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Summary

Lifetimes of low-altitude lunar orbits are studied
in this report to identify feasible parking orbits for
future lunar missions. The lunar missions currently
under study, unlike the Apollo missions, involve long
stay times. To determine orbital lifetimes of lunar
parking orbits, a model to describe the nonspherical
mass distribution of the Moon must be adopted. A
short discussion of previous attempts to describe the
Moon's gravitational �eld is included, and emphasis
is placed on spherical harmonic-gravity models. A
subset of the �fth-order and �fth-degree lunar gravity
model was adopted in this investigation to generate
orbital lifetime predictions. This simpli�ed model
consists of the �ve gravitational coe�cients J2, J3,
J5, C22, and C31.

The primary perturbation on a low-altitude
(100 km or 300 km) lunar parking orbit is the Moon's
nonspherical gravity �eld. In this analysis, all other
perturbations (third body perturbations, solar radi-
ation pressure, etc.) are neglected. Although per-
turbations due to the Earth and the Sun are not
negligible for lunar orbits, these e�ects are small com-
pared with the Moon's nonspherical potential for all
the orbits considered in this analysis. By investi-
gating the e�ects that initial conditions have on the
subsequent lifetime of an orbit, a technique is intro-
duced to aid mission planners in the selection of lunar
parking orbits. In this investigation, the lifetimes of
near-circular parking orbits, with various initial or-
bital elements and either 100-km or 300-km perilune
altitude, are analyzed for mission planning purposes.

Orbital lifetimes are heavily dependent on the
initial conditions of the orbit, particularly the ini-
tial inclination and argument of perilune. The lu-
nar gravity model utilized in this analysis for the
100-km initial perilune altitude case yields lifetime
predictions of less than 40 days for some orbits, and
more than a year for others. Five distinct bands of
short-lifetime orbits appear as a function of the ini-
tial inclination; these bands are separated by bands
of long-lifetime orbits. Of particular interest is a set
of orbits with an inclination of approximately 70�;
this set of orbits yields long lifetimes and provides
the high latitude coverage that is desirable for vari-
ous missions. The J5 coe�cient contributes the dom-
inant e�ect in perilune altitude decay and, therefore,
orbital lifetimes.

The methods presented in this report are suit-
able for incorporating the Moon's nonspherical grav-
itational e�ects into the preliminary design level for
future lunar mission planning. However, inconsisten-
cies and limitations, caused primarily by a lack of

satellite tracking data from the far side of the Moon,
are inherent in all existing lunar gravity models. The
uncertainty in orbital lifetime predictions due to er-
rors in the lunar gravity model is addressed through
the use of sensitivity coe�cients. The uncertainty in
the rate of perilune altitude decay that corresponds
to the uncertainty in the values of the coe�cients
for the gravity model adopted in this analysis is pre-
sented. Also, plots of the values of the sensitivity
coe�cients, which can be used to evaluate the uncer-
tainty in perilune-altitude decay rates of each grav-
itational coe�cient for any lunar gravity model, are
presented.

Introduction

President Bush's proposal of a Space Exploration
Initiative in 1989 sparked a renewed interest in lunar
mission planning. The objectives outlined in this ini-
tiative include the establishment of a permanent lu-
nar outpost. (See refs. 1 and 2.) Lunar stay times on
the order of 30 to 180 days will be required for initial
deployment and ongoing support of the outpost. In
some analyses, preliminary missions will involve the
insertion of a satellite into a low-altitude lunar orbit
to map the Moon's surface. Also in these analyses,
initial manned missions will require the placement
of a lunar transfer vehicle in a low-altitude parking
orbit. Ongoing support of an outpost might include
the placement of a space station in low lunar orbit.
Any of these missions will require spacecraft to be in
lunar parking orbits for long periods of time. Pre-
vious orbital determination studies for lunar satel-
lites have indicated that the Moon's nonspherical
gravity �eld will have a great e�ect on the sub-
sequent lifetime of the orbit. (See refs. 3 to 5.) In
fact, a lunar-orbit space station proposed by NASA
to be in a 60-n.mi. (111 km) circular polar orbit
about the Moon was found to impact the lunar sur-
face in 140 days if no station-keeping altitude boost
maneuvers were performed. (See ref. 6.)

An important element involved in establishing a
base on the Moon is the initial manned mission to
the lunar surface. As with the Apollo missions, the
lunar transfer vehicle (LTV) will be inserted into a
parking orbit about the Moon at arrival. Apollo mis-
sions restricted these parking orbits to circular, near-
equatorial orbits. However, the utilization of park-
ing orbits at all inclinations must be addressed to
accommodate the vast array of lunar missions cur-
rently being proposed. The LTV will remain in this
parking orbit until a departure burn for return to
Earth is initiated. The transfer of cargo and person-
nel to the lunar surface is accomplished by the de-
scent of a lunar lander from the parking orbit. Ascent
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Figure 1. Earth-lunar mission sequence. (From ref. 1.)

and rendezvous of the lander with the LTV in the
parking orbit initiates the Earth-return sequence of
the mission. (See �g. 1.) Therefore, long stay times
on the lunar surface will require that the LTV remain
in a parking orbit for a long period. The mission
designer must address the variations in the orienta-
tion of the parking orbit for the duration of the mis-
sion to establish the necessary �V requirements for
performing the rendezvous and trans-Earth injection
maneuvers.

Since the Apollo missions involved only short stay
times at the Moon (on the order of 1 to 3 days), little
work was performed on predicting long term changes
in the parking orbits of lunar modules. However, for
longer stay times (30 to 180 days), an accurate model
of the Moon's gravity �eld is required for preliminary
mission planning, especially with low-altitude park-
ing orbits. The need for long orbital lifetimes is a key
criterion in the process of selecting feasible parking
orbits. By investigating the e�ects that initial con-
ditions have on the subsequent lifetime of an orbit, a
technique is introduced that will aid mission planners
in the selection of lunar parking orbits.

Because of the Moon's irregular internal structure
and surface shape, the lifetime of a lunar satellite or-
bit is constrained by the nonspherical nature of the
Moon's gravity �eld. In the present analysis, a sim-
pli�ed gravitational model of the Moon is introduced
that will enable mission planners to easily predict
long-term changes in lunar parking orbits at the pre-
liminary design level. The development of a simpli-
�ed gravitational model with su�cient accuracy is
necessary to investigate orbital lifetimes for the large
number of initial orbital parameters possible. Uti-
lization of a simpli�ed model will signi�cantly reduce
the required computational time needed to perform
this analysis. The e�ect of individual terms in grav-
ity models on orbital lifetimes is also addressed. By
investigating the e�ects of the lunar gravity model on
the various parking orbits, the parameters that are
most important in determining lifetime predictions
are identi�ed.

Nomenclature

Anm; Bnm Fourier coe�cients

a semimajor axis, km

Cnm; Snm gravitational coe�cients

dm in�nitesimal mass element, kg

e eccentricity

e eccentricity averaged over period of
third body about central body

enew new value of eccentricity (after
integration)

eold old value of eccentricity (before
integration)

G gravitational constant,

6:67� 10�11 m3-kg�1-s�2

h altitude, km

i inclination, deg

i inclination averaged over period of
third body about central body, deg

Jn zonal gravitational coe�cient, �C
n0

LTV lunar transfer vehicle

M mean anomaly, deg

M mass of Moon, 7:35� 1022 kg

n mean angular motion, rad/day

n mean angular motion averaged over
period of third body about central
body, rad/day

n3 mean angular motion of third body
about central body, rad/day

Pnm associated Legendre polynomial

p position vector

R radius of Moon, 1739 km

R distance between mass element and
exterior point, km

r radius, km

_r rate of altitude decay, km/day

t time, days

�t integration time step, 1 day

U gravitational potential

rU gradient of gravitational potential
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V disturbing function (nonspherical
gravitational potential)

�V velocity increment, m/sec

V volume, km3

w rotation rate of Moon, 13-18�/day

x; y; z position in Cartesian coordinates, km

_x; _y; _z velocity in Cartesian coordinates,
km/sec

� longitude, deg

� true anomaly, deg

� density, g/cm3

�Cnm standard deviation of gravitational
coe�cient

�_rp variance in perilune altitude decay
rate, km/day

� latitude, deg


 longitude of ascending node, deg


i inertial node longitude, deg


s selenographic node longitude, deg�
d

dt

�
31

d

dt

contribution for C31 term

! argument of perilune, deg

! argument of perilune averaged over
period of third body about central
body, deg

Subscripts:

m order of gravitational coe�cient

n degree of gravitational coe�cient

p perilune

Background

Gravitational Potential Theory and

Resulting Perturbations

To determine the orbital lifetime of a satellite, the
gravitational �eld of the attracting body must �rst
be described. Since gravity is a conservative force,
the gravitational �eld of a body can be represented
by a potential function. A solution for the form of
the potential of a body can be obtained in terms of
a mass integral de�nition or by �nding a solution
to Laplace's equation. In the �rst approach (refs. 7
and 8), in�nitesimal mass elements are integrated
over the entire body to describe the potential at

λ

z

x

y
φ

 Arbitrary
mass

distribution dm = ρ dV

p(r, φ, λ)
R

Figure 2. Solution for potential of a body using a mass

integral de�nition.

an exterior point, p(r; �; �), where r is the radial
distance between the point and the origin, and �

and � are the latitude and longitude of the point
(�g. 2) as follows:

U(r; �; �) =

Z
Body

dU = G

Z
Body

dm

R

= G

Z
Vbody

� (r; �; �) dV

R
(1)

where R is the distance between the mass element
and the exterior point p, � is the density function
of the body, and V is the volume of the body. The
1
R

term is expanded in a Legendre polynomial series,
and the addition theorem for Legendre associated
polynomials is used to write the potential in the form

U =
1X
n=0

nX
m=0

�
Rn

rn+1

�
Pnm(sin�)

� [Anmcos (m�) + Bnmsin (m�)] (2)

This spherical harmonic expansion of the potential
function can also be obtained by using a separation-
of-variables method to solve Laplace's equation. This
approach is outlined in reference 9.

The A00 term represents the uniform spherical po-
tential contribution GM

r
. Assuming that the origin of
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the coordinate system is at the center of mass of the
body, then A10 = A11 = B11 = 0. By also introduc-

ing the variables Cnm = Anm
GM and Snm= Bnm

GM, the
potential can be written in the traditional form as
follows:

U =
GM

r

(
1 +

1X
n=2

nX
m=0

�
R

r

�n
Pnm(sin�)

� [Cnm cos (m�) + Snmsin (m�)]

)
(3)

If the density function of the body is known, the value
of the coe�cients Cnm and Snm can be determined
by integration of the appropriate mass integrals over
the volume of the body. In practice, since the
density function is not known, the values of the Cnm
and Snm coe�cients are determined empirically by
tracking satellites orbiting the body. Using statistical
methods, the best set of Cnm and Snm coe�cients
that describe the orbit are determined. (See section
\Lunar Gravity Models.")

