020 102 .05 45(50) 29(65) 28(65)

5 1020 102 .10 40(46) 27(69) 27(69)

6 1020 102 .20 45(51) 26(64) 26(66)

7 1020 101 .05 47(49) 33(46) 29(50)

8 1020 101 .10 62(54) 37(66) 32(73)

9 1020 101 .20 57(38) 38(43) 38(48)

10 106 104 .05 32(36) 17(62) 16(63)

11 106 104 .10 41(62) 25(75) 25(75)

12 106 104 .20 40(58) 22(66) 22(66)

13 106 102 .05 56(48) 28(46) 27(49)

14 106 102 .10 44(64) 23(74) 21(74)

15 106 102 .20 49(50) 34(66) 33(74)

16 106 101 .05 48(48) 35(57) 27(63)

17 106 101 .10 55(38) 24(36) 22(40)

18 106 101 .20 61(46) 39(59) 33(61)

19 104 102 .05 39(57) 18(67) 16(69)

20 104 102 .10 34(55) 20(57) 18(62)

21 104 102 .20 48(52) 27(62) 25(65)

22 104 101 .05 44(38) 31(53) 29(61)

23 104 101 .10 57(40) 38(58) 36(58)

24 104 101 .20 67(37) 44(60) 42(62)
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Table 6. Summary of Penalty Function GA Performance for Example 2

KT performance distribution

Case B b � min Q1 Q2 Q3 max Nsucc

4 1020 102 0.05 3.782 22.810 34.852 44.911 107.101 27

5 1020 102 .10 8.205 25.862 35.294 53.612 101.633 29

6 1020 102 .20 4.402 20.192 34.863 47.886 93.153 36

7 1020 101 .05 4.949 13.055 20.162 28.005 56.846 45

8 1020 101 .10 1.807 12.340 18.999 28.049 59.982 48

9 1020 101 .20 2.919 11.700 21.318 26.641 46.687 34

13 106 102 .05 3.782 22.810 34.320 43.926 96.346 28

14 106 102 .10 8.205 25.862 35.294 53.612 101.633 28

15 106 102 .20 4.402 20.889 35.167 48.078 93.153 34

16 106 101 .05 4.949 13.496 20.162 28.005 56.846 43

17 106 101 .10 1.807 12.340 18.999 28.049 59.982 49

18 106 101 .20 2.919 11.700 21.318 26.895 46.687 35

19 104 102 .05 3.782 23.666 34.756 44.386 91.330 38

20 104 102 .10 4.198 29.236 37.646 51.673 97.060 33

21 104 102 .20 2.801 24.732 37.204 46.266 95.789 36

22 104 101 .05 4.751 13.671 20.700 29.621 57.700 43

23 104 101 .10 1.854 12.705 20.948 27.805 59.982 53

24 104 101 .20 3.387 11.652 20.313 27.335 43.526 38
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Figure 1. Distribution of KT error for �rst aerospace plane Monte Carlo experiment.
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Figure 4. Distribution of KT error for re�ned aerospace plane Monte Carlo experiment.
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Figure 5. Distribution of �, �e, and �T for re�ned aerospace plane Monte Carlo experiment.

24



0 10 20 30 40 50 60

KT error

2

4

6

8

10

12
N

um
be

r 
of

 tr
ia

ls

Figure 6. Distribution of KT error for penalty formulation aerospace plane Monte Carlo
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Figure 7. Distribution of �, �e, and �T for penalty function aerospace plane Monte Carlo

experiment.

25



α, deg

α, deg

δ  , dege

δ  , dege

C
   

pe
rc

en
t e

rr
or

L

C
   

pe
rc

en
t e

rr
or

L

Figure 8. CL percent error in aerospace plane model.

α, deg

α, deg

δ  , dege

δ  , dege

C
   

 p
er

ce
nt

 e
rr

or
D

C
   

 p
er

ce
nt

 e
rr

or
D

Figure 9. CD percent error in aerospace plane model.

26



α, deg

α, deg

δ  , dege

δ  , dege

C
   

  p
er

ce
nt

 e
rr

or
M

C
   

  p
er

ce
nt

 e
rr

or
M

Figure 10. CM percent error in aerospace plane model.
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