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Preface

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool

system for reliability/availability prediction stems from a peer review of the Computer Aided

Reliability Estimation third generation (CARE III) computer program that was conducted

in 1980 at the Research Triangle Institute in North Carolina. A participating reviewer,

Dr. Kishor Trivedi of Duke University, did a mathematical analysis of CARE III and suggested

improvements to enhance its modeling capability. Because of the new features and mathematical

changes, NASA decided to create a new capability called HARP. I was then the NASA CARE III

project engineer and became the HARP project engineer also. The development of CARE III

and HARP continued simultaneously.

HARP was developed by researchers at Duke University under NASA grant NAG1-70.

Many innovative capabilities were developed for HARP by graduate students and their research

advisors. A number of doctoral dissertations contained research that was incorporated into

HARP, which became a joint Duke-Langley development project. Langley's contributions to the

design included two sequence dependency gates, the redesign and implementation of the textual

prompting interface, the integration of all HARP programs with uniform prompts, and other

recommendations such as the incorporation of a sti� ordinary di�erential solver and the state

truncation technique. The �rst working HARP program was sent to requesting beta test sites

in 1985.

In 1985 when IBM Corporation announced support for the Graphical Kernel System (GKS),

an ANSI standard that promised portability, Langley encouraged the Duke team to investigate

the development of a graphical user-interface for HARP. The result of this work is the Graphics

Oriented (GO) program. The GO program was completed at Langley with the help of students

from Old Dominion University (ODU) working in Langley's Voluntary Services Program and

with the help of Sandra Howell Koppen and Pamela J. Haley. The ODU students tested the

prototype GO program that was originally written for an IBM-compatible personal computer

(PC). Koppen took GO from an alpha to a beta program and implemented many new features,

including the sequence dependency gates. Because GKS is not a universally implemented

standard, Haley reimplemented the PC GO program on the Sun Microsystems, Inc., and Digital

Equipment Corporation VAX workstations.

Tanya R. Arthur and DeAnn E. Junchter, two ODU students working under the Langley's

Voluntary Services Program and my direction, implemented the code for the HARP Output

(HARPO) program. Although I provided the initial design, Arthur made many re�nements to

produce the prototype program. Darrell Sproles, from Computer Sciences Corporation, made

major modi�cations to the design and reimplemented the code. We jointly re�ned the design to

bring HARPO to its present state. With the completion of HARPO, the main components for

HiRel (HARP, GO, and HARPO) were �nished and beta testing commenced in May 1991.

Koppen and I also served as the engineering interface to over 100 beta test site users who

carried on the beta test concept that I established at Langley for testing CARE III. Langley

also served as an alpha and beta test site. All code was �rst extensively tested at Duke then

again at Langley before being distributed to the user community. The beta test program was a

resounding success. The long-term Langley interaction with HARP users (8 yr) and HiRel (2 yr)

brought an important element of practicality to HiRel's usage and development. Many changes

to HiRel resulted from beta site recommendations. These changes included the discovery of

bugs, suggestions for improving the interface, and design modi�cations. In this regard, I wish to

acknowledge Dr. Tilak Sharma at Boeing Commercial Airplane Group. Sharma saw the power

of the fault tree sequence dependency gates and encouraged the HARP team to pursue this
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work. Sharma, who has become a trusted friend over our long association, extensively tested
HARP and \gets the prize" for �nding the most bugs for any beta site.

One important point remains to be said regarding the beta testing of reliability/availability

programs. Several philosophies exist for the justi�cation of a particular scheme of testing. Based

on our experience with CARE III and HiRel, the method we used was extremely e�ective. We

used a wide distribution of users involved in a large diversity of applications ranging from

satellites to submarines. We imposed few restrictions on our choice of HiRel users (other than

they be U.S. users) and their applications. All distribution was made to unsolicited requesters.

Because of this wide exposition, HiRel has become a very 
exible and useful capability in

many U.S. industries. We also serendipitously found an e�ective mechanism to transfer NASA

developed technology throughout the U.S.

Our experience with CARE III taught us that a useful program eventually becomes modi�ed

to suit the speci�c needs of the user. We had anticipated and fostered this need by distributing

source code. Two additional components of HiRel have emerged as a result, phased-mission

HARP and Monte Carlo HARP. We also learned that useful code gets absorbed into many

company and university computer programs and eventually looses its initial identity. These are

excellent examples of NASA technology transfer.

To my colleagues and friends at Duke and Clemson Universities, I wish to say that the most

rewarding episode of my professional career has been my association with you. Not only did

your e�orts produce a product worthy of the 21st century, but you taught me the true meaning

of being a dedicated researcher and the friendship and loyalty it brings. It is a glowing tribute
to your schools and this country to have such high-quality professionals.

Salvatore J. Bavuso
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Chapter 1

Introduction

1.1. HiRel Tool System

The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool
system for reliability/availability prediction (refs. 1 and 2) o�ers a toolbox of integrated1

reliability/availability programs that can be used to customize the user's application in a
workstation or nonworkstation environment. HiRel consists of interactive graphical input/output
programs and four reliability/availability modeling engines that provide analytical and simulative
solutions to a wide host of highly reliable fault-tolerant system architectures. Three HiRel
programs were developed by researchers at Duke University and Langley Research Center.

The tool system was designed to be compatible with most computing platforms and operating
systems, and some programs have been beta tested within the aerospace community for over
8 years. Many examples of HiRel's use have been reported in the literature and at the HARP
workshop conducted at Duke University, July 10{11, 1990.

The wide range of applications of interest has caused HiRel to evolve into a family of
independent programs that communicate with each other through �les that each program
generates. In this sense, HiRel o�ers a toolbox of integrated programs that can be executed
to customize the user's application. Figure 1 illustrates the HiRel tool system. The core of this
capability consists of the reliability/availability modeling engines, which are collectively called
the Hybrid Automated Reliability Predictor suite (HARP/S).

The modeling engines are comprised of four self-contained executable software components:
the original HARP program also called textual HARP (described in vols. 1 and 2 of this TP),
Monte Carlo integrated HARP (MCI-HARP) (ref. 3), Phased Mission HARP (PM-HARP)
(ref. 4), and X Window system HARP (XHARP) (ref. 5). In conjunction with the engine suite,
are two interactive graphical input/output programs that provide a workstation environment for
HiRel. These programs are called the Graphics Oriented (GO) program (described in vol. 3 of
this TP) and the HARP Output (HARPO) program (described in vol. 4 of this TP). The base
components of HiRel (GO, HARP, MCI-HARP, and HARPO) are available through NASA's
software distribution facility, COSMIC.2PM-HARP3and XHARP4may be available from their
respective developers.

1.2. HARP Suite and Its Applicability

HARP/S is comprised of four computer programs that provide a general Markov modeling
capability to conveniently model and predict the reliability/availability of a wide variety of
systems. The primary input (except XHARP) is a fault tree that can be in tabular or graphical
form. (The primary XHARP input is a Markov model in graphic form.) The fault tree is
not limited to the traditional combinatorial modeling approach. The addition of four special

1 HiRel programs can communicate with each other in a common ASCII �le format, a necessary capability for computer-

aided design (CAD) integration.
2 COSMIC, The University of Georgia, 382 East Broad St., Athens, GA 30602.
3 The Boeing Commercial Airplane Group, Seattle, WA 98124 (Tilak Sharma).
4 Clemson University, Dept. of Computer Science, Clemson, SC 29734 (Robert Geist).
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Figure 1. HiRel: GO, HARPO, and HARP suite of reliability engines.

fault tree gates called dependency gates allow the generation of dynamic fault tree models that,
until now, were not practical to solve with analytical solution techniques. The fault tree, a
familiar and convenient notation for expressing reliability models, is automatically converted by
HARP/S into a Markov model that is solved to produce a reliability/availability prediction. The
numerical results are expressed in tabular or graphical form with HARPO. HARP/S also accepts
system reliability/availability models expressed directly in the form of a Markov model, where
the user inputs the model's origin state and destination state together with a state transition
rate. Unless HiRel is used in an hierarchical fashion, this form of input can be impractical for
many modeling situations where thousands of Markov states must be enumerated.

For fault-tolerant systems that use redundancy and subsystem recon�guration to achieve
ultrahigh predicted reliabilities, even automatic model generation capabilities can be inadequate
to cope with the potentially millions of Markov states necessary to model the system reliability.
The addition of millions of states in models of fault-tolerant systems results from the need to
account for the fault/error handling mechanisms typically used in these systems. For many of
these systems, the extremely large state size causes insurmountable computational di�culties
that preclude reliability/availability prediction. HARP/S o�ers an innovative modeling tech-
nique that avoids having to generate and solve such large models by implementing a modeling
technique called behavioral decomposition (refs. 6 and 7). Behavioral decomposition is a math-
ematical technique that exploits two speci�c behaviors of fault-tolerant systems: (1) the failure
of hardware parts and subsystems typically occurs after thousands of hours of operation, and
(2) the time involved in the handling of faults/errors is usually on the order of milliseconds to
seconds. This wide disparity of typically 6 orders of magnitude of the system time constants
forms the mathematical basis of behavioral decomposition that guarantees that the reliability
computation is conservative (refs. 8 and 9). It is conservative in that it predicts a reliability that
is equal to or less than the reliability predicted by the full model.
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A key step in arriving at a conservative reliability prediction in any reliability modeling
activity is for the modeler to insure that all system failure modes have been accounted for in the

model speci�cation; otherwise, a conservative result is not guaranteed. (See section 2.1.) For

many applications, this practice is perfectly acceptable provided that the modeler can account

for the deviation introduced into the model by dropping improbable failure or recovery events.

The e�ect of this modeling practice is a reliability prediction with less accuracy than is possible

with additional modeling e�ort (when the model is solvable).

The speci�cation of the system model is totally the responsibility of the modeler. Neither

HARP/S nor any other computer program can guess the structure of the model that the user

has conceptionalized. Many modeling subtleties are associated with the reliability modeling of

fault-tolerant systems. This technology is new and many users are unfamiliar with the many

concepts and modeling nuances that can make a signi�cant di�erence in the results.

One such modeling nuance concerns the HARP/S multifault model for computing the

near-coincident fault probability. HARP, MCI-HARP, and PM-HARP (collectively called

< HARP >) do not model all combinations of multiple faults taken 2, 3, ..., N at a time

exactly and automatically as XHARP does. Rather, they use another approximation technique

(critical-pair multifault model) to further simplify the computational complexity and to ease the

user burden of acquiring multifault data that is generally unavailable.

This automatically generated near-coincident multifault model (critical-pair) describes the

condition that causes total system failure as a result of two coexisting faults (not simultaneously

occurring, see section 2.7). The condition occurs when a system has already experienced one

fault and is in the process of recovering from it when a second statistically independent fault

occurs in another unit that is critically coupled to the one experiencing the �rst fault. If a second

fault occurs during recovery but is not critically coupled (as speci�ed by the user), the second

fault is not accounted for in the coverage computation. It is accounted for in the redundancy

exhaustion model.