The disturbing function V , de�ned as V �

U � GM
r , contains the nonspherical gravitational

contribution to the potential. This nonspherical
gravitational contribution arises from the non-
spherical mass or density distribution of the body.
The net e�ect of this nonuniformity is the creation
of a small disturbance force on an orbiting body;
this disturbance causes a change in the orbital ele-
ments over time. The Lagrange planetary equations
(ref. 10) describe the e�ects of the disturbing func-
tion on an orbiting body as follows

�
the n term in

eq. (4f) is a result of the GM
r term

�
:

da

dt
=

2

na

�
@V

@M

�
(4a)

de

dt
=

1� e2

na2e

@V

@M
�

�
1� e2

�
1=2

na2e

@V

@!
(4b)

d!

dt
=

�
1� e2

�
1=2

na2e

�
@V

@e

�

�
cos i

na2
�
1� e2

�
1=2

sin i

�
@V

@i

�
(4c)

di

dt
=

cos i

na2
�
1� e2

�
1=2

sin i

�
@V

@!

�

�
1

na2
�
1� e2

�
1=2

sin i

�
@V

@


�
(4d)

d


dt
=

1

na2
�
1� e2

�
1=2

sin i

�
@V

@i

�
(4e)

dM

dt
= n�

1� e2

na2e

�
@V

@e

�
�

2

na

�
@V

@a

�
(4f)

These equations are the result of a direct coordi-
nate transformation of the equations of motion from
Cartesian coordinates (x, y, z, _x, _y, _z) to the six clas-
sical orbital elements (a, e, i, 
, !, M). Once the
nonspherical gravitational contribution of the poten-
tial V is de�ned, the partial derivatives required for
the solution of the Lagrange planetary equations can
be evaluated; this evaluation enables the orbit of the
spacecraft to be determined. The resulting equations
for several of the nonspherical potential terms are
contained in appendix A. These �rst-order analyti-
cal equations are derived with an averaging technique
that involves integration of the short-period e�ects in
the disturbing function. (See refs. 3 and 11.)

Mass Concentrations|An Alternative

Approach

The spherical harmonic expression for the poten-
tial (eq. (3)) is very useful for describing gravitational
�elds that vary only slightly from a spherical �eld in
a smooth manner, such as for the Earth. A detailed
description of the Earth's potential is obtained with
only a few harmonic terms. The Moon is smaller and
less massive than the Earth; therefore, it can support
more stress per unit mass and has the capability to
possess greater gravitational anomalies than does the
Earth. Because of its irregular internal structure and
surface shape, the Moon has a very complicated grav-
itational �eld. As a result of these properties, the
Moon's gravitational �eld cannot be described with
only a few terms.

Several problems are encountered when a spheri-
cal harmonic expansion of the potential is used. One
problem is the slow convergence of the expansion for
points near the lunar surface, where R

r is slightly less
than one. For this reason, many gravitational co-
e�cients are required to describe the orbit of a low-
altitude satellite. Also, spherical harmonic expan-
sions are unable to describe localized gravitational
anomalies unless a large number of coe�cients are
introduced; they are more appropriate for describing
an average gravitational �eld. For example, an ex-
pansion on the order of 180 (m = 180, see eq. (3)) is
necessary to describe a local anomaly that subtends
an angle of 1�. (See ref. 12.) Di�culties in obtain-
ing values of Cnm and Snm for the Moon have also
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been encountered for reasons that are discussed in
the section \Lunar Gravity Models."

The existence of lunar mass concentrations (mas-
cons) was postulated in reference 13. These are lo-
calized regions of higher than average density that
produce measurable gravity anomalies. A gravity
anomaly is de�ned as the residual gravity e�ect after
the attraction of a reference body (such as a homo-
geneous spheroid, rotational ellipsoid, triaxial ellip-
soid, etc.) is subtracted from the measured gravity
data (ref. 14). This gravity anomaly is a result of
the mascon's higher density (mascons have a den-
sity of approximately 3.3 g/cm3, whereas surround-
ing rocks have an average density of only 3.0 g/cm3).
Mascons constitute between 0.01 and 0.03 percent
of the Moon's mass, and their location is coincident
with the location of lunar seas (maria). (See ref. 12.)
These gravitational anomalies are found primarily
along the equator on the near side of the Moon.

Attempts have been made to use mascon mod-
els to describe the features of orbital tracking data.
Models that distribute mascons below the lunar sur-
face rather than on the surface (ref. 15) and mod-
els that treat mascons as circular disks rather than
point masses (ref. 16) have had much more success.
A model was also developed that treated the mascon
as a third body to investigate the short-period, long-
period, and secular e�ects of mascons on the orbit
of a spacecraft. (See ref. 17.) The main restriction
of this latter approach is that it is not applicable to
low-altitude satellites.

One advantage of a spherical harmonic model for
lifetime studies is that it can be used to provide a
relatively simple analytical approach. Since a spher-
ical harmonic description allows one to average short-
period e�ects (perturbations that result from the
variation of the mean anomaly M around the orbit),
these averaging e�ects can be accounted for over the
period of a few orbits. Averaging e�ects for mascon
models can be developed by mapping the mascons
to a set of spherical harmonic coe�cients. However,
this process e�ectively eliminates the advantage of
the mascon approach, because a large number of co-
e�cients are needed to accurately model the e�ects
of mascons.

An alternative method was developed by Ananda
to construct a disturbing potential in terms of var-
ious parameters of the mascons and the orbital el-
ements. (See ref. 18.) This potential is averaged
over an orbit to eliminate the short-period terms.
Much of this integration cannot be performed analyt-
ically. The averaged potential is determined by nu-
merically evaluating these expressions with Gaussian

quadrature formulas that require considerable com-
puter time. Once the potential is de�ned, the average
rates of the mean orbital elements can be determined
by evaluating the derivatives in the Lagrange plane-
tary equations (eqs. (4)). Work is being conducted
to develop a method that allows for the application
of mascon models without the sacri�ce of computer
time. (See ref. 19.)

Hybrid models, with both spherical harmonics
and mascons, have also been proposed (refs. 16
and 20). Purely mascon models, with a large number
of mascons (on the order of 100), require signi�cant
computational time. Using a few low-degree spher-
ical harmonic terms to describe global nonspherical
contributions decreases the number of mascons re-
quired to give a complete description of the lunar
gravity �eld. The function of the mascons in a hy-
brid model is only to describe localized gravitational
e�ects. This may be the most reasonable gravita-
tional model to use, because it combines the bene�ts
of spherical harmonic models and the mascon ap-
proach. However, the application of a hybrid model
on the preliminary mission design level may prove to
be infeasible because of the excessive computer time
demanded by the additional complexity associated
with the mascons.

A spherical harmonic model was adopted for the
study of orbital lifetimes in this investigation because
of the availability of these models. Few mascon mod-
els are available, and methods for including the ef-
fects of these anomalies in long-term orbital predic-
tions have not been widely developed. Also, since
lifetime studies involve averaging e�ects of the en-
tire gravitational �eld of the Moon, a spherical har-
monic model seems to be more appropriate for this
application. Mascon models are more appropriate
for situations in which information about localized
�elds is desired. Some applications might include
performing a maneuver with a low-altitude satellite
above a gravitational anomaly, or calculation of de-
scent and ascent trajectories to and from a landing
site near a mascon. If localized gravitational e�ects
are found that cause signi�cant changes in the or-
bital elements (either as single events or integrated
over time), spherical harmonic representations of the
lunar gravity �eld will need to be abandoned in favor
of mascon models.

Lunar Gravity Models

Derivation of models. Spherical harmonic lu-
nar gravity models contain values of the gravita-
tional coe�cients Cnm and Snm that de�ne the non-
spherical contributions to the potential �eld. (See
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Figure 3. Various types of harmonic coe�cients. White

area represents elevation above and black area represents

elevation below a mean spherical surface. (From ref. 21.)

eq. (3).) There are three types of harmonic co-
e�cients; these types are de�ned by the values of
the subscripts n and m. For zonal harmonic co-
e�cients, m = 0 (C

n0, often denoted by �Jn). These
coe�cients describe an axially symmetric potential
(in this case, the spin axis of the Moon) indepen-
dent of the longitude at which the potential is mea-
sured. Gravity models for the Earth consisting solely
of zonal harmonics yield good approximations to the
actual �eld. However, a longitude dependence in the
Moon's gravity �eld motivates the need to include
other types of coe�cients in lunar models. This de-
pendence is introduced by the presence of sectorial
and tesseral harmonic coe�cients. Sectorial harmon-
ics (where n = m 6= 0) give rise to zero values of the
potential only along meridians of longitude, whereas
tesseral harmonics (where n 6= m, and m and n are
nonzero) also give rise to zero values along parallels
of latitude. (See �g. 3, from ref. 21.) Once the Cnm
and Snm coe�cients are speci�ed, the potential is
completely determined as a superposition of the
individual harmonic terms.

Further insight into the physical signi�cance of
the individual gravitational-coe�cient values can be
obtained by interpreting the coe�cients as surface
deviations from a homogeneous sphere. The J2 gravi-
tational coe�cient analytically represents the oblate-
ness of a body (this equatorial \bulge," common
to all rotating bodies, arises from the \centrifugal
force" produced by the body's rotation about its
axis). The C22 term describes the ellipsoidal nature
(the equatorial ellipticity) of a body, and the J3 co-
e�cient models the nonspherical mass distribution
between the northern and southern hemispheres (the
body's \pear-like" shape). Higher degree gravita-
tional terms describe more localized distributions of
mass. Figure 4 (from ref. 22) illustrates the equi-
potential surfaces for the low-degree zonal harmon-

J2 J3
J4

J5 J6 J7

W E

N

S

Figure 4. Geometrical shape of Legendre polynomials cor-

responding to equipotential surfaces for zonal harmon-

ics. The surfaces shown here are for positive values of

J coe�cients. (From ref. 22.)

ics. The degree of the term determines the number of
lobes of its equipotential surface. As previously men-
tioned, the zonal equipotential surfaces are indepen-
dent of longitude and model axially symmetric po-
tentials. The equipotential surfaces associated with
the sectorial and tesseral harmonics (�gs. 5 and 6)
are functions of both latitude and longitude (the
z-axis shown in the �gures corresponds to the spin
axis of the Moon, and the positive x-axis is aligned
with the Moon-Earth direction). For sectorial and
tesseral harmonics, the order of the term represents
the number of lobes of a horizontal cross section
of its equipotential surface (corresponding to cosm�

and sinm�).

Values of the gravitational coe�cients are deter-
mined from radar tracking data of lunar satellites
and laser-ranging data measurements. (See ref. 23.)
With the Doppler method, the radial velocity of the
satellite (the velocity component along the line of
sight from the tracking antenna to the spacecraft) is
determined from the di�erence in frequency between
the signal emitted by the satellite and the signal re-
ceived by Earth tracking stations. From these ve-
locity measurements, the radial acceleration can be
determined. By attributing this acceleration of the
satellite to the gravitational �eld of the Moon, the
potential �eld (and therefore the value of the har-
monic coe�cients) can be derived. These coe�cients
are independent of the orbit of the spacecraft be-
ing tracked, because they describe the 
uctuations
in the gravitational �eld. However, in practice, the
estimated coe�cients are dependent on the altitudes
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(a) Harmonic coe�cient C22. (b) Harmonic coe�cientC33.

Figure 5. Geometrical shape of a sectional equipotential surface.

(a) Harmonic coe�cient C31. (b) Harmonic coe�cientC54.

Figure 6. Geometrical shape of a tesseral equipotential surface.
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and inclinations of the satellite data used to derive
the model. This dependence is a result of the limited
geographic distribution of the measurement set used
to compute the coe�cients. All e�ects of the lunar
gravity �eld have not been included in a coe�cient
model; a set of satellite data covering all regions of
the Moon is as yet unavailable. Also, the number
of terms included in the gravitational model (the
maximum value of the index n) also in
uences the
estimated values of the coe�cients.

Lunar laser-ranging data are obtained by mea-
suring the round-trip time of a laser pulse between
an Earth observatory and a retrore
ector array on
the surface of the Moon. These measurements allow
the Earth-Moon distance to be determined within
fractions of a meter, precise enough to monitor the
physical librations of the Moon. By observing varia-
tions in the lunar rotation, values for the low-degree
harmonics can be determined. (See ref. 24.)

Limitations of existing models. There are
three major obstacles to making an accurate de-
termination of the Moon's gravitational �eld. (See
ref. 25.) First, as previously mentioned, the various
surface and interior features make the Moon a very
complicated gravitational object, and therefore di�-
cult to model with a simple mathematical represen-
tation. Further, gravitational models of high order
and degree may not be appropriate for orbital life-
time predictions at the present time, because there
is still uncertainty in the values of even some of the
lower coe�cients, such as J3. These uncertainties
may overshadow any attempt to adequately model
localized variations in the Moon's gravitational �eld
with higher coe�cient gravity models.

Second, the range of inclinations and other orbital
parameters for which tracking data exist is quite lim-
ited. Ample tracking data exist for near-equatorial
orbits. However, for midlatitude and near-polar in-
clinations, little tracking data are available. Since
e�orts have been made to include only orbital data
with trajectories free of propulsive maneuvers (in
u-
enced only by the force of gravity), the amount of
tracking data available is further limited (ref. 26).
High-altitude orbits are ideal for determination of
the low-degree harmonic coe�cients, because these
orbits are not sensitive to the e�ects of high-degree
harmonics. (See ref. 27.) However, most of the lunar
satellite tracking data available are for low-altitude
orbits. The last U.S. satellites to orbit the Moon
were the Explorer probes in the mid-1970's. Little
new information about the Moon's gravitational �eld
has been obtained since then.

The inability of Earth-based stations to obtain
satellite tracking data as the spacecraft passes be-
hind the Moon is the third obstacle to developing
an accurate lunar gravitational model. Because of
libration of the Moon's orbit, 41 percent of the lunar
surface is never visible from the Earth (ref. 28). As
a result of this limitation in tracking data, gravita-
tional e�ects on the far side of the Moon cannot be
practically determined. The absence of a description
of the gravitational �eld on the far side of the Moon
remains as the greatest limitation to making accurate
predictions of orbital lifetimes for lunar satellites.

Current models available. Several lunar grav-
ity models have been constructed, based primar-
ily on satellite tracking data, with the additional
use of lunar laser-ranging observations and mass-
concentration models. Di�erences in the values of
the gravitational coe�cients of these models occur
because of the selection of di�erent satellite track-
ing data and the di�erent methods used to process
these data. (See tables 1 and 2.) Coverage from
the Apollo satellites is limited to about 20 percent
of the lunar surface. (See ref. 29.) Tracking data
from Lunar Orbiter 4 and 5 are commonly used to
provide high-inclination information, while Apollo 15
and 16 subsatellite tracking data are used to provide
low-inclination information.

Six gravitational models were recently compared
by the Jet Propulsion Laboratory for the Lunar Ob-
server mission study. (See ref. 30.) The Liu-Laing
model (ref. 31), constructed primarily from Doppler
data of the �ve Lunar Orbiter satellites, is an 8 � 8
(n�m denotes nth degree, mth order, see eq. (3))
model with additional zonal harmonics up to de-
gree 15. This model di�ers from other models in
that the values of the high-degree zonal harmonics
are larger than the value of the low-degree zonal
harmonics. The Ferrari 5� 5 model (ref. 23), de-
veloped from 9 days of Lunar Orbiter 4 data and
approximately 2200 lunar laser-ranging observations,
is an attempt to accurately determine the values
of the low-degree coe�cients. A Ferrari 16� 16
model (ref. 26) was also developed with Doppler
measurements from Lunar Orbiter 5 and Apollo 15
and 16 subsatellites. The Bills-Ferrari 16� 16 model
(ref. 32) used the data sets of the Ferrari 5� 5
and 16� 16 models along with a model of approx-
imately 600 mascons. Akim (ref. 33) developed a
4� 4 model with zonal coe�cients J5, J6, and J7,
based on the Soviet Luna spacecraft. A Sagitov
16� 16 model (ref. 34) also exists, based on data
used for the Ferrari 5� 5 model, the Bills-Ferrari
model, and the Akim model, with additional data
from Apollo and a mascon model. As mentioned
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(From ref. 35.)

previously, all six of these models are limited by a
lack of tracking data for spacecraft on the far side of
the Moon and by a scarcity of low-altitude, high-
inclination data. Although these models generate
similar results for equatorial orbits, the results pre-
dicted by these models vary signi�cantly for an ini-
tial 100-km-altitude circular polar orbit. (See �g. 7,
taken from ref. 35.)

Much debate currently remains as to which grav-
itational model provides the best predictions of or-
bital lifetimes for lunar satellites. In the present
analysis, the consequences of choosing a particular
gravitational model are not emphasized; the focus is
centered on the selection of the initial orbital param-
eters. The Ferrari 5� 5 model (ref. 23) was chosen
for this study for several reasons. First, the computer
program used in this analysis (appendix B) is limited
to gravity models of degree and order no larger than
eight. Second, this model provided a \worst case"
scenario for polar orbits, because this gravitational
model generated the shortest orbital lifetime predic-
tions in the JPL study. Therefore, this model may
overestimate the rate of decay in perilune altitude.
However, for mission design purposes, overestimation
of the e�ects due to the Moon's gravitational �eld is

more desirable than underestimation. A low-degree
model was also desired to avoid addressing the errors
and e�ects of the higher degree harmonics. Although
the low-degree model is incapable of modeling local-
ized gravitational anomalies, it provides a global de-
scription of the lunar gravity �eld that is adequate
for performing lifetime studies.

Analysis

The goal in this analysis is to illustrate the im-
pact of the Moon's gravitational perturbations on
the lifetimes of low-altitude, near-circular parking or-
bits, and to identify orbits favorable for lunar out-
post missions (orbits that have the longest orbital
lifetimes). A method is provided for mission plan-
ners to incorporate nonspherical gravitational e�ects
in preliminary lunar analysis studies.

E�ects of External Forces

The Lagrange planetary equations presented in
equations (4a) to (4f) describe the changes in a satel-
lite orbit due to forces that may be expressed in terms
of a potential. The equations in appendix A have
assumed a potential solely as a result of the lunar
gravitational �eld. To give a complete description
of the satellite motion, all forces acting on the satel-
lite must be taken into account. The absence of a
signi�cant atmosphere on the Moon eliminates any
need to consider drag e�ects. Forces that could a�ect
the satellite motion include solar radiation pressure
and perturbations from other bodies, particularly the
Earth and the Sun.

The in
uence of solar radiation pressure on a low-
altitude lunar satellite is examined in this report.
(See appendix B.) The resulting acceleration of a
satellite is a function of its mass, cross-sectional area,
and re
ectivity coe�cient. A mass of 10.2 metric
tons and a cross-sectional area of 75 m2 were chosen
as values for a lunar excursion vehicle; also, the
vehicle was assumed to be a perfect re
ector. Solar
radiation pressure has the greatest e�ect on low-
inclination orbits, although these e�ects were small.
For a near-circular orbit with an initial altitude
of 300 km, solar radiation caused a change in the
perilune altitude of less than 1 km over a period
of 180 days. Unless a satellite has a large cross-
sectional area and small mass, solar radiation e�ects
are negligible.

Although both the Earth and the Sun contribute
perturbation e�ects, the e�ects due to the Earth are
about 170 times larger than the e�ects due to the
Sun. (See ref. 36.) The average e�ects of a third body
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on the eccentricity (the main parameter in orbital
lifetime studies) can be expressed as

de

dt
=

15
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sin2 i sin 2! (5)

where the bars denote variables that have been aver-
aged over the period of the third body about the
central body and over the period of the satellite.
(See ref. 37.) The variable n3 represents the mean
angular motion of the third body about the central
body. From equation (5), it is apparent that third-
body perturbations have the greatest e�ect on eccen-
tricity for mid-eccentricity (maximi zed for e = 0:707)
and high-inclination satellite orbits. The average
value of ! also strongly in
uences the e�ects of the
third-body perturbations.

Using the program LUNLIFE with the Ferrari
5� 5 gravity model, a near-circular, initial 300-km,
perilune-altitude polar orbit had a 20-km-higher per-
ilune altitude after 180 days when third-body per-
turbation e�ects were included. (See �g. 8.) For
an initial 100-km perilune-altitude polar orbit, the
orbital lifetime was 157 days when third-body ef-
fects were included; the lifetime was only 144 days
when Earth-Sun perturbation e�ects were neglected
(�g. 9). Although the e�ects of third-body pertur-
bations on orbital lifetimes may not be negligible for
all orbits, these e�ects are small for most of the or-
bits addressed in this investigation (because of the re-
striction of near-circular parking orbits). Therefore,
third-body perturbation e�ects were not included in
this analysis.
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Figure 8. Earth-Sun perturbation e�ects for 300-km initial

perilunealtitude polar orbit (usingFerrarimodel). (Initial
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Figure 9. Earth-Sun perturbation e�ects for 100-km initial

perilunealtitudepolar orbit (usingFerrarimodel). (Initial

conditions: i = 90�, 
 = 0�, ! = 225�.)