An example of critically coupled units is two units in a voting triad that is performing a

computation required for survival of the system as in a 
ight control system in a 
y-by-wire

aircraft.5 The probability of a near-coincident fault is signi�cant for highly reliable systems

with system failure probabilities of less than (10�8) for the mission time of interest. The

near-coincident fault involving two faults is called a critical-pair fault. Most commercial and

military aircraft 
ight control systems and most existing systems in commercial use today can be

e�ectively modeled with the critical-pair fault model when the near-coincident fault is a mission

critical factor. Systems using computers can have up to four active recon�gurable processing

units where a majority vote can be e�ected until two coexisting faults occur.

A system with �ve processing units can survive two coexisting faults, but a third fault causes

system failure. This system requires a critical-triple fault model to e�ectively predict the near-
coincident fault probability. Because the HARP developers believed that the interest in modeling

such systems is small, they did not implement a more complex multifault model; instead,

they suggest the automatically generated critical-pair model as a conservative approximation

to critical-triple or higher order models. The degree of conservativeness depends on the system

architecture and can be unacceptably high for some systems.

The rationale to support the critical-pair modeling decision was based on the belief that the

reliability of computers would continue to increase, making it less probable to have critical-triple

faults. Consequently, predictions of ultrahigh reliabilities would be achieved with four or fewer

5 A 
y-by-wire aircraft uses an electronic computerized 
ight control system whose function is required for aircraft

survival, and as such, the systems are usually fault-tolerantwith redundant hardware units and possibly redundant software

modules.
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processors. This trend is in fact occurring which justi�es the HARP developer's decision to only
exactly model critical-pair faults (refs. 10 to 13).

For those applications requiring higher order fault models, the HARP developers suggest

that the user modify the < HARP > ASCII �les that specify the multifault model exactly.
(See section 2.7.4.) The modi�cation can be accomplished with a common text editor before or

after HARP has generated the appropriate �les. XHARP is another alternative that provides

automatic higher order multifault model generation. The < HARP > multifault approximation

model is further discussed in section 2.7, and an example is given in chapter 7. The user is

cautioned to study these multifault models carefully before application. An incorrect selection

of the multifault model options can produce a nonconservative result because a particular option

can drop important failure modes from the reliability computation. However, < HARP >

cannot warn the user of this modeling speci�cation error.

1.2.1. XHARP

More recently, the user has another modeling alternative. An extended behavioral decomposi-

tion model has been developed by researchers at Clemson University (ref. 5) and is implemented

in XHARP. XHARP was designed to expand the modeling capability of the original HARP

behavioral decomposition technique to include exact multifault modeling, multiple entry/exit

fault model transitions, and automatic behavioral decomposition modeling. This capability is

demonstrated in chapter 7. XHARP calls HARP, MCI-HARP, and PM-HARP as executable
software programs; thus, the entire power of both XHARP and the < HARP > programs are

available to the user.

XHARP provides an XWindow system environment for graphically specifying a semi-Markov
chain that is automatically translated into the HARP structure for the fault-occurrence/repair

model (FORM) and the fault/error handling model (FEHM).

1.2.2. PM-HARP

Phased-mission HARP was developed to facilitate the analysis of phased missions (refs. 4

and 14). A mission is phased when the structure of the system (con�guration) or component

failure distributions change after each epoch (phase) in the mission (refs. 15 and 16). Multiple

phases of �xed and random durations are allowed. Also, the system can be speci�ed to be

imperfect at the beginning of a mission. The GO and HARPO programs are compatible with

PM-HARP; however, the phased-mission speci�cations may not be speci�able to GO directly.

HARPO may not graph all the phased-mission output data; however, the output listings are

complete.

1.2.3. MCI-HARP

MCI-HARP is comprised of HARP with a Monte Carlo simulation engine and is fully

integrated with HARP. MCI-HARP can solve all types of models that HARP can when the input

is speci�ed as a dynamic fault tree (the extended fault tree with sequence dependency gates that

HARP accepts). At present, this capability excludes cyclic Markov models that can be speci�ed

to HARP in the Markov chain format that HARP accepts. However, MCI-HARP can solve

certain model types that HARP cannot, such as non-Markovian models that arise when warm

or cold Weibull spares are added to a Weibull fault/occurrence model. An important feature of

MCI-HARP is the use of a variance reduction technique called importance sampling (ref. 17).

Importance sampling makes it feasible to solve large models that contain widely separated time

constants. Such models are called sti� and are common to highly reliable fault-tolerant systems.

Although importance sampling is not a new technology, it has become more useful with the
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recent application to preexisting Markov chain models (refs. 3, 18, and 19). Another important
feature is MCI-HARP's ability to solve very large models with or without model truncation.

This capability is possible because MCI-HARP does not store the entire Markovian state space.

1.2.4. Textual HARP

Three versions of textual HARP (PC-DOS HARP 16-bit version, PC-DOS HARP 32-bit

version, and PC-OS/2 HARP) are available for operation on a personal computer. Textual

HARP executes on Sun and DEC workstations with the same limits as the PC-DOS HARP

32-bit version.

1.2.4.1. PC-DOS HARP 16-Bit Version

We developed and tested the PC-DOS HARP 16-bit version on an IBM PC AT with 512K of

memory and have successfully executed it on PC 286, 386, and 486 class machines. Because of

memory constraints imposed by MS DOS's 640K memory limit, PC-DOS HARP 16-bit version

cannot model large models. The limits on the various parameters de�ned in PC-DOS HARP

are given in table 1. Expanded state size is possible with PC's that have more than 512K of

memory by changing the limit sizes of the HARP package. (See section 5.3.)

Table 1. HARP Parameters

Limit|

Textual HARP

Parameter 32-bit version 16-bit version

Max. no. of states inMarkov chain Sorted: 10000 Sorted: 500

(may be larger if truncation is used) Unsorted: 500 Unsorted: 500

Max. no. of transitions inMarkov chain Sorted: 90000 Sorted: 4500

Unsorted: 2050 Unsorted: 2050

Max. no. of symbols in model 15000 500

Max. no. of factors in model 15000 1500

Max. no. of terms in model 15000 750

Line length in input �le 80 char 80 char

Max. no. of characters in a parameter name 32 char 32 char

Max. length of rates and state names 12 char 12 char

Max. no. of nodes in fault tree 256 256

Max. no. of component types in fault tree 96 16

Max. no. of basic events in fault tree 96 16

Coverage value precision No. depends onFEHM No. depends onFEHM

Max. no. of incoming arcs per fault tree gate 70 16

Note that PC-DOS HARP 16-bit version allows the same number of nodes in the fault

tree as the full model (32-bit) version of HARP. This 
exibility takes advantage of the feature
of truncation in HARP. However, since the maximum number of states allowed in �face and

harpeng of PC-DOS HARP 16-bit version is only 500, the user is advised to use a truncation

level that restricts the model state size to less than 500.

In addition to being unable to solve large models, PC-DOS HARP 16-bit version has some

other restrictions. Evaluation of the simple bounds is not possible. Also, Weibull failure rates

are not allowed. State-dependent coverage factors cannot be used; hence, no near-coincident-

fault calculations are performed. This restriction occurs because the failure probabilities due to

near-coincident faults are comparable with the precision allowed by the PC 16-bit version.
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A graphical interface to HARP has been developed with Graphics Software System's
implementation of the Graphical Kernel System (GKS) ANSI standard. An IBM PC AT with
EGA controller and display was used for the development, and VGA is now supported. For more
information, refer to the HARP Graphics Oriented (GO) Input User's Guide (vol. 3 of this TP)
and the HARP Output (HARPO) Graphics Display User's Guide (vol. 4 of this TP).

1.2.4.2. PC-DOS HARP 32-Bit Version

The full HARP capability has been ported to a PC under DOS with Microsoft FORTRAN
Powerstation, and it behaves identically to the UNIX and VAX HARP versions. This extended
DOS version requires a 386 or higher class machine.

1.2.4.3. PC-OS/2 HARP

Other operating systems such as UNIX or OS/2 executing on a PC remove the 640K memory
restriction and hence the restriction on model size. The full HARP capability has been ported
to a PC under OS/2 and behaves identically to the UNIX and VAX HARP versions. Because
of the unique relationship between DOS and OS/2, ASCII �les are totally interchangeable.
Thus, it is possible to execute the GO program under DOS, to execute the full model HARP
capability under OS/2 using the �les created with GO, and to graphically display the HARP
results executing HARPO under DOS again. The advantage of this arrangement is that a DOS-
compatible GKS program need not be upgraded to OS/2 GKS. Also, small models can be worked
entirely on a 286 PC, or just the graphics can be displayed on the PC when an OS/2, UNIX, or
VAX computer is necessary for large models.

1.3. HARP/S Key Features and Overview

The HARP/S key features are summarized as follows:

� Very large system modeling (using MCI-HARP or behavioral decomposition and bounds
with truncation with HARP)

� Flexible method of modeling dynamic behavior (homogeneous/nonhomogeneous Markov
chains)

� Automatic Markov chain generation from a fault tree description (particularly useful for
large systems) or direct user input of the Markov chain

� User choice of seven fault/error handling models ranging in complexity from a simple lab-
oratory parameter estimation model to a complex Petri net model for detailed fault/error
handling analysis

� Automatic insertion of fault/error handling models into Markov chains

� Automatic parametric analysis

� Phased-mission analysis

� Non-Markovian models with Weibull cold and warm spares

� Written in ANSI standard FORTRAN and successfully ported to many di�erent host
computers, including IBM-compatible 286, 386, and 486 PC's (including AT&T 6300
with 640K), DEC VAX, Sun, CRAY Y-MP, Alliant, Convex, Encore, Gould, Pyramid,
and Apollo

� Runs under MS/PC-DOS and Microsoft Windows NT, OS/2, DEC VMS and Ultrix,
Berkeley UNIX 4.3, and AT&T UNIX 5.2
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� Interactive graphical input/output workstation capability for DEC VAX under VMS, Sun,
and IBM-compatible PC

� X Window system graphical model generation

� Extensively and independently tested and applied to practical systems (over 8 years of
industry beta testing and over 100 copies distributed)

� Independently tested and evaluated within NASA

HARP provides the user with a language to input a model and solves it for the system
reliability/availability for user-speci�ed mission times. It uses behavioral decomposition to avoid
the problems of model largeness and model sti�ness (refs. 6 and 7).

The reliability model is decomposed along temporal lines into a FORM and a FEHM. The
FORM contains information about the structure of the hardware redundancy, about the fault
arrival processes, and about manual (o�-line) repair. The user speci�es the FORM either as a
fault tree or a Markov chain. The FEHM (often called the coverage model) allows for permanent,
intermittent, and transient faults (ref. 20), and models the (on-line) recovery procedure necessary
for each type. The FORM/FEHM models are merged according to a user-speci�ed multifault
model. The resulting system reliability/availability model is a simpli�cation of the originally
speci�ed model. The correct speci�cation of the multifaultmodel is crucial for HARP to produce
a conservative result.