Use of Orbital Elements for Lifetime

Studies

The Lagrange planetary equations of motion
(eqs. (4a) to (4f)) are used for orbital lifetime stud-
ies, because they enable integration of the classical
orbital elements (a, e, i, 
, !, and M , see �gs. 10
and 11). The mean anomaly M , de�ned as the mean
angular motion multiplied by the time since peri-
center passage, is related to the true anomaly �. The
advantage of utilizing orbital elements as opposed to
Cartesian coordinates (de�ning the radius and ve-
locity vectors of the satellite as functions of x, y,
and z) is that very large integration time steps can
be used, because the orbital elements (except for M)
change very little over consecutive orbits compared
with a Cartesian description. Integration over large
time steps requires that the short-period e�ects be
averaged for the disturbing function in the Lagrange
equations. Time steps of 1 day were used to generate
the results in this analysis. To verify that 1-day time
steps were not too large to give inaccurate results,
test cases were run with the program LUNLIFE with
10-sec time steps. The results generated by these
two di�erent step sizes were nearly identical, within
0.01 percent.

The disadvantage of using a classical orbital-
element description of the equations of motion in-
volves the inability to directly address certain types
of orbits (e.g., circular, equatorial), because some
of the elements may not be de�ned. The classi-
cal orbital-element description does not pose a sig-
ni�cant restriction in this study, as near-circular
(e = 0:05) and near-equatorial (i = 1�, and 179�)
orbits were addressed. (There is a set of orbital
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elements, referred to as equinoctial elements, that
can address circular and equatorial orbits. (See
refs. 30 and 38.) However, equinoctial elements are
utilized much less frequently than classical orbital
elements.)

Only three of the six orbital elements were moni-
tored in this analysis. Since the mean anomaly M is
used to describe the position of the satellite within
the orbit, and not the shape or position of the orbit
itself, it need not be considered in determinin g orbital
lifetimes. The semimajor axis experiences only short-
period variations, so as it is integrated over the mean
anomaly for one period, its average rate of change is
zero. Short-period e�ects in the orbital elements are
observed with the program ASAP (Arti�cial Satellite
Analysis Program, ref. 39). The amplitude of short-
term variations is small (on the order of 1 km (�gs. 12
and 13) and has little e�ect on orbital lifetime pre-
dictions. Hence, the semimajor axis is treated as
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a constant in this analysis. Inclination is cyclical
and has variations typically on the order of 1� over
a 180-day period. (See �g. 14.) As with the semi-
major axis, the inclination can be treated as a con-
stant with little loss of accuracy (although changes
in inclination were included in this analysis). The
remaining orbital elements that change signi�cantly
over the time periods studied in this analysis (other
than the mean anomaly) are eccentricity, longitude
of ascending node, and argument of perilune.
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The key parameter in orbital lifetime studies is
the perilune altitude (or equivalently, the eccentric-
ity, since the perilune altitude is a function of the
eccentricity). The life of the satellite orbit is termi-
nated when the magnitude of the perilune radius of
the satellite falls below the value of the average radius
of the Moon; the satellite then impacts the surface.
The perilune radius is given as:

rp = a(1� e) (6)

Simple di�erentiation, assuming the semima jor axis a
remains constant, yields

�rp = �a �e (7)

The rate of change in perilune altitude is directly
proportional to the rate of change in eccentricity.
Near-zero or negative rates of change (orbit becomes
more circular) in eccentricity enable orbital lifetimes
to be maximized. Since the rate of change in ec-
centricity is a function of initial inclination, longi-
tude of ascending node, and argument of perilune
(eqs. (A2b), (A3b), and (A5b)), these initial orbital
parameters directly a�ect the orbital lifetime. Per-
ilune altitude is also indirectly a�ected by the rates of
change in longitude of ascending node and argument
of perilune.

The initial orbital parameters were chosen to in-
clude many types of parking orbits that would be
of interest to mission planners. The initial eccen-
tricity was �xed at 0.05, small enough for the orbit
to be considered nearly circular, yet large enough to
avoid any singularities in the computer program asso-
ciated with circular (zero-eccentricity) orbits. Circu-
lar parking orbits are attractive to mission planners,

because they simplify phasing requirements for de-
scent to and ascent from the lunar surface, and sim-
plify phasing requirements for an Earth-return burn
(although higher �V values are required to achieve
circular parking orbits). Circular parking orbits are
also generally preferred for mapping missions of the
Moon's surface. For this study, initial perilune alti-
tudes of 100 km and 300 km, referenced to the mean
value of the radius of the Moon, were selected. The
speci�c inclination value of a parking orbit selected
for a particular mission will be heavily in
uenced by
the desired mission objectives and the location of lu-
nar landing sites. In this analysis, both direct and
retrograde orbits are addressed. Lifetime results were
�rst generated by varying initial values of longitude
of ascending node and argument of perilune over 360�

for a speci�c initial value of inclination. Since orbital
lifetimes were weakly in
uenced by initial values of
longitude of ascending node (small e�ect of the sec-
torial and tesseral harmonics on lifetimes), lifetime
results were generated by varying initial values of in-
clination and argument of perilune for �xed values of
initial longitude of ascending node.

Results and Discussion

Development of a Simpli�ed Gravitational

Model

The need to analyze orbital lifetimes for a large
number of initial orbital parameters motivated the
formulation of a simpli�ed gravitational �eld model.
Although the program LUNLIFE was capable of gen-
erating the lifetime of a given orbit relatively quickly
with the Ferrari 5� 5 gravitational model, excessive
computer time (on the order of 100 hours) would
have been required to generate the large number of
results desired in this analysis. For example, to gen-
erate contour plots of lifetimes versus initial argu-
ment of perilune and initial longitude of ascending
node to a resolution of a 5� by 5� grid, the eval-
uation of approximately 5000 orbital lifetimes was
necessary. By neglecting many of the coe�cients in
the Ferrari 5� 5 model and using a simpli�ed in-
tegration technique (a single-step integration of the
�rst-order equations of the orbital rates instead of a
multiple-step numerical integration of the complete
equations as given in ref. 40), a more e�cient method
was devised to predict orbital lifetimes. This method
reduced the required computation time by approxi-
mately two orders of magnitude without apprecia-
bly sacri�cing accuracy (less than 5 percent) in the
prediction of orbital lifetimes.

Previous studies have attempted to approximate
the Moon's gravitational �eld by using only a few
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harmonic coe�cients. A four-coe�cient lunar grav-
ity model was developed in the 1960's (based on Lu-
nar Orbiter tracking data) for Apollo mission control.
(See ref. 3.) The formulation of this simpli�ed model
was necessitated by the restrictions of onboard com-
puting capabilities at that time. The coe�cients J2,
J3, C22, and C31 were selected for this model because
it was determined that they had the greatest e�ect
on the orbital elements. The model was limited in its
design to accommodate only initial orbital elements
similar to the Lunar Orbiter missions. A similar sim-
pli�ed model that was developed for this analysis has
been validated for the entire range of values of initial
inclination, argument of perilune, and longitude of
ascending node.

A reduction in the number of computations also
allowed for the possibility of implementing optimi za-
tion routines to maximize orbital lifetimes. An
attempt was initially made to utilize optimization
methods for selecting the initial orbital elements that
yielded maximum lifetimes. However, this approach
was deemed infeasible because of the highly non-
linear nature of the problem. The optimization re-
sults were also dependent on the initial guess, be-
cause the orbital lifetimes ob jective function was
characterized by many local maximum and minimum
values.

Several issues were taken into account when se-
lecting the coe�cients for the simpli�ed lunar gravi-
tational model. First, an e�ort was made to retain all
the terms used in the Apollo mission control model.
Second, the numerical values of the coe�cients were
examined to decide which ones could be eliminated.
(See table 1.) An attempt was made to keep as many
zonal terms as possible, because they are responsi-
ble for secular e�ects and are therefore signi�cant
in orbital lifetime studies (the J4 term was eventu-
ally discarded because of its small magnitude). Fi-
nally, the lower order coe�cients were assumed (and
later veri�ed) to have a greater e�ect on the variation
in the orbital elements than the higher order terms.
A sample case was selected and analyzed with the
full Ferrari 5� 5 model. Individual coe�cients were
discarded, and the sample case was evaluated and
compared with the full model after each term was
eliminated. All the Snm terms were quickly elimi-
nated because of their small value. The higher order
Cnm terms were eliminated for the same reason. The
�nal coe�cients selected for the simpli�ed model con-
sisted of the same terms as the Apollo mission control
model (J2, J3, C22, and C31), with the addition of
the J5 term. The values of these coe�cients were
adopted directly from the Ferrari 5� 5 model. An
attempt to eliminate the J5 term drastically changed

the lifetime results. This change indicated the need
to include the J5 term when performing orbital life-
time predictions for long lunar stay times with the
Ferrari 5� 5 model.

The orbital lifetime results generated with the
simpli�ed �ve-coe�cient model corresponded closely
to the results generated with the Ferrari 5� 5 model
(appendix C). Comparisons of the plots of the or-
bital elements versus time for the two models illus-
trate the higher resolution prediction capability of
Ferrari's model. (See �gs. 15 and 16.) The simpli-
�ed model contains fewer coe�cients to contribute
periodic e�ects and thus simpli�es the shapes of the
graphs.
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The simpli�ed �ve-coe�cient gravity model was
an important tool for generating results quickly and
for simplifying the interpretation of the �nal results.
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Since �rst-order analytical equations for the orbital
rates are readily available in the literature (eqs. (A1)
to (A5)), a simple single-step integration scheme can
be used with these equations. For example, the
integration of eccentricity is performed by using the
equation

enew � eold+

�
de

dt

�
�t (8)

where �t represents the �nite-integration time step

and de

dt
represents the superposition of the eccentric-

ity rates of change contributed by each gravitational
coe�cient (assumed to be constant over the time
step �t). Generating the major e�ects of the Ferrari
5� 5 model with only a few coe�cients also aided
in the interpretation of the results. Since �rst-order
equations existed for each coe�cient in the simpli-
�ed model, analytical methods could be applied to
explain the e�ects of individual coe�cients and the
superposition of these e�ects.