HARP also accepts as input a nominal value and a variation on all FORM input parameters.
The nominal value is used for the reliability prediction, and the variation about the nominal value
is used in an approximate (simpler) model to generate bounds about the predicted reliability.
Additionally, HARP supports the modeling of time-dependent failure rates by allowing a
symbolic failure rate to be associated with a Weibull failure distribution. We caution the user
that the use of Weibull distributions leads to a long solution time because the symbols must
be reevaluated at each time step, but it can also lead to a more accurate model of the system
under study (ref. 21). MCI-HARP's simulation has been shown to be more e�cient in solving
Weibull models than a numerical integrator (ref. 3). A new feature in HARP is the use of state
truncation to further avoid the problem of large models.

Input data to reliability models can be inaccurate by as much as hundreds to thousands of a
percent (ref. 22). Because of these large errors and the recognition that reliability modeling is
more often an art than a science, the user of HARP must view the results with a healthy dose
of caution. When trade-o� studies are performed with comparable input data, the computed
results are meaningful relative to the models being compared. If the user is interested in arriving
at absolute reliability predictions, then much caution should be used in the interpretation of the
computed results. HARP outputs eight digits plus an exponent. The eight digits are displayed for
the purposes of user calibration, that is, to determine whether the user's computer is computing
the results that the developers intended. The eight digits do not imply reliability prediction
precision to eight digits.

Experience has shown that next to tedious hand calculations, the most practical method
of developing con�dence in the results computed by any reliability predictor is to compare
the computed results of one program with those of a di�erent reliability program. This
recommendation is based on the authors' interaction with beta test site users over 8 years
where on several occasions, coding bugs were discovered as a result of the user's comparison of
HARP results to an in-house company reliability program including some obtained from NASA
(such as CARE III)6 and other institutions. The HARP developers also used this technique

6 Computer Aided Reliability Estimation third generation computer program.

7



extensively (refs. 23 to 26). Some examples of these test cases are sent to beta test site users
with the HARP code. Over 700 test cases comprising over 2000 �les were used to test HARP
at Langley during development. A greater number was used at Duke University.

Textual HARP executes on DEC VAX workstations under VMS, Sun workstations under
UNIX, and IBM-compatible 286, 386, and 486 PC's under MS DOS. Under OS/2 on 386/486
PC's, the full HARP capability can be executed. Recompilation only requires an ANSI standard
Fortran 77 compiler, and textual HARP has been compiled with Lahey and Microsoft Fortran
on the PC. It is compatible with a wide range of computing platforms because it was written in
ANSI standard Fortran 77 for wide portability. HARP creates ASCII �les that are compatible
with most computing platforms. For example, �les created under the PC environment can be
executed by a VAX workstation. In this way, a PC can be used as a workstation for input and
output processing, and a VAX workstation can be used for large system number computations.
Textual HARP has an interactive prompting input capability and is composed of three stand-
alone programs: tdrive, �face, and harpeng. (See �g. 2.) As the user successively executes the
programs in this order, the programs create �les that are required by other programs.

HARP
TEXTUAL
INPUT

XHARP
GRAPHICAL
INPUT

GO
GRAPHICAL
INPUT

TDRIVE FIFACE HARPENG

MARKOV
CHAIN
GENERATOR

TRANSITION
MATRIX
SETUP

MARKOV
CHAIN
SOLVER

TABULAR
OUTPUT

     LISTINGS

TDRIVE FIFACE HARPENG

MARKOV
CHAIN
GENERATOR

TRANSITION
MATRIX
SETUP

MARKOV
CHAIN
SOLVER

PM-HARP

GRAPHICAL
OUTPUT

CHANGE MODEL

PARAMETERS

CHANGE MODEL

PARAMETERS

HARP / MCI-HARP

Figure 2. HARP execution 
ow and relationship to GO and HARPO.

The programs also accept �les created with a text editor. Thus, the user can use the
interactive input capability or simply input text �les. The input to tdrive can also come from �les
generated by the GO program. The output of textual HARP are tabular structured �les. These
�les can be used as input to HARPO, which allows the user to graphically display the HARP
tabular data in a wide variety of forms in an interactive mode. Thus, as an overview, textual
HARP is by analogy the central processing unit, the GO program is a graphical input to textual
HARP that bypasses textual HARP's interactive input-prompting capability, and HARPO is
the graphical output processor that reads textual HARP's tabular output �les. Separate users
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guides for GO and HARPO (vols. 3 and 4 of this TP) and a tutorial (vol. 2 of this TP) are also
available.

Table 1 gives the limit on various parameters de�ned in HARP. It gives the user an idea of

the model sizes that can be e�ectively handled by HARP; however, many of these limits can be

altered. (See chapter 5.)

The number of symbols in the model refers to the sum of the number of distinct failure rate

symbols, number of distinct coverage factors, and the number of states having symbolic names.

The number of factors and terms in the model can be explained as follows. If a transition in the

MODELNAME.INT �le is 3 � �+ 2 � � �C1, then there are two terms (3 � � and 2 � � � C1),

�ve factors (3, �, 2, �, C1), and three symbols (�, �, C1) associated with the transition. The

arrays containing the terms and factors are used dynamically. In other words, the arrays, which
are �lled symbolically, are converted to the numeric representation when they are full. The space

is then reused.

1.4. HARP Version 6.0

HARP version 6.0 (April 1989) has the following additional features. Four novel dynamic

gates have been included in the description of the fault tree. They are the functional dependency

gate, the priority and gate, the cold spare gate, and the sequence-enforcing gate. (See sections 2.5

and 4.4.) These gates can be used to model those features of a system frequently characterized

as sequence dependencies, which cannot be modeled by the standard and, k/n, and or gates.

Hence, they greatly enhance the modeling capabilities of HARP.

Another feature added to HARP is the capability to solve sti� models with a special sti�

solver. A sti� solver is automatically invoked in harpeng if GERK (nonsti� ordinary di�erential

equation solver) is taking too many steps to solve the model. (See section 3.3.2.)

The format of the MODELNAME.INP �le created by harpeng during run time has been

altered to make it easier for the user to read and modify. The new format makes it much

more robust. (See section 4.5.) However, harpeng still reads in the old format of the

MODELNAME.INP �le. A small change has been made in the questions asked by harpeng

in that the last two questions have been combined into one. A simple run through harpeng

clearly demonstrates these changes.

In �face, the user can now choose to create only the relevant near-coincident fault rate �les.

In the older versions, all near-coincident fault rate �les were created by default. A few warning

and error messages have been altered to clarify their meaning.

1.5. HARP Version 6.1

HARP version 6.1 (November 1989) has the following modi�cations. The dynamic sequence-

enforcing gate (see sections 2.5 and 4.4) now requires that all inputs to the gate except the

�rst must be basic events (possibly replicated, i.e., multiple basic events with identical failure

distributions). The �rst input remains unrestricted and thus unchanged from version 6.0. The

cold spare gate now allows its inputs to be (possibly replicated) basic events, where earlier only

unreplicated basic events were accepted.

The output MODELNAME.RES �le from program harpeng has been renamed

MODELNAME.RS*, where * is an integer from 1 to 9 for compatibility with HARPO. For

each run of the same input �le, the integer is incremented, beginning with 1.

In addition, the method for determining the near-coincident fault rates is changed. The

new method is conservative in that it regards outgoing arcs of the source and target states. In
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previous versions, only the rates of the target state were utilized. (See section 2.7 for details.)
Carriage return selected defaults are fully implemented, more extensive warning messages have

been added to the code, and some coding bugs have been �xed.

1.6. HARP Version 7.0

HARP version 7.0 (February 1993) has added two new fault tree gates: the invert (inv) and

exclusive or (xor) gates. The results �le now reports the number of transitions in the Markov

chain. This information is useful if the maximum number of covered failures attained by the

Markov chain states exceeds 90 000. Changes to max# are made in �face and harpeng, and are

useful if tdrive runs out of memory in the POOL(*) array (i.e., increase the value of PLEN or

rerun tdrive with a larger truncation value). (See section 5.3.) When tdrive is invoked and it

senses the presence of existing �les, tdrive queries the user to select one of several choices. One

choice is AT. AT allows the user to append additional fault tree (FT) nodes to an existing tree

in MODELNAME.TXT, but only if the last existing node is not FBOX. If the last node in the

MODELNAME.TXT �le is an FBOX node, the MODELNAME.TXT �le should be edited to

delete the line containing the FBOX node text prior to executing tdrive. This feature is useful

for huge fault tree �les when during entry something goes wrong after many nodes have been

entered. This feature also precludes the need for the user to recreate the entire �le. If the user

speci�es AT, tdrive reads the contents of the existing MODELNAME.TXT �le, prints the last

FT node in the �le, and then allows the user to enter the next FT node as usual. A number of

bugs were �xed and are delineated in appendix A.

1.7. HARP Quick Reference

1.7.1. Summary|HARP Capabilities and Limitations

HARP is intended for reliability analysis of reliable fault-tolerant systems with complex

recovery management techniques, particularly those used in 
ight control systems. The following

sections provide a list of the capabilities and limitations of HARP that were determined during

beta testing. Certain listed capabilities cannot be accomplished during the same execution of

HARP; thus, a fault tree and a Markov chain input speci�cation of the same system would not

both be processed in the same HARP run. However, if a fault tree is speci�ed, HARP creates

the equivalent Markov chain and solves the Markov chain. The converse is not true. The limits

on the size of the problem that HARP can solve depends on the system.

1.7.2. HARP and MCI-HARP Capabilities

� Dynamic fault trees with repeated nodes (i.e., shared basic events)

� Repairable systems (to determine instantaneous availability), which are speci�ed with a
Markovian FORM

� Systems with sequence-dependent failures as dynamic fault trees of Markov chains

� Weibull failure distribution including hot spare repairable systems

� Weibull failure distribution with cold Weibull spares (MCI-HARP)

� Provide guaranteed automatically generated parametric bounds on system reliability (for

a large number of applications of practical interest and all Markov models with ASCII �le

editing)

� Provide detailed coverage modeling with a choice of FEHM's
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� Automatically solve arbitrary Markov chains for most practical systems and, with �le
editing, all Markov chains

� Solve truncated models for large systems given as a fault tree and large models with or

without truncation using MCI-HARP

� Systems with cold and warm spares (refs. 27 to 30)

1.7.3. HARP Limitations

� Mean time to failure (MTTF) or mean time between failures (MTBF)

� Steady-state evaluation

� Weibull failure distribution mixed with constant failure rates in repairable systems

� Bounds analysis for systems with Weibull rates or with no absorbing states

� Automatic generation of Markov chains for repairable systems

� Phased missions; use PM-HARP (ref. 2)

� Weibull failure rate for sti� systems (use MCI-HARP)

� Weibull failure rate for models containing the cold spare gate and warm spares (see

section 2.9.1); use MCI-HARP (refs. 18 and 19)

� Slow recovery with behavioral decomposition

� Model systems whose unreliability is less than (10�15) when FEHM models are included

(unless the epsilon variable parameter EPX is changed, see section 3.3.3)

1.7.4. About Volume 1

Volume 1 of this Technical Paper is a user's guide for the textual HARP program, which

textually and interactively prompts the user for keyboard entered input data. This volume is

divided into the following chapters:

Chapter 2 discusses the various steps needed to completely specify a system in HARP. It also

discusses the di�erent FEHM types available. Chapter 3 presents the solution techniques used

in HARP; and chapter 4 presents an overview of the HARP program and the �les it generates

along with the user input. Chapter 5 provides practical information about the HARP program.