E�ects of Individual Gravitational

Coe�cients

The gravitational coe�cients in the simpli�ed
gravitational model give rise to both secular and pe-
riodic e�ects. To �rst-order analysis, secular e�ects
are produced only by the zonal harmonic terms. Both
the zonal (J2, J3, and J5) and the o�-diagonal terms
(C22, C31) in this model are responsible for periodic
e�ects. Coe�cients in the lunar gravitational model
give rise to short-period, medium-period, and long-
period variations. The short-period e�ects (on the
order of the satellite's orbital period) were not mod-
eled in this analysis. These e�ects can be neglected
to �rst approximation, because the rates of change
of these e�ects often average to zero, as is the case
for the semimajor axis. The medium-period terms,
commonly referred to as the lunar m-daily terms,
are on the order of a lunar day, or 27.3 Earth days.
The in
uence of this period can be easily seen in
the plots of the orbital elements versus time (�gs. 17
and 18). A sectorial or tesseral harmonic term of
order m produces medium-period e�ects with a pe-
riod of about 27.3/m days (the exact period varies
slightly as a result of precession of the longitude of
ascending node). Higher order harmonic terms have
less in
uence on long-term orbital lifetime studies,
because short-period e�ects are integrated out more
quickly than long-period e�ects. Long-period e�ects,
on the order of a year, can also be observed in the
variations of some of the orbital elements. These ef-
fects, contributed by the zonal harmonics, arise from
the secular variation of !. The long-period e�ects
are important for lifetime studies, because they pro-
duce the largest contribution in perilune-altitude de-
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cay rates over long periods of time and behave as
secular e�ects for orbits with lifetimes of less than a
year.

The rates of change in e, 
, and ! are directly
proportional to the values of the gravitational co-
e�cients, although not every coe�cient causes a
change in every orbital element. (See table 3.)
The J2 term is the dominant term for determining
the rate of change of longitude of ascending node.
This term and the C31 term also in
uence the rate
of change in argument of perilune. The J3, J5,
and C31 terms directly a�ect the rate of change in
eccentricity and, therefore, perilune altitude. The
�nal term in the simpli�ed model, C22, primarily
in
uences the orbital inclination.
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Orbital Lifetime Study

A single-step (Euler) integration technique was
used with the simpli�ed �ve-coe�cient gravity model
to generate all results in this analysis . Once initial
orbital elements were speci�ed, a particular orbit was
analyzed for a period of 365 days, unless the lifetime
of the orbit expired in less than a year (in which
case the analysis was halted immediately). If the
lifetime was less than 365 days, the actual value of
the lifetime is presented. If the lifetime exceeded
365 days, the minimum perilune altitude attained
during the 365-day period is presented. The program
LUNLIFE, which uses the complete Ferrari 5 � 5
gravity model, was periodically employed to provide
validation for lifetime predictions of individual orbits.

The terms J3, J5, and C31 were the only co-
e�cients considered that directly a�ect rates of ec-
centricity and, therefore, orbital lifetimes. Unli ke
the zonal harmonic coe�cients, the eccentricity rate
for C31 is a function of initial longitude of ascend-
ing node and introduces medium-period e�ects with
a period of about 27.3 days. This term has a dra-
matic e�ect on rates of eccentricity (but these are
only localized e�ects), and gives rise to step-function
behavior in plots of lifetime (�g. 19). This �gure di-
rectly illustrates the e�ect that C31 has on orbital
lifetimes.
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The step-function shape of the lifetime plot is
a result of the superposition in eccentricity rates
between C31 and the zonal coe�cients. The C31 term
contributes large medium-period e�ects, but the J3
and J5 terms contribute long-period e�ects. When
the C31 decay rate is of the same sign as the zonal
decay rate, the result is a sharp drop or rise in orbital
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Figure 20. Minimumperilunealtitudedependence on initial


and ! for low inclinations(i= 3�). 100-km initialperilune

altitude over a 365-day period.

lifetimes. When the C31 decay rate is of the opposite
sign of the zonal decay rate, the total decay rate is
nearly zero; this low rate results in plateaus in the
plot of orbital lifetimes.

The e�ect of initial longitude of ascending node
on orbital decay rates was signi�cant. Although
orbital lifetime results appear to be dependent on
the initial longitude of ascending node for near-
equatorial orbits (less than 10� inclination), they
are actually dependent on the sum of longitude of
ascending node and argument of perilune. Figure 20
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shows the variation in minimum perilune altitude
as a function of initial argument of perilune and
longitude of ascending node for a 100-km initial
perilune-altitude orbit with a 3� inclination. As
shown in this �gure, various initial orbital conditions
are not described by independent values of 
 and !,
but rather by values of 
 + !. For this reason,
orbital lifetimes are nearly the same for orbits along
lines of constant 
 + !. (See �g. 20(a).) Lifetime
results were subsequently generated by varying the
initial argument of perilune and inclination over the
entire range of possible values. These results are
independent of the initial longitude of ascending
node, although slight di�erences in the results will
arise, depending on the value of 
.

Figures 21(a) to 21(c) show the instantaneous
perilune altitude decay rates for 
 = 0�, 45�, and 90�.
Although these plots exhibit di�erent characteristics
for di�erent values of 
, similar orbital lifetime re-
sults will occur regardless of the value of 
, because
the e�ects due to 
 will average out to zero after
a period of 27.3 days. The plots only illustrate the
instantaneous decay rates. To generate valid orbital
lifetime predictions, these decay rates must be in-
tegrated over time. Although the inclination varies
little, the value of argument of perilune may change
greatly. An orbit with a given set of initial condi-
tions such that the altitude decay rate is large may
evolve over time to a set of conditions for which the
decay rate is extremely small (primarily caused by
a variation in argument of perilune); therefore, inte-
grated lifetimes longer than those inferred from the
�gures may be exhibited. Nevertheless, the �gures of
perilune altitude decay rates are useful in illustrat-
ing the magnitude of decay that a lunar satellite can
experience in a day.

An integration of the orbital element rates for or-
bits of various initial conditions was utilized to pro-
duce �gure 22. The large white regions occur where
the initial orbital parameters had a lifetime in excess
of 365 days. The results display a symmetry about
i = 90�, which is violated slightly by the presence of
a cosine i term in some of the orbital element rate
equations. The closely spaced contour lines in the
�gure are the result of localized e�ects due to the
C31 coe�cient.

Five bands of short-lifetime orbits occur for spe-
ci�c values of inclination. The appearance of these
bands can be explained by examining the perilune al-
titude decay rates (directly proportional to the nega-
tive of the eccentricity rates, see eq. (7)) for J3 and J5
as a function of inclination. (See �g. 23.) Figure 23
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and !.
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Figure 22. Contour plot of orbital lifetimes in days for initial

longitude of ascending node of 0�. Large white regions

represent lifetimes longer than 1 year.

Figure 23. Dependence of rate of change in perilune altitude

on inclination for J3 and J5 terms. 100-km initial perilune

altitude.

was generated by multiplying equations (A3b)
and (A2b) by �a and plotting them, with the initial
orbital conditions and ! = 0. (All terms proportional

to e2 in the de

dt
equation for J5 were neglected, be-

cause their contribution is small for near-circular or-
bits.) The di�erence in the amplitudes of the wave-
forms illustrates that contributions to the decay rate
are much larger for J5 than for J3 in the Ferrari
model. The bands of short-lifetime plots roughly
correspond to the minimum and maximum peaks
of the J5 eccentricity rate (i = 19:42�, 56:14�, 90�,
123:86�, and 160:58�) and are slightly o�set as a re-

sult of contributions from the J3 term. Also, bands
of long-lifetime orbits correspond to zero values of
the eccentricity rates for the J5 coe�cient (i = 0�,
40:09�, 73:43�, 106:57�, 139:91�, and 180�).

The J5 coe�cient is the main driver in the
Ferrari model for predicting lifetime e�ects. Further
evidence of the J5-term dominance is shown in �g-
ure 24. This plot of orbital lifetimes as a function
of initial argument of perilune and initial inclination
was generated with the J3 and C31 coe�cients set
equal to zero. This �gure is similar to �gure 22, which
included e�ects from J3 and C31, and shows that the
J5 term contributes the dominant e�ect to perilune
altitude decay, although the e�ects from J3 and C31

are certainly not negligible. (See �gs. 19 and 23.)

Figure 24. Contour plot of lifetimes in days for initial lon-

gitude of ascending node of 0�. 100-km initial perilune

altitude; e�ects of J3 and C31 are neglected.

Results were also generated for initial perilune
altitudes of 300 km. Figure 25 is a plot of minimum
perilune altitude as a function of initial argument of
perilune and inclination. The regions at inclination
values of approximately 55�, 90�, and 125� represent
areas where the orbit crashes in less than a year.
Although the orbital decay for the higher altitude
orbit is less than for the 100-km case, the pattern
for the 300-km case is very similar. This analysis
focuses primarily on the 100-km initial altitude case,
with the assumption that results for this case can be
correlated with the 300-km initial altitude case.

Sensitivity Studies|An Assessment of

Uncertainty in Gravitational Field

As previously mentioned, many problems have
been encountered in developing an accurate descrip-
tion of the Moon's gravitational �eld. Figure 7 illus-
trates the discrepancies among the current available
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Figure 25. Contour plot of minimum perilune altitude in km

over a 365-day period. 300-km initial perilune altitude.

models. Two questions naturally arise: How accu-
rately are the coe�cients in the Ferrari 5� 5 model
known (how much error is associated with each co-
e�cient?) and is the Ferrari model (or any other
model) an accurate description of the actual lunar
gravitational �eld? The second question is beyond
the scope of this investigation, but the �rst question
can be addressed by examining the standard devi-
ations in the values of the gravitational coe�cients
stated for the Ferrari 5� 5 model. More importantly,
the possible error in orbital lifetime predictions as
a result of the uncertainty in the gravitational co-
e�cients can be addressed with the use of sensitivity
coe�cients.

The formulation of the simpli�ed gravitational
model illustrated that �ve coe�cients were adequate
to explain the e�ects due to the Ferrari model on
an orbiting lunar satellite. Hence, a good estimate
of the errors associated with the uncertainty in the
value of the coe�cients for the Ferrari model can
be obtained by considering only the uncertainties of
the �ve coe�cients included in the simpli�ed model ;
these �ve coe�cients have the greatest in
uence on
the orbital element rates. Furthermore, since only
three of these coe�cients (J3, J5, and C31) directly
a�ect the eccentricity rates (the J2 and C22 terms
indirectly a�ect the eccentricity rates by causing
changes in the other orbital elements), the error
in orbital lifetime predictions associated with the
uncertainty of the coe�cients in the Ferrari model
can be approximated by addressing the uncertainty
solely in these three harmonic terms.