Chapter 6 gives a mathematical description of the nonstandard fault tree dependency gates

and chapter 7 illustrates some advanced modeling techniques. Appendix A lists known bugs

in versions 6.1 and 6.2, and appendix B lists warning and error messages. The tutorial (vol. 2

of this TP) steps the user through several examples and further explains many of the HARP

concepts. Additional applications can be found in references 26 and 29 to 32.
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Chapter 2

ModelSpeci�cation

2.1. SystemMathematical Model Overview

The reliability model that HARP actually solves is always a Markov chain even though it

can be input as a combinatorial or sequence-dependent fault tree. Depending on the user's

choice, the model can be a homogeneous (only exponential failure distributions, i.e., constant

failure rates) Markov chain or a nonhomogeneous (at least one Weibull failure distribution,

i.e., nonconstant failure rate) Markov chain. Although these general stochastic models cover
a wide range of systems, some systems require even more general and computationally more

di�cult stochastic models. These systems are the highly reliable fault-tolerant variety that use

redundant subsystems for increasing system reliability. These systems often use computers for

real-time-processing control and system management of failed redundant components.

Because failure recovery requires either a random or possibly a deterministic time, a second

component failure can occur while the �rst is being properly dealt with. The second fault is

called a near-coincident fault. The reliability/availability of highly reliable fault-tolerant systems

is sensitive to the near-coincident fault and is typically the dominant unreliability contributor. To

capture the e�ects of this important parameter, a semi-Markov chain model is required to account

for the system holding time during system recovery (recovery time) when fault occurrences are

exponentially distributed. If fault occurrences are Weibull distributed, the stochastic model

becomes a mixed-Markov chain, an even more complex mathematical model. These stochastic

models are computationally costly to solve in the traditional manner and thus severely limits

the size of the model. Thus, HARP was designed to model these systems e�ciently.

2.2. Fault/Error Handling Mathematical Model

A mathematical technique that signi�cantly simpli�es the solution of both these models is

called behavioral decomposition. The technique makes use of the fact that fault occurrence

times are typically on the order of thousands to tens of thousands of hours, while fault recovery

times are on the order of fractions of a second to seconds. This disparity of event times makes

it possible to solve a FEHM in isolation with respect to the FORM. The solution of the FEHM

model determines the internal (to the FEHM) race condition times of exit from the FEHM

and are expressed as exit probabilities and holding times. Timing considerations are carefully

modeled within the FEHM. Once the exit probabilities and holding times are thus determined,

the behavioral decomposition model assumes that the recovery outcome (FEHM exits) happened

in zero time. The exit probabilities behave as exit path switches with in�nitely fast switching
speed. These switch probabilities are often called coverage probabilities in the literature. The

coverage probabilities are automatically incorporated into the Markov chain (i.e., homogeneous

or nonhomogeneous model) and solved with a straightforward ordinary di�erential equation

solver (GERK).

HARP and XHARP o�er two classes of FEHM's: single-fault and multifault models.

The single-fault model capability ranges from simple to complex, while the multifault model

capability is relatively simple. It uses a near-coincident model that causes system failure resulting

from user-speci�ed synergistic critical-pair faults. In contrast, XHARP has a near-coincident

multifault model that is general and removes the critical-pair faults restriction of HARP. The

more general model in XHARP is especially useful for systems where many fault containment

regions are modeled and more than two near-coincident faults can be tolerated.
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2.3. Implementation of SystemMathematical Model

The stochastic model that is actually solved, called an instantaneous jump model, is a

computationally e�cient approximation of a more complex mathematical model. HARP's

fundamental mathematical model (behavioral decomposition) guarantees that the instantaneous

jump model approximation is conservative (ref. 8). When the user speci�es the correct model,

the unreliability prediction is always greater than the exact result from the full model. The user

must specify the correct stochastic model to HARP to guarantee a conservative computation.

An incorrectly speci�ed model may not guarantee a conservative result or may produce an overly

conservative result.

Figures 3 and 4 show the relationship between the di�erent models involved in the HARP

modeling process. Figure 3 shows the use of behavioral decomposition, and �gure 4 shows the

explicit speci�cation of Markov chains.
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Figure 3. Relationship of modeling considerations with behavioral decomposition.

2.3.1. Behavioral Decomposition Model

The process of reliability/availability modeling begins with the user's conceptual model (also

called the original or full model), which the modeler has formulated from the system under

consideration. This process is not well understood and further consideration is beyond the scope

of this document. The user translates the conceptual model M0 into the HARP paradigm

M1 by using the FORM/FEHM and the near-coincident multifault model speci�cation (�g. 3)

or by entering it directly as a Markov chain (�g. 4). The choice of which notation to use is

multifaceted and depends on the user's inclination and modeling familiarity, the need to model

near-coincident faults, and modeling complexity.
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2.3.2. Markov Chain Model

Direct entry of Markov chain for simple models requiring no near-coincident fault modeling is
a reasonable choice as is the use of the fault tree notation shown in �gure 3 without behavioral
decomposition. When near-coincident faults are needed, direct Markov chain entry becomes
more complicated because it may be necessary to use the method of stages if nonexponential
fault holding time distributions are required. Otherwise, using direct Markov chain entry is
limited by the complexity of the model. The problem is one of model speci�cation, not solution.
The speci�cation of a complex Markov chain is tedious and error prone.

2.4. Important Modeling Considerations

The use of the HARP capability shown in �gure 3 is more convenient than direct Markov chain
entry. The use of behavioral decomposition eliminates the need for the method of stages, but the
modeling speci�cation of complex Markov chains is still present even though the FEHMmodeling
is simpli�ed. Complex models require the use of the fault tree notation that is automatically
converted into a Markov chain, which can include fault/error handling as speci�ed by the user.
For this modeling convenience, the user must insure thatM1 is the correct model that represents
the conceptual model.

M1 is a notational model. These user-speci�ed inputs result in the creation of a new and
simpler model through the process of FORM/FEHM merging to create the instantaneous jump
model (M2). If the original model is an N -plex (one that degrades by one component per
component failure), the instantaneous jump model is automatically generated and is exact;
otherwise, it is an approximation. Editing the automatically generated ASCII �les also produces
an exact model for any Markov chain. Model M2 is given to an ordinary di�erential equation
solver that translates M2 into model M3 for solution. Complex models often require several
model translations to make the solution tractable. Errors are introduced in the translation
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process, but the objective is to estimate the total error and report the desired result in light of
that error.

A useful result has an error that is small with respect to the result. The usefulness of the

result with its estimated error also depends on the accuracy of the input data and the user's

model M0, e.g., rationale, assumptions, and simpli�cations.

Some observations of the HARPmodeling process are worthy of further discussion to galvanize
this modeling process in the user's mind and preclude the misapplication of the program. No

computer program can provide modelM0. This process can be aided, but not by HARP directly.

In the process of specifying the HARP paradigm, however, the user's concept of M0 is often

crystallized. The user must insure that modelM1 is equivalent to modelM0 or is an acceptable

approximation. HARP nor any other program cannot infer that M1 and M0 are comparable.

Examples of M1 models are shown in chapter 3. The speci�cation of the near-coincident

multifault model is also a part of M1 but is not shown graphically. Because the FEHM

models can be non-Markovian, modelM1 can also be non-Markovian. Behavioral decomposition

enables a transformation from a non-Markovian model (which can be extremely di�cult to solve

with conventional techniques) into a Markovian model with a signi�cant potential for state-size

reduction. This transformation is the FORM/FEHM merging process shown in �gure 3. The

resulting transformed model (M2) is always a Markovian model. ModelM2 is automatically and

mechanically produced by HARP and is a mathematical approximation of modelM1. Examples

of transformedM2 models are shown in chapters 3 and 5. The McGough-Trivedi theorem (ref. 8)

guarantees that M2 is mathematically conservative with respect to M1. By forcing the FEHM

events to occur in zero time, the net e�ect is that a greater probability of transition to a
system failure state occurs than would occur in reality. This property, which is the essence

of the McGough-Trivedi proof, guarantees that Markovian model M2 produces a conservative

system failure prediction with respect to modelM1, the possible non-Markovian model. For this

remarkable achievement, a conservative approximation error is introduced. The magnitude of

the error depends on the disparity of the FEHM and component event times. For highly reliable

fault-tolerant system models, the error is signi�cantly smaller than the component failure rate

data errors.

The most crucial step in the HARP modeling process is to insure that M0 and M1 are

equivalent or acceptable approximations. When using HARP, the speci�cation ofM1 is a manual

process. However, XHARP automatically creates M1 from the user's full-Markov chain and

insures that the proper fault models are used and that no failure modes are dropped. Because

XHARP requires the speci�cation of the full-Markov chain, the size of the model is limited to

the user's endurance, which results in models of under 50 noncoverage states.

The HARP model generation capability, in contrast, is capable of modeling an enormous

number of states; however, insuring that no signi�cant failure modes are ignored in M1 requires

special consideration by the modeler when specifying the near-coincident failure model. (See

chapter 7.) Three multifault models are o�ered for the speci�cation of the near-coincident fault

rate to cover the majority of applications of practical interest. In section 2.7, these models are

called the ALL-inclusive, SAME-type, and USER-de�ned. The multifault models are exact and

automatically generated for N -plex systems when N � 4 and are approximations to higher order

systems. If greater accuracy is required for the higher system models, some manual intervention

is required by the user. Using a text editor to edit the ASCII �les generated in HARP is

necessary. Another alternative is to use XHARP, which provides an automated higher order

model generator. The speci�c models speci�ed by the user depends on the particular system

architecture and whether the modeler intends to achieve a conservative reliability/availability

result or a nonconservative one. Specifying the wrong multifault model to HARP during theM0

to M1 speci�cation can produce a nonconservative result because the incorrectly speci�ed
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multifault model can drop important failure modes fromM0. The user must understand howM0
is conceptually related to M1. (See chapters 3 and 7.)

Another issue of importance when considering the use of these models is the degree of

conservatism or nonconservatism produced by the use of the multifault models. The trade-

o� that the user must grapple within any modeling exercise is one of modeling complexity

versus computational accuracy. Because the HARP developers intended HARP to be applied

to practical systems, many mathematical techniques were used to reduce model complexity and

still provide useful results. Behavioral decomposition and the HARP multifault models were

selected to achieve this purpose. Another extremely useful model reduction technique is the

Markov model truncation scheme described in section 2.8. This technique is especially useful for

solving extremely large Markov models that can easily result from a modest looking fault tree.