The sensitivity coe�cients for each gravity co-
e�cient are shown in �gures 26 to 28. The sensitivity
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Figure 26. Contour plot of sensitivity for J3 in units of

km/day � 104 (
 = 0�) for hp = 100 km.
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Figure 27. Contour plot of sensitivity for J5 in units of

km/day � 104 (
 = 0�) for hp = 100 km.

coe�cients were obtained by di�erentiating the rate
of change in perilune altitude (the �rst-order ana-
lytical equation associated with each coe�cient, see
eqs. (7), (A2b), (A3b), and (A5b)) with respect to
the given gravitational coe�cient. Since the rates
of change in perilune altitude vary linearly with the
gravitational coe�cients, the sensitivity coe�cients
are independent of the values of the coe�cients in
a gravitational model. As a result, �gures 26 to 28
can be interpreted in two ways: These �gures repre-
sent a \normalized" rate of change in perilune alti-
tude, independent of the value of the gravitational co-
e�cients, or they serve as a means of illustrating the
sensitivity of the perilune altitude decay rate with
respect to the uncertainty in the value of the partic-
ular coe�cient. The contours of these �gures are in
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(a) 
 = 0
�
.

(b) 
 = 45
�
.

(c) 
 = 90�.

Figure 28. Contour plot of sensitivity for C31 in units of

km/day � 10
4
for hp = 100 km.

units of km/day � 104. Plots of the sensitivity co-
e�cients for a 300-km initial perilune altitude orbit
exhibited the same pattern as for the 100-km case,
although the values of the sensitivity coe�cients were
roughly only half as large.

To evaluate the error in orbital lifetime predic-
tions associated with the Ferrari model, the variance
in the perilune decay rate was calculated with the
following formula:

�_rp =

2
4 @ _rp

J3

@J3
�J3

!2

+

 
@ _rp

J5

@J5
�J5

!2

+

 
@ _rp

C31

@C31

�C31

!2
3
5
1=2

(9)

where _rp is the perilune altitude rate of change for
the corresponding coe�cient (the gravitational co-
e�cients in the numerator of equation (9) appear as
subscripts of _rp, not as values of the coe�cients them-
selves) and � is the corresponding standard deviation
of each gravitational coe�cient value. In using this
formula, no correlation in the uncertainties of the val-
ues of the gravitational coe�cients is assumed. How-
ever, the J3 and J5 coe�cients are highly correlated.
Since these coe�cients a�ect the orbital elements in a
similar manner (table 3), separating the e�ects that
are individually contributed by these coe�cients is
di�cult. By not accounting for correlation e�ects,
equation (9) overestimates the errors associated with
the uncertainties in the values of J3, J5, and C31 (if
the J3 and J5 terms are dominant, the errors may be
signi�cantly overestimated).

For the Ferrari model (ref. 23), �J3 = 1:8� 10�6,

�J5 = 2:0� 10�5, �C31
= 1:9� 10�6. Figures 29(a)

to 29(c) show the variance in perilune decay rate in
units of km/day for 
 = 0�, 45�, and 90�. The simi-
larity in these plots indicates that the uncertainty in
the value of the C31 coe�cient contributes little to
the overall error in orbital lifetime predictions. The
similarity between the variance plots and the sensi-
tivity coe�cient plot for J5 (�g. 27) indicates that
the error in orbital decay rates for the Ferrari model
is due almost entirely to the uncertainty in the value
of the J5 coe�cient. In fact, the standard deviation
associated with J5 is an order of magnitude larger
than the standard deviations for J3 and C31.

As with the �gures of the perilune altitude decay
rates (�g. 21), the variance plots convey only instan-
taneous information. To assess the uncertainty in
the perilune altitude at the end of an orbit's lifetime,
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(a) 
 = 0�.

(b) 
 = 45�.

(c) 
 = 90�.

Figure 29. Contour plot of _rp variance in km/day versus i

and ! for an initial hp = 100 km.

(a) Integrated variance in kilometers.

(b) Lifetime in days.

Figure 30. Orbital lifetime characteristics for 100-km initial

perilune altitude and 
 = 0�.

the variance must be integrated over time. The com-
puter program was modi�ed to integrate the variance
in a manner similar to the integration of the orbital
elements (eq. (8)); this integration resulted in �g-
ure 30(a). To interpret the �gure, one must also refer
to the plot of orbital lifetimes (�g. 30(b)). For ex-
ample, a parking orbit with i = 40� and ! = 120�

has a lifetime of more than 360 days (�g. 30(b)).
However, this orbit has an uncertainty of approxi-
mately �40 km in the �nal perilune altitude as a re-
sult of the inaccuracy in the gravitational coe�cients
(�g. 30(a)).

The uncertainty in perilune altitude is less for
orbits with short lifetimes, because the errors in
the decay rates have less time to accumulate. The
largest uncertainties in perilune altitude occur for
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orbits with lifetimes longer than a year. The un-
certainties in the �nal values of perilune altitude
range from 20 km to 300 km; this range demonstrates
the inadequacy of current models for making long-
term predictions of the orbital elements. A decrease
in the uncertainty in perilune altitude values by an
order of magnitude (which can only be achieved by
decreasing the uncertainty in the values of the grav-
itational coe�cients themselves) is required to pro-
vide mission planners with acceptable orbital lifetime
predictions over the time periods addressed in this
analysis.

Applications of Analysis

Although the uncertainty of the coe�cients in the
Ferrari model creates di�culty in generating long-
term orbital predictions, this analysis illustrates a
technique to address e�ects of the nonspherical mass
distribution of the Moon on a low-altitude near-
circular orbit. The usefulness of introducing a sim-
pli�ed gravitational model when performing orbital
lifetime studies at the preliminary mission design
level has also been demonstrated. The Ferrari grav-
itational model was speci�cally chosen for the pur-
pose of illustrating techniques for determining or-
bital lifetimes to enable quantitative results to be
generated. However, several criteria can be applied
from this analysis to assess the qualitative e�ects of
other models on orbital lifetimes. These criteria in-
dicate the important parameters involved in lifetime
predictions.

Investigation of the C31 gravitational coe�cient
illustrates that o�-diagonal terms may have a signif-
icant e�ect on perilune altitude decay rates. How-
ever, these e�ects are periodic, with a 27.3-day cy-
cle, and have little in
uence on long-term lifetime
predictions. Therefore, the consequences of lunar
gravity �elds on long-term orbital predictions are
dependent mainly on the odd zonal harmonics, be-
cause they have the greatest e�ect on the eccentricity
rates. The odd zonal coe�cients model the geomet-
rical asymmetry between the northern and southern
hemispheres. Although both hemispheres contain the
same amount of mass, the distribution of the mass
within the two hemispheres is not the same. (See
ref. 22.) This mass distribution results in a long-
period variation in the eccentricity. These variations
are proportional to (R=a)n, where n is the degree
of the zonal term. (See ref. 4.) For high-altitude
orbits, the e�ects due to higher order terms are at-
tenuated. However, for low-altitude orbits (such as
the ones considered in this analysis), R=a converges
slowly and enables higher order terms to contribute
signi�cantly. The �gures of the sensitivity coe�cients

(�gs. 26 to 28) can be used to calculate the rate of de-
cay of perilune altitude for any speci�ed value of the
gravitational coe�cients. Although the rates must be
integrated to determine orbital lifetimes, a compar-
ison of the rates indicates which terms in the grav-
itational model provide signi�cant contributions to
altitude decay and shows the e�ect of decay rates as
a function of inclination.

For the Ferrari model, the J5 coe�cient con-
tributed the primary in
uence in orbital lifetimes
(and the primary source of error); this in
uence
indicates that long lifetimes exist near inclinations
of 40:09� and 73:43�, where the eccentricity rates
for J5 are zero for near-circular orbits (eq. (A3b)).
For other gravitational models, more than one gravi-
tational coe�cient may strongly in
uence orbital life-
times. The eccentricity rate for J3 is zero for an
inclination of 63:43�. These results indicate that
if J3 and J5 are the dominant odd zonal terms of
the gravitational �eld and are of the same sign, long-
lifetime orbits will exist somewhere within a 10� in-
clination band (between 63:43� and 73:43�, �gs. 22
and 23). However, if the sign of J5 is negative (the
actual sign of J5 is still unknown), a long-lifetime
band of orbits will exist somewhere between incli-
nation values of 40:09� and 63:43�. These types of
low-altitude, near-circular orbits are ideal for mission
planners that want low rates of decay in perilune al-
titude (corresponding to a low �V budget for alti-
tude boost maneuvers) and high inclination. (High
inclination orbits are ideal for obtaining maximum
coverage for a mapping mission or for providing ren-
dezvous capability over a large range of landing-site
latitudes for a manned mission.)

A general observation can also be made about the
lifetimes of polar orbits that are predicted by various
spherical harmonic models. As a function of incli-

nation, the de

dt
value that corresponds to each odd

zonal harmonic will have a local minimum or max-
imum (dependent on the sign of the coe�cient) at
i = 90� (�g. 23). Furthermore, since the odd zonal
harmonics solely (to a �rst-order approximation) de-
termine the long-period rate of change of the per-
ilune altitude, selection of polar parking orbits may
result in large �V station-keeping requirements, de-
pendent on the signs of the coe�cients. If the signs
of individual coe�cients in the model are such that
the de

dt
rates reinforce each other, the �V penalties

might be substantial. Conversely, if the signs of the
coe�cients are such that the individual contributions
interfere destructively, polar orbits may exist that
have long lifetimes. This observation explains the
discrepancy in the results shown in �gure 7. For ex-
ample, the signs of J3 and J5 for the Ferrari 5� 5
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model are such that their eccentricity rates construc-
tively interfere and yield short polar orbit lifetime
predictions. Conversely, the sign and magnitude of
the odd zonals for the Bills-Ferrari 16� 16 model al-
low the J7 term's large contribution to the eccen-
tricity rate to e�ectively cancel out the contribu-
tions of the other terms. This superposition yields
long-lifetime predictions for polar orbits.

Concluding Remarks

Anticipation of future missions involving the
placement of spacecraft in circular low-altitude park-
ing orbits about the Moon for long periods of time
motivated an investigation of the e�ects of the lu-
nar gravitational �eld on an orbiting satellite. The
formulation of a simpli�ed �ve-coe�cient lunar grav-
itational model was derived from Ferrari's 5� 5
gravitational model for the purpose of aiding mis-
sion planners in implementing nonspherical gravita-
tional e�ects of the Moon in preliminary lunar mis-
sion studies. The proposed simpli�ed gravitational
model, consisting of the coe�cients J2, J3, J5, C22,
and C31, was adequate in predicting orbital lifetimes
of lunar satellites; the results generated from its
use closely corresponded to those generated by the
Ferrari model. Furthermore, the simpli�ed model
reduced the amount of computer time required for
lifetime predictions by approximately two orders of
magnitude; this reduction greatly enhanced the ca-
pability to investigate the orbital lifetimes of lunar
satellites as a function of the various initial orbital
parameters.