The advantage of behavioral decomposition is that fault/error handling modeling, no matter

how complex the FEHM's and no matter how many FEHM's are included, contributes at most

two additional Markov chain states. The savings in computation for typical systems of interest

can be substantial and makes it entirely feasible to model intricate fault/error handling detail

even when the FEHM itself is non-Markovian as is the case for the Extended Stochastic Petri

Net (ESPN) FEHM model or when deterministic (constant) recovery times are speci�ed in a

number of HARP FEHM models.

The disadvantage of this scheme is that the disparity of the FEHM and FORM event times

a�ects the accuracy and hence the degree of conservatism of the HARP predictions. The farther

apart the event times, the more accurate the results become. Also as the event times approach

each other, the accuracy decreases but the deviation always accumulates on the conservative

side. For typical highly reliable systems, the time disparity is six or more orders of magnitude,

virtually insuring a result much more accurate than the input data accuracy could ever justify.

As an example of a worst case for disparity, a two triad system with processor failure rates of

10�4/hr showed a conservative deviation of about 80 percent when the event times were on the

same order of magnitude. Please note the signi�cance of this model: The recovery time is about
the same as the expected time to failure of one component. This system is hardly realistic, but

HARP still yields an acceptable result. As the time disparity increases, the accuracy increases.

One order of magnitude di�erence in time disparity produced a deviation of 6 percent and

0.5 percent with two orders di�erence. On considering that failure rate values can be in error

by hundreds to thousands of a percent (ref. 22), the relative deviation resulting from behavioral

decomposition even for this pathological example is minuscule.

The advantage of using HARP's multifaultmodels is that for the majority of practical systems

(up to four critically coupled units), an e�ective model is automatically generated by HARP.

For systems with more than four critically coupled units, HARP produces less accurate but

always conservative results. (See section 2.7 for selection of conservative fault models.) HARP's

multifault models are also easy to specify and no further (usually unavailable) data are required.

The user has two alternatives if the conservative deviation is unacceptable. Manual editing

of the HARP generated ASCII �les allows the speci�cation of detailed multifault models for

more accurate predictions. The XHARP program (see section 1.1) contains an automatic

model generation capability that includes a detailed multifault model that produces more

accurate coverage computations than HARP. The XHARP multifault model places no additional

computational load over HARP but requires more input data from the user (ref. 5). The trade-

o� of using these two extended techniques relates to the model size. XHARP requires a Markov

chain input speci�cation, which for large models can be tedious for the user to input. On the

other hand, HARP generates a large model from a fault tree that is relatively easy to specify, but

some �le editing is necessary to accurately model the more complex multifault model. When one

needs the modeling power of the HARP FEHM's, no other easier alternative presently exists.
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As stated previously, behavioral decomposition can also be applied to mixed-Markov models.
Although no theorem has yet been proven that guarantees a conservative result for this model,

a nonconservative result of a practical system has not yet been demonstrated, but caution is

advised. The following section describes the various steps necessary to completely specify a

system to be modeled by HARP.

2.5. Fault-Occurrence/RepairModel

The fault-occurrence/repair model contains information about the structure of the system

(how many components of what type and interconnected in what way) and about the fault arrival

and repair processes (how often does each component type fail and how long does it take to �x

it). This information can be entered either as a Markov chain or as a fault tree (in the case of

nonrepairable systems), depending on whether a state-space based for small models (limitation

is imposed by user willingness to input the model manually) or a fault tree representation of the

system (for large models) is more appropriate.

A Markov chain is entered as a state-transition rate diagram, in which each state represents

a particular con�guration of the system. Transitions between states represent units failing or

being repaired. A fault tree is a model that graphically and logically represents the various

combinations of events occurring in a system that can lead to system failure (ref. 33). The

fundamental logic gates of fault trees allowed by HARP are the and gate, the or gate, the k/n

gate, the inv gate, and the xor gate. A k/n gate is used when the occurrence of k or more

of n possible events cause failure. The basic events in the fault tree represent failure of the

components that form the system being modeled.

When the FORM is entered by the user for either a fault tree or a Markov chain, the

component failure rates are initially speci�ed in symbolic form as symbolic failure rate names.

Numerical values are requested later when harpeng is executed or in some cases by �face. This

scheme allows for the e�cient solution of the model for performing sensitivity or trade-o�

analyses when several sets of numerical data are examined. The speci�cation of symbolic failure
rate names should avoid the use of special characters as these can often interfere with the user's

operating system. In particular, do not use the symbols $ or &.

Four dynamic dependency gates are available for modeling sequence dependencies. Because

HARP automatically converts a fault tree into an equivalent Markov chain for solution (see

chapter 6), the addition of the dependency gates is a natural extension to the more common

combinatorial fault tree gates. Many applications have demonstrated their modeling power

(refs. 18, 19, 32, 26 to 28, and 34 to 36). Chapter 6 presents a mathematical description of the

dynamic gates for the user's in-depth investigation of powerful properties.

The functional dependency gate has one input, the trigger input, one or more dependent

events, and a normal output. (See �g. 5.) The input event can either be a basic event or the

output of some other gate. The dependent events are basic events that depend on the trigger

event. When the trigger event occurs, the dependent basic events are forced to occur. The

occurrence of any dependent basic event has no direct e�ect on the trigger event. A functional

dependency gate is useful when the occurrence of some event (say a node failure) causes some

other components to be unusable (e.g., sensors that can be connected to the node). For this case,

the sensors are considered to have failed (but no coverage model is invoked). The nondependent

output from the dependency gate re
ects the status of the trigger event. This output is provided

to enhance the drawing of large fault trees, and it can be used instead of the trigger input as an

input to some other gate to simplify the drawing of the tree.

The priority and gate is essentially an and gate with two inputs with the added restriction

that the input events have to occur in order. If the two inputs are A and B (�g. 6), then the
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priority and gate �res if both the input events occur and event A occurs before event B. The
gate produces no output if event B occurs before event A.

The cold spare gate has one primary input (the primary functional unit) and one or more cold
spares. (See �g. 7.) All inputs to the cold spare gate must be (possibly replicated) basic events.7

The gate �res when all input events have occurred, and the gate actually controls the failure
ordering of the alternate units. The active unit always fails stochastically while the alternate

7
A replicated basic event represents multiple failure events having identical failure distributions. Using this replication

notation signi�cantly reduces HARP generated Markovmodels.
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units are precluded from failing until they become operational. When the primary input unit
fails, it is replaced by the �rst designated alternate unit. The alternate functional units (or

cold spare units) are not allowed to fail when they are dormant.8 However, this rule has one

exception. If a cold spare is functionally dependent on another component (i.e., it is a dependent

event of a functional dependency gate), the cold spare may actually be unavailable (because of

the occurrence of the trigger event) when needed. Hence, a cold spare gate does not prevent one

of its spares from being caused to fail by a functional dependency gate. Note also that a spare

component can be shared by two or more cold spare gates (i.e., pooled spares are possible).

The sequence-enforcing gate9is similar to the cold spare gate but has some unique, important,

and subtle properties not present in the cold spare gate. The sequence-enforcing gate controls

the ordering of events in a manner similar to that of the cold spare gate. That is, the input

events are constrained to occur in the left-to-right order in which they appear under the gate

(i.e., the leftmost event must occur before the event on its immediate right, which must occur

before the event on its immediate right is allowed to occur, etc.). There can be any number of

inputs (see �g. 8), the �rst of which can be a (possibly replicated) basic event or the output of

some other gate. All inputs other than the �rst are limited to being (possibly replicated) basic

events. The sequence-enforcing gate di�ers from the cold spare gate in the way they treat shared

events. Although the speci�cation of the gate is straight forward, its modeling implications are

not. The e�ect of failures associated with this gate can be local (relative to the component) or

global (relative to the entire Markov chain). In some cases, the sequence-enforcing gate can be

used to describe state-dependent FEHM's in a fault tree. (See section 4.7 for the concepts and

chapter 6 for an example.)

A1
A2

An

SEQ

Ai+1 is only allowed
to occur after Ai

Figure 8. Sequence enforcing gate.

Note the restrictions on the inputs of the four dynamic gates previously described. All inputs

to the cold spare gate must be (possibly replicated) basic events. In the functional dependency

gate, the trigger input can either be a basic event or the output of some other gate, but the

dependent events must be (possibly replicated) basic events. The priority and gate has no

restrictions on the two inputs. They can be basic events or the output of some other gate. Thus,

two or more priority and gates can be cascaded for more than two sequence dependent inputs.

In the sequence-enforcing gate, all inputs except the �rst must be (possibly replicated) basic

events. The �rst input can be a basic event or the output of some other gate. Like priority and

gates, sequence-enforcing gates can also be cascaded. Both gates are cascaded from the left.

Note that the gates cannot be cascaded from the right. (See �g. 9.)

The inv and xor gates were also implemented. The inclusion of these gates into a fault

tree produces a noncoherent model that can cause the inexperienced modeler to generate

8 This modeling assumption is often useful to arrive at a best case scenario to give an upper bound on reliability.
9 In earlier publications, this gate is also called a sequence gate. The word enforcingwas added to emphasize its function.
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unexpected results. For example, if the top gate in a fault tree is an inv gate, HARP reports
reliability probabilities (numerics) as unreliability probabilities in the output �le. The values
are correctly computed, but the inv gate alters the meaning of the reporting labels. These two
additional gates give the user an extensive modeling capability; for example, researchers at Duke
University proved that the set of HARP gates establishes a mapping into the entire noncyclic
(nonrepairable) homogeneous Markov chain state space. (See ref. 36.)

Using HARP as a combinatorial fault tree solver without FEHM's is computationally
ine�cient, although convenient for the user accustomed to HARP. When a fault tree contains
sequence dependencies, HARP provides a unique solution technique that can be di�cult or
computationally expensive to achieve otherwise. By using the new state truncation option
(section 2.8), these applications become considerably more practical. Fault tree input is
particularly useful for large fault occurrence models especially if fault/error handling is included.
Because HARP converts a fault tree representation into a Markov chain, the user can always
alter the generated Markov chain to include behavior not captured by the fault tree. State
n-tuple notation is provided as an option to aid the user in identifying the Markov chain states.

Mission time is assumed by HARP to have the units of hours even though most fault/error
handling models use a time scale of seconds. The user must therefore express the FEHM time
units as speci�ed by HARP. Chapter 3 provides more detailed information on how to input the
two FORM types into HARP.

2.6. Single Fault/Error Handling Model (FEHM)

The general form of the single FEHM is shown in �gure 10. The detailed fault recovery
models capture in a few parameters the sequence of events that occur within the system once
a fault occurs. (See �gs. 11 to 13.) A fault can be permanent (always present and capable
of producing errors, e.g., a broken connection), transient (present for only a short time, e.g.,
a glitch in the power line), or intermittent (always present but not always active, e.g., a loose
connection).

All FEHM's de�ned later in this section except the CARE III FEHM (section 2.6.7) use time
units of seconds to emphasize that these events are fast events. The CARE III FEHM uses time
units of hours to be consistent with the program CARE III.

The FEHM is a connected group of fast states that is replaced by a branch point automatically
in HARP. Its general structure is a single-entry, (up to) four-exit model, that is entered when a
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Figure 10. Fault/error handling model.

fault occurs. The exits represent possible outcomes of the attempted system recovery. Transient
restoration R is the event of correct recognition of and recovery from a transient fault before a
second interfering fault occurs. Permanent coverage C is the event of successfully recon�guring
the system to eliminate a permanent, intermittent, or transient fault (mistaken as permanent),
before a second fault occurs. Single-point failure S represents the event of a single fault causing
the system to fail without the interference of a second fault. The near-coincident (ref. 37) fault
exit N is taken when a second dependent fault10 occurs before another exit is reached. The
FEHM models are described as three exit models by the user (the R, C, and S exits). The
near-coincident failure exit is automatically added by the HARP program.

Many choices are available for the speci�cation of the FEHM model, ranging from constant
exit probabilities (VALUES FEHM) to a detailed ESPN (ref. 38) model. Some FEHM's are
o�ered to simplify the modeling and data speci�cation process as much as possible. The
simple models such as the values probabilities and moments, probability and distributions, and
probabilities and empirical data are provided for users who want to perform sensitivity analyses,
perhaps early in the design stage when reliable data are unavailable. The same models can be
used later in the design process when hardware exists and data can be measured or estimated
as probabilities and recovery time distributions. The more complex FEHM models (ARIES,
CARE III, and ESPN) are superset models of the simpler ones and are useful for studying the
details of fault handling and predicting the e�ects of various fault recovery behavior on system
reliability/availability.

Parameters of a FEHM are user-speci�ed and thus allow 
exibility even while the same FEHM
type is used. The tutorial gives examples of the use of these models and their typical values
(vol. 2 of this TP). The user can choose a di�erent FEHM type for each di�erent component
in the system. Selecting a di�erent FEHM type (or di�erent parameters for the same FEHM
type) for a speci�c component type in the model is possible with the overriding FEHM option.
(See section 4.7.) The chosen FEHM model is solved in isolation, and the probabilities for each
of the four exits are derived. These probabilities are re
ected in the FORM model that is then
solved for the reliability/availability of the system. Some options for the fault/error handling
model are shown in �gures 11 to 13, and all are described in the following sections.

10 Both faults are stochastically independent, but the second fault (called an interfering fault) was previously speci�ed by

the modeler to interact with the �rst to cause system failure.
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2.6.1. No Coverage Model

The NONE option speci�es no coverage model. This option is chosen if the user wants to
assume perfect fault coverage for a particular component type.

2.6.2. Values Model

For a particular component type, the user may want to allow for imperfect fault coverage but
not use a detailed coverage model. In this case, the user can input the coverage values for R, C,
and S exits directly. No near-coincident faults are considered for those transitions having values
the same as the coverage model type.

2.6.3. Probabilities and Moments Model

The probabilities and moments model allows the user to enter the probability that each of
the three exits (R, C, and S) are reached. These three exits represent mutually exclusive events;
thus, their probabilities sum to one. For each nonzero exit probability, the user is asked for
the �rst three moments of the time (in seconds) required to reach the particular exit (given
that the exit is reached). The probability of reaching the fourth (near-coincident fault) exit
is derived from the given moments and the rate of occurrence of dependent near-coincident
faults. (See section 2.7.) When this option is used, the FEHM can be visualized to be a single
semi-Markovian (fast) state that is reduced to a branch point by HARP aggregation methods.

2.6.4. Probabilities and Distributions Model

Under this option, the user speci�es an exit probability for the transient restoration,
permanent coverage, and single-point failure exits. For each nonzero exit probability, a
distribution of time to exit is speci�ed as one of the following: constant, uniform, exponential,
hypoexponential, hyperexponential, gamma, and Weibull. These probabilities and distributions
are to be given without regard to the occurrence of a second, near-coincident fault, with a time
unit of seconds. The coverage factors (re
ecting the e�ects of near-coincident faults) are then
automatically derived from this data. As for the previous option, the FEHM can be visualized
as a single semi-Markovian (fast) state that is reduced to a branch point by HARP aggregation
methods.

2.6.5. Probabilities and Empirical Data Model

The probabilities and empirical data model is similar to the previous two in that the exit
probabilities are given for the three exits of the model. For each nonzero exit probability, the
user provides a histogram listing of the time to exit, again without regard to the occurrence
of a near-coincident fault. For each x; y pair listed in the histogram �le, the x-value refers to
the time step in seconds, and the y-value to the probability of reaching the exit during the
associated time interval. The probabilities are speci�ed as a probability mass function (not
a cumulative distribution) and hence must sum to one. The coverage factors (re
ecting the
e�ects of near-coincident faults) are then automatically derived from the data and are used in
subsequent calculations. As for the last two options, the FEHM can be visualized as a single
semi-Markovian (fast) state that is reduced by HARP aggregation methods to a branch point.

2.6.6. ARIES Transient Fault Recovery Model

The ARIES transient fault recovery model (ref. 39) represents a multiphase recovery process
that executes NP successive recovery phases. (See �g. 11.) Transition to the next phase takes
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place if the present phase is not e�ective; the duration of each phase is constant. The recovery
process terminates and normal processing begins if successful recovery is achieved in the present

phase. If transient recovery is unsuccessful after all NP phases, then a permanent recovery

process is initiated.
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Figure 11. ARIES fault recovery model.

For the ARIES model, the user is asked for the number of phases (�11) and the constant

duration and e�ectiveness of each phase. The e�ectiveness of phase i is described by the

probability of successful transient recovery PRi and the probability of the need for the next

phase of transient recovery PEi. The probability of system crash from phase i is then given

by PFi, where PFi = PEi� PRi� PEi+1. The time unit for this model is seconds. These

parameters are combined together with the transient fault duration to determine whether the

transition to the next phase takes place, that is, to determine whether the present phase has been

successful. One other parameter is entered|the catastrophic fault recovery probability 1� CR.
This probability is assigned to a critical fault that causes the entire system to fail because the

system was unable to recover from it. The tutorial (vol. 2 of this TP) provides a detailed

explanation.

2.6.7. CARE III Coverage Model

Another option for the FEHM is a Markov version of the CARE III single fault model (ref. 40),

shown in �gure 12. The CARE III coverage model can be used to model permanent, transient,
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and intermittent faults. In the active state, a fault is both detectable (at rate �) and capable of
producing an error (at rate �). Once an error is produced, if it is not detected, it propagates to
the output (at rate �) and causes system failure. If the fault (error) is detected (probability q),
the faulty element is removed from service with probability PA or PB. With the complementary
probabilities, the element is returned to service following the detection of the fault. (This
action is based on the belief that the detected fault was transient.) Note that both states AD
(active detected) and BD (benign detected) are instantaneous states. The model is internally
solved analytically for the probability of reaching each exit and for the Laplace transform of
the distribution of the time to each exit. Subsequently, the e�ect of a near-coincident fault is
incorporated by means of equations (2), (3a) and (3b) in reference 41.
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Figure 12. CARE III coveragemodel.

The user is asked for the probabilities for each of the three fault types (permanent, transient,
and intermittent) and is asked to parameterize an instance of the CARE III model for each type
that is assigned a nonzero probability. For the permanent model, �, �, and PB are zero, and
for the transient model, � is positive and � is zero. Because q, PA, and PB are probabilities,
they lie between 0 and 1; because �, �, and � are rates, they are nonnegative. CARE III is the
only FEHM model for which the time unit is hours. The three models are solved individually
and are combined according to the assigned probabilities for each fault type.

2.6.8. ESPN Model

The HARP ESPN model is discussed in references 38 and 41 to 43 and shown in �gure 13.
It models three aspects of a fault recovery process: physical fault behavior, transient recovery,
and recovery from a permanent fault. The fault behavior model captures the physical status
of the fault, such as whether the fault is active or benign (if permanent or intermittent) and
whether the fault still exists (if transient). Once the fault is detected, it is temporarily assumed
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to be transient, and an appropriate recovery procedure can commence. The transient recovery
procedure can be attempted more than once. If the detection-recovery cycle is repeated too
many times, a permanent recovery procedure (recon�guration) is invoked. If the recon�guration
is successful, the system is again operating correctly, although in a somewhat degraded mode.

Fault

Active
IntermittentPermanent Transient

T2 T3 T4

T5

T1

p t
i

Transient
Restoration

Benign
Intermittent

Transient
Gone

T6 T7

1 – d

d

q

T9

T10

Counter

Detected
Error

Locate

Fault
Exists

Transient
Recovery

T8

T11

T12

T13

k

k
_

1 – l
l

T14

Reconfigure

Permanent
Coverage

Single-
Point

Failure

1 – q

1 – r

r

S

C

R

Figure 13. HARP ESPN single fault model.

The user inputs to this model are the distribution of time (T1{T14) for each activity and any
associated parameters for the distribution, with a time unit of seconds. (The distributions need
not be exponential.) Also requested are the probabilities of correct error detection (q), fault
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detection (d), fault isolation (l), and recon�guration (r). The user must specify the number of
attempts at transient recovery, the percentage of faults that are transient, the percentage of faults
that are permanent, and since this model is simulated for solution, the desired con�dence level
and acceptable percent error. The con�dence level can be between 60 percent and 98 percent,
and the acceptable percent error can be between 1 and 100. (A moderate error requirement in
the range of 2 to 5 percent is suggested.)11 The distributions available for individual transitions
in the ESPN model are constant, n-stage Erlang, exponential, log-normal, normal, Rayleigh,
uniform, and Weibull. For more information on these distributions, see Trivedi (ref. 44).

The ESPN is the only FEHM simulated for solution. During the simulation, a statistical
analysis of the simulation data is performed. The con�dence intervals about the exit probabilities
are generated and compared with the allowable error. If the con�dence interval is too wide, the
number of trials is doubled. When the simulation has reached the desired accuracy, the results
are appended to the parameter �le. If the user does not change the inputs to the ESPN model in
this �le, then the �le can be used over again with the same simulation results, thereby avoiding
the simulation run each time. However, if the user has manually changed the inputs with a
text editor, the previous simulation results must be discarded; that is, the lower portion of the
parameter �le must be deleted. Rerun harpeng. (See vol. 2 of this TP.)

The simulation of the model uses a random seed value that is derived from the system time.
This method helps to assure a random simulation. However, it also implies that the simulation
runs are not exactly reproducible. Subsequent simulations cannot match earlier runs exactly,
but multiple runs should agree to within the accuracy and con�dence requested. For the Convex
computing platform, the user must uncomment the line SEED = 0 and make other changes in
the harpsim source �le and recompile the code.

For this model, the coverage factor for transient restoration, is the probability of a token
reaching the place labeled Transient Recovery. (See �g. 13.) Coverage is the probability of a
token reaching the place labeled Permanent Recovery and single-point failure is the probability
of a token reaching the place labeled Single-Point Failure. The fourth factor, corresponding to
the N exit and representing a near-coincident fault, is derived from the relative passage time to
the three exits, and is discussed in section 3.2.1. For a more detailed description of the ESPN
model, refer to the tutorial (vol. 2 of this TP).