Results generated with the Ferrari simpli�ed �ve-
coe�cient gravitational model indicated the exis-
tence of several inclination bands of short-lifetime
and long-lifetime orbits. These bands re
ect the be-
havior of the perilune altitude decay rate that is asso-
ciated with the J5 coe�cient, the dominant term in
the Ferrari model, as a function of inclination. Long
orbital lifetimes were possible for low, midlatitude,
and high-inclination orbits, although polar orbits had
relatively short lifetimes (less than 180 days) accord-
ing to this model. Of particular interest is the pre-
diction of a narrow band of orbits with inclinations

between approximately 60� and 75� that yield high
lifetimes while providing high-inclination orbits that
are desirable for various missions. The lifetimes also
depend on the initial value of argument of perilune,
especially at low inclinations.

The C31 gravitational term generated dramatic
localized e�ects in the behavior of orbital lifetimes,
but did not contribute any secular e�ects to long-
term predictions of lifetimes. The purely localized
e�ects due to o�-diagonal gravitational coe�cients
suggest that accurate long-term orbital predictions
can be performed by consideration of only the zonal
harmonics. Speci�cally, consideration of the odd
zonal terms may be su�cient, as they have the
primary in
uence on orbital-altitude secular decay
rates. This technique provides a simple method
to generate orbital lifetime predictions with other
models.

Finally, the large uncertainty in the values of the
coe�cients for the Ferrari model (or any other lunar
gravity model) indicates that little con�dence can be
placed in the results that are generated. In partic-
ular, the uncertainty in the value and even the sign
of the J5 coe�cient (a result of correlation between
the J3 and the J5 term) contributes the dominant
error associated with the Ferrari model. Current
capabilities for long-term predictions of orbital life-
times for lunar satellites leave much to be desired.
However, the methods presented in this analysis are
bene�cial for incorporating the Moon's nonspherical
gravitational e�ects on the preliminary design level
for future lunar mission planning with little addi-
tional computational time required. Further work
needs to be performed in the determination of an ac-
curate lunar gravity model, as current models either
give inconsistent predictions or predictions with such
large uncertainty values that useful or meaningful
interpretation of the results is di�cult.

NASA Langley Research Center

Hampton, VA 23681-0001
November 15, 1993
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Table 1. Numerical Values (Unnormalized) of Coe�cients in Ferrari Model

[Boldface numbers denote values used in simpli�ed model]

Degree Order Cnm� 104 Snm� 104

2 0 �2:0215

2 1 �0:001014 0
2 2 0:22304 0:000173

3 0 �0:12126

3 1 0:3071 0:056107
3 2 0:048884 0:01687
3 3 0:01436 �0:0033435

4 0 0:0015
4 1 �0:0718 0:0295
4 2 �0:01440 �0:02884
4 3 �0:00085 �0:00789
4 4 �0:001549 0:000564

5 0 �0:446

5 1 �0:0326 0:0673
5 2 0:01556 �0:00522
5 3 �0:00148 0:00127
5 4 0:000598 0:000456
5 5 0:000122 0:000137
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Table 2. Numerical Values (Unnormalized) of Coe�cients in Bills-Ferrari Model

[From ref. 32]

Degree Order Cnm Snm

2 0 �2:024� 10�4

2 1 �0:0904� 10�6 0
2 2 0:2226� 10�4 0:1936� 10�7

3 0 �0:889� 10�5

3 1 0:2372� 10�4 0:7160� 10�5

3 2 0:0483� 10�4 0:1626� 10�5

3 3 0:2212� 10�5 �0:3415� 10�4

4 0 0:1173� 10�4

4 1 �0:4573� 10�5 0:1812� 10�5

4 2 �0:1818� 10�5 �0:1512� 10�5

4 3 0:2868� 10�7 �0:8623� 10�6

4 4 �0:7396� 10�7 �0:1162� 10�7

5 0 �0:2388� 10�5

5 1 �0:8272� 10�5 �0:1310� 10�5

5 2 0:6003� 10�6 �0:3802� 10�6

5 3 �0:1287� 10�7 0:1622� 10�6

5 4 0:4360� 10�8 �0:5123� 10�7

5 5 �0:1647� 10�7 0:2856� 10�7

6 0 0:1774� 10�4

6 1 0:9127� 10�6 �0:5508� 10�7

6 2 �0:5735� 10�6 �0:4491� 10�6

6 3 �0:4830� 10�7 �0:8541� 10�7

6 4 0:7759� 10�8 �0:2914� 10�8

6 5 0:2663� 10�8 �0:6699� 10�8

6 6 0:1824� 10�8 �0:2227� 10�8

7 0 0:2227� 10�4

7 1 0:1742� 10�5 0:1632� 10�5

7 2 �0:1753� 10�6 �0:4582� 10�7

7 3 �0:8736� 10�8 0:1479� 10�7

7 4 0:1890� 10�8 0:7858� 10�9

7 5 0:7750� 10�9 0:3291� 10�9

7 6 �0:1374� 10�9 0:4588� 10�9

7 7 �0:2059� 10�9 0:1702� 10�9

8 0 0:1493� 10�4

8 1 �0:7009� 10�6 0:1752� 10�5

8 2 0:1840� 10�6 �0:4353� 10�7

8 3 �0:7987� 10�8 0:1688� 10�7

8 4 0:588� 10�8 �0:1436� 10�8

8 5 �0:600� 10�9 0:78� 10�9

8 6 �0:111� 10�9 �0:104� 10�9

8 7 �0:153� 10�10 �0:15� 10�11

8 8 0:23� 10�11 �0:97� 10�12
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Table 3. Dominant E�ects of Coe�cients on Orbital Elements

[From ref. 3]

Principal orbital elements a�ected

Node Argument
Coe�cient Eccentricity longitude of perilune Inclination

J2 � �

J3 �

J5 �

C22 �

C31 � �

25



Appendix A

First-Order Equations for Rates of Change of Orbital Elements

First-order equations for rates of change of the orbital elements due to J2, J3, J5, C22, and C31 terms are

as follows:

For J2,

da

dt
= 0 (A1a)

de

dt
= 0 (A1b)

di

dt
= 0 (A1c)

d


dt
= �

3n

2

R
2

a2
�
1� e2

�
2
J2 cos i (A1d)

d!

dt
=

3n

4

R
2

a2
�
1� e2

�
2
J2

�
4� 5 sin2 i

�
(A1e)

For J3,

da

dt
= 0 (A2a)

de

dt
=

3n

2

R
3

a3
�
1� e2

�
2
J3 sin i

�
5

4
sin2 i� 1

�
cos! (A2b)

di

dt
= �

3n

2

R
3
e

a3
�
1� e2

�
3
J3 cos i

�
5

4
sin2 i� 1

�
cos! (A2c)

d


dt
= �

3n

2

R
3
e

a3
�
1� e2

�
3
J3 cot i

�
15

4
sin2 i� 1

�
sin! (A2d)

dw

dt
= �

3n

2

R
3

a3
�
1� e2

�
3
J3

" 
1 + 4e2

e

!
sin i

�
5

4
sin2 i� 1

�
� e

cos2 i

sin i

�
15

4
sin2 i� 1

�#
sin! (A2e)

For J5,

da

dt
= 0 (A3a)

de

dt
=

15n

8

R
5

a5
�
1� e2

�
4
J5

�
7

4
e
2 sin3 i

�
1�

9

8
sin2 i

�
cos 3!

+ 2

�
1 +

3

4
e
2

�
sin i

�
21

8
sin4 i�

7

2
sin2 i+ 1

�
cos!

�
(A3b)

26



di

dt
=

15n

8

R
5
e

a5
�
1� e2

�
5
J5

�
7

4
e
2 sin2 i cos i

�
9

8
sin2 i� 1

�
cos 3!

� 2

�
1 +

3

4
e
2

�
cos i

�
21

8
sin4 i�

7

2
sin2 i+ 1

�
cos!

�
(A3c)

d


dt
=

15n

8

R5e

a5
�
1� e2

�
5
J5

�
7

4
e
2 sin i cos i

�
15

8
sin2 i� 1

�
sin 3!

� 2

�
1 +

3

4
e
2

�
cot i

�
105

8
sin4 i�

21

2
sin2 i+ 1

�
sin!

�
(A3d)

d!

dt
=

15n

8

R
5
e

a5e
�
1� e2

�
5
J5

�
7

4
e
2 sin i

��
33

8
e
2 +

9

8

�
sin4 i+

�
�

39

8
e
2
� 1

�
sin2 i+ e

2

�
sin 3!

+
2

sin i

��
�

693

32
e
4
�

1281

32
e
2
�

21

8

�
sin6 i+

�
1071

32
e
4+

119

2
e
2 +

7

2

�
sin4 i

+

�
�

105

8
e
4
�

87

4
e
2
� 1

�
sin2 i+

�
e
2 +

3

4
e
4

��
sin!

�
(A3e)

For C22,
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represents the d


dt
contribution for the C31 term (eq. (A5d)). The d


dt
term represents the rate

of change in the inertial node longitude of the orbit 
 referenced to the prime meridian at epoch (the prime

meridian is de�ned by the Moon-Earth direction at some speci�ed time). The selenographic node longitude of

the orbit 
s is related to the inertial node longitude by the expression 
s = 
i � wt. (See �g. A1.)

These equations (refs. 3 and 11) were in the computer program that was used to generate the plots for the

three-dimensional and contour plots. They were also used in the sensitivity studies.

 Intersection of
orbital plane and 
equatorial plane

Polar view–––––––––

Prime meridian
at epoch Ωi = Ωs

(a) t = 0.

Ωs = Ωi – wt

Ωiwt

(b) t 6= 0.

Figure A1. Di�erentiation between 
i and 
s.
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Appendix B

Veri�cation of Data Generated by

Program LUNLIFE

The lunar lifetime program LUNLIFE1 was origi-
nally intended to be the primary computational tool
used in the present analysis. For this reason, much
e�ort was invested in the veri�cation of the data gen-
erated by this program. Although the development
of the simpli�ed gravitational model outlined in ap-
pendix C lessened the need for the use of the program
LUNLIFE in this analysis, this program was essen-
tial for the formulation and veri�cation of the sim-
pli�ed model. LUNLIFE was also used to quantify
the e�ects due to solar radiation pressure (including
shadowing e�ects) and Earth-Sun gravity perturba-
tions (utilizing an analytical ephemeris algorithm).
A direct descendant of software used in Viking mis-
sion studies, LUNLIFE numerically integrates the
Lagrange planetary equations of motion (eqs. (4))
with a �xed-interval fourth-order predictor-corrector
algorithm, and addresses perturbations through the
use of disturbing functions developed by Kaula. (See
refs. 40 and 41.)

LUNLIFE was initially tested by comparing it to
results contained in a Boeing report on a lunar model
for Apollo. (See ref. 3.) The model in the Boeing
report was ideal for comparison since it consisted of
only four gravitational coe�cients. A list of �rst-
order analytical equations in the appendix of the
Boeing report also allowed for testing of the e�ects
of individual gravitational coe�cients on each of the
orbital elements. Results generated by the Goddard
Space Flight Center in the 1970's for a lunar lifetime
study (ref. 4) were also duplicated with LUNLIFE.

1 Developed by Flight Mechanics & Control under NASA

contractNAS1-18267 in February1989.

In this study, three 3 � 3 lunar gravity models were
used to speci�cally address satellite lifetimes in near
polar orbits.

Additionally, LUNLIFE was compared in �g-
ure B1 with the computer programs ASAP (ref. 39)
and LUNNODE1. These two programs di�er from
LUNLIFE in that they integrate the equations of
motion in Cartesian coordinates. As a result, much
smaller time steps are used, and the programs in-
clude short-period e�ects rather than averaging them
out. The comparisons were made with an 8� 8
truncated version of the Bills-Ferrari 16� 16 grav-
itational model. (See ref. 32.) The three programs
generated near-identical data of perilune altitude ver-
sus time. The various sources have validated the
data that was generated by LUNLIFE and have ver-
i�ed the results that were generated by the method
introduced in appendix C.
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Appendix C

Comparison of Simpli�ed Gravity Model

With Ferrari 5� 5 Model

The formulation of a simpli�ed �ve-coe�cient lu-
nar gravitational model was derived from Ferrari's
5� 5 gravitational model for the purpose of aiding
mission planners in implementing nonspherical grav-
itational e�ects of the Moon in preliminary lunar mis-
sion studies. The proposed simpli�ed gravitational
model consisted of the coe�cients J2, J3, J5, C22,
and C31. Several cases were analyzed with various
initial orbital parameters to examine the changes in
perilune altitude, longitude of ascending node, and
argument of perilune between the Ferrari 5� 5 model
and the simpli�ed �ve-coe�cient gravity model.

A wide range of cases were analyzed by varying
the initial inclination, longitude of ascending node,
and argument of perilune. The initial mean anom-
aly was set to zero, the initial eccentricity was �xed
at 0.05 (for consideration of near-circular orbits ), and
the semimajor axis value of 1935.79 km was selected
to yield an initial perilune altitude of 100 km. Ini-
tial inclination values of 1�, 45�, 90�, 120�, 150�,
and 179� were selected to simulate both posigrade
and retrograde orbits. In an e�ort to cover di�erent
quadrants, since cos ! and sin ! appear in the ana-
lytical expressions derived from the Lagrange plane-
tary equations, initial values of argument of perilune
selected were 0�, 135�, and 225�. Initial values of
longitude of ascending node of 0�, 135�, and 225�

were chosen for the same reasons. The presence of
sectorial and tesseral harmonic coe�cients in the lu-
nar models introduces a longitudinal dependence in
the gravitational potential. This dependence makes
it necessary to utilize several di�erent initial values
for longitude of ascending node. If only zonal har-
monic coe�cients were included in the models, re-
sults would be independent of initial values of longi-
tude of ascending node. Exhausting all combinations
of the values, 54 di�erent initial conditions were an-
alyzed. Each case was evaluated for both the Ferrari
5� 5 model and the simpli�ed �ve-coe�cient lunar
gravity model.

A single simpli�ed gravitational model was pre-
sumed to be insu�cient for accurate orbital predic-
tions over all inclinations, because the magnitude of
the e�ects contributed by each individual gravita-
tional coe�cient is a function of inclination. How-
ever, the simple model did make accurate predic-
tions over all latitudes that were tested. The results
of the Ferrari 5� 5 model and the simpli�ed model
were analyzed by comparing their orbital lifetimes

if they were less than 180 days. If the lifetimes ex-
ceeded 180 days (calculations were terminated after
180 days), the two models were analyzed by com-
paring their minimum perilune-altitude values dur-
ing this time period. Lifetimes were the shortest for
inclinations of 90� and 120�, as each trial that was
examined resulted in impact with the lunar surface in
less than 180 days. Near-equatorial orbits (1�, 179�)
had the smallest decrease in perilune altitude ; each
case examined had lifetimes in excess of 180 days.
These results are listed in table C1.

The data generated with the simpli�ed �ve-
coe�cient model matched very closely the data gen-
erated with the Ferrari 5� 5 model. For cases with
lifetimes of less than 180 days, the simpli�ed model
usually predicted the lifetimes within 4 days of the
Ferrari model. For cases with lifetimes longer than
180 days, the simpli�ed model usually predicted
the minimum perilune altitude within 10 km of the
Ferrari model. There is no particular inclination
range where the two gravitational models seem to be
in better agreement. Also, the simpli�ed model does
not consistently overestimate or underestimate the
orbital lifetimes compared with the Ferrari model.

There were two cases for which the di�erence in
predictions of the orbital lifetimes was signi�cant. In
the �rst case (i = 45�, 
 = 135�, ! = 135�), the sim-
pli�ed model underestimated the lifetime by 16 days.
(See �g. C1(a).) The simpli�ed model slightly under-
predicted the rate of decay of the perilune altitude
through 74 days. This underprediction allowed the
satellite to temporarily avoid a collision and, with
the assistance of the medium-period e�ects, enabled
the orbit to survive for an additional 16 days. In the
second case (i = 45�, 
 = 0�, ! = 225�), the Ferrari
model predicted an orbital lifetime of 129 days; the
simpli�ed model predicted a lifetime in excess of
180 days, with a minimum perilune altitude of 5 km
for the �rst 180 days. (See �g. C1(b).) The explana-
tion for this discrepancy is that the simpli�ed model
again underpredicted the rate of perilune decay, al-
lowing the orbit to exist past 129 days, and, with the
assistance of the long-period e�ects, enabled the per-
ilune altitude to actually increase. These two cases
do not hinder the usefulness of the simpli�ed model,
as both of the discrepancies can be eliminated by
assigning a small margin of error (around 5 km) to
the value of the perilune altitude predicted by the
simpli�ed model.

Also, the longitude of ascending node and ar-
gument of perilune were monitored in this analy-
sis. These orbital element values (computed with the
simpli�ed and Ferrari models) also compared well,
although not quite as well as the perilune-altitude
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Figure C1. Comparison of perilune altitude for simpli�ed and

Ferrari models.

predictions. The longitude of ascending node preces-
sion was consistent between the two models, since the
J2 term, which is the dominant term for determining

nodal precession, is included in both models. Agree-
ment of the argument of perilune was not always as
promising, since near-circular orbits are addressed
in this analysis. For near-circular orbits (where a
unique ! is not de�ned), large changes in the argu-
ment of perilune often take place, these changes tend
to amplify any di�erences between the two models.

In the present analysis, the simpli�ed gravita-
tional model generated results similar to those of the
Ferrari model for initial altitudes of 100 km. Veri-
�cation of accuracy for other initial altitudes would
increase the applicability of this model. The simpli-
�ed model proposed in this analysis might be fur-
ther improved by directly mapping the observational
data to the �ve coe�cients, as opposed to the present
method (a truncated version of the Ferrari model) of
adopting the values of the coe�cients directly from
the Ferrari model.

This analysis suggests that other simpli�ed grav-
itational models could be proposed to simulate even
higher order models for the purpose of generating
orbital lifetime predictions without sacri�cing accu-
rate results. However, the capability of the pro-
posed model to duplicate results similar to the Ferrari
model has not yet been veri�ed for other initial per-
ilune altitudes, and the proposed model is not ex-
pected to generate results similar to those predicted
by other gravitational models. Since other models
di�er in the magnitude (and perhaps even sign) of
their coe�cients, a selection of coe�cients other than
the ones stated in the proposed simpli�ed model pre-
sented herein may be more appropriate for simulat-
ing the results of that particular model. Also, mod-
els with a larger number of gravitational terms may
be more di�cult to simulate with a simpli�ed model
because of the magnitude of the contribution of the
higher order terms.
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Table C1. Comparison of Orbital Lifetimes

(a) i = 1�, 45�, and 90�

Initial orbital elements Ferrari 5� 5 model Simpli�ed model

Orbital Minimum Orbital Minimum
i, 
, !, lifetime,a altitude, lifetime,a altitude,
deg deg deg days km days km

1 0 0 42 54
1 0 135 95 92
1 0 225 78 87

1 135 0 89 88
1 135 135 60 78
1 135 225 39 54

1 225 0 84 88
1 225 135 45 56
1 225 225 73 72

45 0 0 22 25
45 0 135 62 65
45 0 225 129 5
45 135 0 16 13
45 135 135 74 90
45 135 225 10 16
45 225 0 13 3
45 225 135 78 76
45 225 225 18 10
90 0 0 47 47
90 0 135 102 99
90 0 225 144 145
90 135 0 45 48
90 135 135 97 97
90 135 225 139 141
90 225 0 52 48
90 225 135 105 101
90 225 225 147 143

aOrbital lifetime if <180 days.
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Table C1. Concluded

(b) i = 120�, 150�, and 179�

Initial orbital elements Ferrari 5 � 5 model Simpli�ed model

Orbital Minimum Orbital Minimum
i, 
, !, lifetime,a altitude, lifetime,a altitude,
deg deg deg days km days km

120 0 0 167 167
120 0 135 77 77
120 0 225 77 78
120 135 0 149 (b)
120 135 135 59 59
120 135 225 60 59
120 225 0 154 148
120 225 135 44 44
120 225 225 44 46
150 0 0 5 10
150 0 135 77 75
150 0 225 136 133

150 135 0 11 4
150 135 135 46 61
150 135 225 114 114

150 225 0 19 15
150 225 135 80 75
150 225 225 127 126

179 0 0 95 96
179 0 135 66 59
179 0 225 51 63

179 135 0 53 64
179 135 135 99 99
179 135 225 74 74

179 225 0 61 65
179 225 135 71 79
179 225 225 95 94

aOrbital lifetime if <180 days.
bSingularity in model caused erroneous prediction.
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