2.7. Multifault FEHM Near-Coincident Fault Rate Speci�cation

HARP provides a number of detailed single-fault models. However, for modeling coexisting
synergistic multiple faults, HARP only provides three simple computationally fast automatically
generated multifault models for use with behavioral decomposition. The detailed modeling of
multiple faults can be computationally expensive and tedious to specify because the modeling
requires the user to input data that are typically unavailable.

The advantage of using the simple multifault HARP models is a signi�cant reduction in model
and user input data complexity, because the models are computationally fast and automatically
generated. The disadvantage is a reduction in accuracy, which experience has demonstrated is
typically acceptable (refs. 23 to 26, 41, and 45).12 The increased deviation resulting from the use
of the simple multifault models is always positioned to produce a conservative result as long as
the signi�cant system failure modes are properly modeled. The amount of deviation and hence
degree of conservatism depends on the system. A measure of the degree of conservatism can
often be determined from HARP's optimistic simple bound.

11 See warning C155 in appendix B.
12 Di�erent reliability programs or ordinary di�erential equation solvers were used to compare the reliability of these

systems.
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The optimistic simple bound is always correct for the instantaneous jump model; however,
when the optimistic simple bound is correct with respect to the original model, which occurs in

most cases, the optimistic simple bound can be used as an error bound. (See section 3.4 for a

discussion of upper and lower bounds.)

The near-coincident fault rate (the rate at which catastrophic faults occur for each fault/error

handlingmodel) is determined from the system structural model automatically by program �face.

The HARP aggregation technique automatically produces a conservative estimate of system

reliability/availability provided that the correct multifault model is used and no increasing

transition rates appear with increasing system component failures in the user's model. Such

system models can be e�ectively modeled with HARP's behavioral decomposition but not

automatically. In such cases, the user needs to modify the appropriate ASCII �le for near-

coincidence faults. The �le is one of the following: MODELNAME.ALL, MODELNAME.SAM,

or MODELNAME.USR.

A second option is for the user to use the AS IS Markov chain model to create new complex

multifault models, but the cost of the increased computation and user e�ort can become

prohibitive for all but simple system models. This method avoids the use of instantaneous

coverage approximations and produces greater accuracy at greater execution times. Recovery

behavior can appear to require a Markovian submodel; however, non-Markovian recovery can

be approximated with the method of stages (refs. 44, 46, and 47). Another option is to use

XHARP, which automatically generates the model from a user-speci�ed full model.

HARP o�ers three multifault models: ALL-inclusive, SAME-type, and USER-de�ned. The

application for the ALL-inclusive (ALL) model is the easiest to describe and is comparable with

the SAME-type (SAME) in ease of use. When the ALL model is selected, the near-coincident

fault rate is based on all pairs of system faults. If the system is composed of a number of

di�erent components, each with a unique failure rate, the ALL model will probably overestimate

the near-coincident fault probability. The degree of over estimation depends on the system

architecture and can be minor or signi�cant. (See section 1.2 and chapter 7.) A rough estimate

of the degree of conservatism can be determined by using the SAME or possibly the USER-

de�ned (USER) models. These later models typically give an optimistic result when the system

components have di�erent failure rates, but the result is not guaranteed to be optimistic. When

the system is composed of components with the same failure rates, the SAME model computes

a near-coincident fault rate comprised of all pairs of system components with the same failure

rate.13 Thus, HARP produces a guaranteed conservative result. With the USER model, the

user speci�es speci�c pairs of synergistic system faults that constitute a near-coincident fault

condition. The conservativeness of the USER model depends on the system architecture.

2.7.1. ALL-Inclusive Near-Coincident Fault Rate

Using the ALL model produces a conservative result if typical failure rate and recovery rate

data are used, that is, no increasing transition rates with increasing system component failures.

If these rates are used, editing the ASCII �le MODELNAME.ALL is necessary to arrive at an

accurate result. Because all pairs of failures are considered near-coincident by this model, the

degree of conservatism can be large for certain systems. (See chapter 7.) Often, the optimistic

simple bound can be used to quantize the conservative deviation. (See section 3.4.) Also, if the

user is in doubt as to which multifaultmodel to use, the ALL model provides a quick conservative
result that can provide a baseline for comparison of further re�ned models. HARP automatically

generates the required multifault models as follows.

13When all system components have the same failure rate, the ALL and SAME models are identical in e�ect.

27



Conservatively, we assume that a second near-coincident fault anywhere in the system (while
attempting to handle the �rst fault) causes immediate system failure. This multifault model is

simple to specify. The procedure for determining the near-coincident fault rate is described as

follows.

Let the exit rates of source state i be
P

kr�r and of destination state j be
P

`r�r. Then, a

FEHM placed on an arc with rate kI�I has a near-coincident fault rate (NCFR) given by the

following:

NCFR =

2
4X

r=I

max(kr; `r)�r

3
5+max(kI � 1; `I)�I

Figure 14 o�ers some insight for the interpretation of the equation for NCFR for each
multifault model in this section. The NCFR expressions are determined automatically in

program �face. If a rate parameter cannot be parsed because it contains unknown variables

or added constants, �face uses a look-ahead method to calculate all rates. This computation is

provided in lieu of program termination to help the user resolve the problem. For the previous

state declarations, the all-inclusive near-coincident fault rate (based on the look-ahead method)

is simply the sum of the outgoing arcs of the destination state:

NCFR =
X

`r�r

When only the sum of the outgoing arcs is considered, a warning is issued stating that

the results may not be conservative. The ALL-inclusive model is particularly useful for

approximating a multifault model where nonfailure transitions emanate from a recovery FEHM.

An example of this application can be found in chapter 7.

i I1 NCF

k1λ1

knλn

j

l1λ1

lmλm

NCFRkIλI

lIλI

Figure 14. NCFR computation.

2.7.2. SAME-Type Near-Coincident Fault Rate

We can assume that only near-coincident faults of the same component type cause system

failure (while attempting to handle a single fault). This multifault model is useful when a system

is composed of subsystems where the components in one subsystem have identical failure rates

but di�er from components in another subsystem. This subsystem also has identical failure

rates, and all of its components are synergistically coupled as near-coincident faults within
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the subsystem but not across other subsystems. HARP automatically generates the required

multifault models as follows.

Again, let the exit rates of source state i be
P

kr�r and the exit rates of destination state j

be
P

`r�r. For a FEHM placed on an arc with rate kI�I, we have a near-coincident fault rate

given by the following:

NCFR = max(kI � 1; `I)�I

The near-coincident fault rate expressions are determined automatically in program �face. If

a rate parameter cannot be parsed because it contains unknown variables or added constants,

�face uses a look-ahead method to calculate all rates. For these state declarations, the same-type

near-coincident fault rate (based on the look-ahead method) is the sum of the same-type rates

emanating from the destination state:

NCFR =
X

`I�I

When only the sum of the outgoing arcs is considered, a warning is issued stating that the

results may not be conservative. Unlike the ALL model, the SAME model can automatically

drop failure modes for certain system models. The user is cautioned to insure that no important

failure modes are dropped; otherwise, a nonconservative result can be given. (See chapter 7.)

2.7.3. USER-De�ned Near-Coincident Fault Rate

For some models, the user may want to de�ne explicitly, for each component, which other

components can interfere with fault recovery. In this case, the user-de�ned near-coincident fault

rate for the FEHM between operational states depends on the user input. For example, suppose

we have a system consisting of three processors, P1, P 2, and P3 (all distinct with unique failure

rates), a voter V , and a bus B. Suppose further that the processors are connected (from the

monitoring point of view) in a ring network so that processor P1 detects errors and performs

recovery for processor P2, processor P2 likewise monitors P3, and P3 monitors P1. Thus,

a failure in processor P1 can interfere with recovery in processor P2. Similarly, a failure on

processor P2 can interfere with recovery in P3. Because the processors are connected by the

data bus, a bus failure can interfere with recovery on any of the processors; the bus does not rely

on any other component for recovery. The voter is self-checking; no faults interfere with recovery

from voter faults. This behavior cannot be captured by the all-inclusive or the same-type fault

rates. It is captured by declaring that recovery in P1 depends on P3 and the bus, recovery

in P2 depends on P1 and the bus, and recovery in P3 depends on P2 and the bus. HARP

automatically generates the required multifault model as follows.

Let the exit rates of source state i be
P

kr�r and of destination state j be
P

`r�r. Also

let DI be the set of interfering component types for component type I . Then, a FEHM placed

on an arc with rate kI�I has a near-coincident fault rate given by the following:

NCFR =

2
4 X
r=I;r2DI

max(kr; `r)�r

3
5+max(kI � 1; `I)�II� (I 2 DI)

where I� is the indicator function that takes on value 1 if the subscript expression is true and 0

otherwise.

The near-coincident fault rate expressions are determined automatically in program �face. If a

rate parameter cannot be parsed because it contains unknown variables or added constants, �face
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uses a look-ahead method to calculate all rates. For these state declarations, the user-de�ned
near-coincident fault rate (based on the look-ahead method) is given by the following:

NCFR =
X

r2DI

`r�r

When only the sum of the outgoing arcs is considered in determining near-coincident fault

rates, a warning is issued stating that the results may not be conservative. Like the SAME

multifault model, the incorrect use of the USER model could produce a nonconservative result

when important failure modes are dropped. (See section 3.3.2.)

2.7.4. Exact Speci�cation of Near-Coincident Fault Rates

The ALL, SAME, and USER multifault models are provided to automatically generate the

near-coincident fault rates. This automatic capability is extremely useful for all but trivial

models; however, this convenience has a trade-o�. The automatic multifault model is not

capable of generating exact near-coincident for all possible Markov chains. In some cases, an

approximating model such as the ALL model must be chosen to insure a conservative result.

The user has an alternative approach if exact rates are desired and cannot be achieved with

the automatic model. The user can derive these rates manually and enter them for HARP

computation by editing the MODELNAME.ALL, MODELNAME.SAM, or MODELNAME.USR

�les. (See section 4.2.) These ASCII �les are readable and easily modi�ed.

Section 4.2.7 shows the format for the near-coincident fault rates. The expressions for the

rates depend on the Markov chain of interest. Section 3.2.1 gives some insight into how the

near-coincident fault rates are related to the coverage, Ci, parameters.

2.7.5. Multiple-Run Near-Coincident or No Near-Coincident Faults

In �face or harpeng, the user can ignore any near-coincident faults. By specifying no near-

coincident faults in �face, the system model is much smaller. This selection may be necessary

for extremely large models. (PC HARP 16-bit version does not allow the speci�cation of near-

coincident fault rates because of DOS's 640K memory limitation. Other versions do not have

this restriction.) Otherwise, if the user wants to exercise several di�erent near-coincident fault

type options, none can be speci�ed during the execution of harpeng.

Thus, whether the user chooses the Markov chain or fault tree option for specifying the system

structure, the near-coincident fault rates for each instance of a fault/error handling model are

generated automatically. During execution of �face, the user is asked whether the all-inclusive,

same-type, user-de�ned or no near-coincident fault rate should be used and what combinations

of these, if any, are to be used in successive harpeng runs, for example, ALL, SAME, USER. In

this way, all options can be exercised during di�erent harpeng execution runs. A discussion of

the various near-coincident fault rate options can be found in volume 2 of this technical paper.

As previously mentioned, an alternative is to model the systems with the AS IS Markov

solution technique. This choice produces greater accuracy at greater execution times. Recovery

behavior can appear to require a Markovian submodel; however, non-Markovian recovery can

be approximated with the method of stages (refs. 44, 46, and 47).

2.8. Truncation of Model Entered as Fault Tree

Frequently, even for a simple model, a large number of states and transitions are produced

upon conversion from a fault tree to a Markov model. This largeness problem is encountered
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despite the use of behavioral decomposition. To solve a large model, HARP allows the user
to truncate the model after a total of K component faults (basic event failures) have occurred

and HARP then computes bounds for the model results (ref. 32). These bounds encompass

the untruncated unreliability/unavailability of the system. Because most systems are designed

to tolerate at most three faults and because the probability of having more than three faults

occurring during certain missions is extremely small, a truncation level of three often produces

values for the bounds that agree up to the third and fourth decimal places. The higher the

truncation level, the tighter the bounds and the greater the computational time. Typically, the

truncation level is selected to be equal to or one greater than the number of faults the system

was designed to tolerate. A truncation level can be speci�ed when the fault tree FORM is

used. A truncation setting of K = 3 often allows solution of a system with up to 271 equivalent

states (a fault tree with 71 basic events). The execution time for such a truncated model can be

surprisingly low while providing acceptable accuracy (ref. 48).

We integrate the use of fault trees and state truncation in the generation of a Markov model

in the following way. Because a fault tree is often a more compact representation of the system

than a Markov model, the user is given the option of entering the system as a fault tree. The fault

tree is then converted to a Markov model automatically. In the conversion process, all states

of the Markov model reachable by each number of component faults are generated together (all

states reachable by one fault, then all states reachable by two faults, etc.) (ref. 49). The user can

specify a number of total component faults beyond which the Markov model is to be truncated.

The state generation process then proceeds in a normal fashion only as far as the number of

faults speci�ed by the user. Once this number of faults is reached (the truncation line) the state

generation process changes. All transitions from the states at the user-speci�ed truncation level

that would lead to \up" states in the full-Markov model are directed to special dummy states

in the truncated model. Each dummy state represents an aggregation of all states in the full

model that would be reachable along the transition leading to that dummy state. These dummy

states are consequently called truncation aggregation (TA) states. Transitions that would lead

to failure states in the full model lead to failure states in the truncated model as well.

In general, the states represented by a TA state can include both system operational states

and system failure states. An optimistic (upper) bound on the system reliability can be obtained

by assuming that all states represented by the TA states are up states. Similarly, a pessimistic

(lower) bound on the system unreliability can be obtained by assuming that each TA state is

forced to be a system failure state (TAtr).

As the truncation level increases, more states appear explicitly in the Markov model instead

of being represented in the TA states. Thus, as the truncation level increases, states that were

forced to be failure states are now treated as operational states, which they really are in the

full model. Hence, a model with a greater truncation level would more accurately represent the

full model than would a model with a smaller truncation level. We would therefore expect the

truncation bounds of the model to become tighter as the truncation level increases. In the limit,

as the truncation level increases, the truncated model becomes identical to the full model and

the bounds from the truncated model converge to the exact reliability value obtained from the

full model.

2.9. FORMModel Parameters

Once the FORM and FEHM submodels and the near-coincident fault rates (if any) have been

speci�ed and the model is ready to be solved, the user needs to specify the parameters used in

the model.

Because the user may not know the exact values of the input parameters, HARP accepts as

input a nominal value and a variation on all input parameters. The nominal value is used for the
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unreliability prediction, and the variation about the nominal value is used in an approximate
model to generate bounds about the predicted unreliability. The various FORM parameter types
that can be speci�ed are described in the following sections: Non-Markovian models that involve
Weibull distributions and warm or cold spares are best solved with MCI-HARP (refs. 18 and 19).

2.9.1. Failure Rate Speci�cation

When the FORM model is being built, a symbolic failure rate variable (i.e., lambda or mu)
is used for each component type. At run time, this symbol is de�ned as either a constant
failure rate or a Weibull failure rate. Constant failure rate refers to the rate associated with
the exponential time to failure distribution. Weibull failure rate refers to the rate associated
with the Weibull failure distribution. The Weibull failure rate has two common forms; both are
available in HARP. These two forms are de�ned as follows:

h(t)= ��t
��1

h(t)= �
�
�t
��1 = ���t

��1

The �rst form is as de�ned in reference 44 and the second is as used in the CARE III
package (ref. 40). When a Weibull failure rate is used to model the failure of a component,
the resulting solution is very slow because the time-dependent transition rate matrix must be
reevaluated at each time step. (MCI-HARP can accelerate the solution signi�cantly for large
systems.) Also, the bounds computations (using the simple model and parameter variations)
are not available when a Weibull failure rate is used. However, the user can still truncate the
model (see section 1.4) and generate truncation bounds that enclose the unreliability. If the user
tries to model systems with cold or warm spares (i.e., those whose failure rates change when
switched into operation) or mixed Weibull and constant failure rates, HARP issues a warning
that the user is violating the inherent Markovian modeling conditions (ref. 7).14 Execution of
the code proceeds to completion; however, the warning is listed in the results �le as well as on
the screen. (See chapter 7 for details and appendix D for warning messages.)

2.9.2. Repair Rate Speci�cation

When the system being modeled is repairable, the user needs to specify the value of the repair
rate at runtime. The evaluation of parametric bounds is not allowed for repairable systems unless
an absorbing state exists. If any failure rate speci�ed for a repairable system is Weibull and a
constant failure rate is also speci�ed, meaningless results can be produced. (See chapter 7.) A
warning is issued in this case.

The user is reminded that a nonhomogeneous Markov chain has one time variable that is
the global clock and is initiated at mission time zero to be zero. Repairable units with Weibull
are subject to the same clock; thus, Weibull failure rates are not reset to time zero when repair
is completed. If the user wants to reset the clock to time zero or some other time, then a
more powerful model solver is required as the resulting model is non-Markovian. MCI-HARP is
designed to cover such models.

2.9.3. User-Speci�ed Coverage Parameters

If no FEHM's are used in the system being modeled, the user can specify coverage parameters
during runtime. These parameters can be the coverage factor C, the transient restoration
factor R, and the single-point failure factor S.

14 A cold Weibull spare is precluded from failing even though the component failure history is reset to mission time zero.

This feature can be useful as an optimistic estimate.
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Chapter 3

ModelSolution

3.1. Conversion of Fault Tree to Markov Chain

If the FORM is a fault tree, it is internally converted to a Markov chain for solution after
it has been input to HARP. Figure 15 is an example of a fault tree for a system with three
processors and two memory units. When using textual HARP, the user normally labels a fault
tree with unique node labels. The node labels are assigned to basic events, gates, and the FBOX
symbol, which represents the system failure events. The order of specifying the node values is
not important, but uniqueness is. The GO program automatically assigns the node values.

FBOX Node 6

Node 5

Node 4

2*23*1

Node 3

Node 2Node 1

Dictionary File

Symbolic
Failure
Rate

FEHM
File Name

Logical
Name

Component
Type

Lambda
Mu

Fehm.car
None

Processor
Memory

1
2

Figure 15. Three-processor two-memory systemdictionary �le and fault tree.

While inputting the model, the user is requested to create a dictionary �le that is associated
with the fault tree model. The contents of the dictionary �le are shown in �gure 15 and are
associated with the fault tree in the same �gure. In this example, the user entered the information
in the last two rows of the �le, with the exception of indices 1 and 2. The program assigns
these indices to the component logical names (symbols $ and & are not allowed)15 in the user
inputs. The indices are used to simplify the notation of identifying the component types in
the fault tree basic events. In �gure 15, these are shown in the fault tree as the numbers to
the right of the * symbols. For node 1, the 3*1 means that there are three identical type one
components (processors) with the same failure rate symbol Lambda and FEHM described by
the �le, Fehm.car. When basic events are identical replications of a component type, the 3*1
notaton signals the program to simplify the Markov model by specifying one failure rate symbol
instead of three separate ones. In �gure 16, the e�ect of the 3*1 notation is to assign the failure
rate 3*� to the transition from (3,2) to (2,2). The user must di�erentiate component type indices
from node indices. Any component type index can be assigned to any node, uniqueness is not
required; however, uniqueness is required for the node indices.

The fault tree in �gure 15 is converted by HARP into the Markov chain shown in �gure 16. All
combinations of basic events that leave the system operational are enumerated; each combination
becomes a state in the Markov chain. Note that the basic event * notation has reduced the

15
Avoid special characters because they often interfere with the operating system.
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Figure 16. Three-processor two-memory systemMarkov chain.

number of state combinations. The user does not have to delineate all possible combinations,

only those that are required. In this model, 32 combinations are possible, but only 8 are required.

Exhaustion of redundancy failure states are also generated.

Also note that only a nonrepairable system can be speci�ed by means of a fault tree. (Fault

tree models with repair have not yet been developed.) To model systems with repair for

availability prediction, the user must either input the model directly as a Markov chain or

specify a fault tree model and then subsequently modify the Markov chain MODELNAME.INT

�le to include the repair transitions with a text editor. For details of the algorithm used for

conversion, see chapter 6 and reference 49.

3.2. Modeling Imperfect Coverage

The possibility of imperfect fault coverage is automatically incorporated into the FORM

model Markov chain as follows. Through the dictionary, each component type in the system can

have associated with it a fault/error handling model that describes the recovery behavior of that

particular component. The three-processor two-memory system shown as a Markov chain in

�gure 16 is used to demonstrate the idea of imperfect coverage. Components of type 1 represent

the processors, one of which must be operational for the system to remain up. Likewise, one

of component type 2 (the memories) is necessary for operation. Processors fail with rate �

and memories with rate �. For our example, the states are labeled with a pair of numbers|

the �rst signifying the number of operational processors and the second satisfying the number

of operational memory components. Once the number of processors is exhausted, state F1 is

entered. Once the number of memory components is exhausted, state F2 is entered. If the user

has speci�ed coverage, the HARP program automatically places a FEHM on the appropriate

arcs, as shown in �gure 17. HARP prompts the user for dictionary information to de�ne the

FEHM model to be used for a processor failure|this model is used for FEHM numbers 1, 2,

6, and 7. The FEHM model for memory failures is used in FEHM numbers 3, 4, and 5. Thus,

the contents of box 1, 2, 6, and 7 are identical but may di�er from the contents of box 3, 4,

and 5, which are also identical to each other). (However, the user may override a FEHM on a

speci�c arc; see section 4.6.2 and chapter 7.) The di�erence in the FEHM's (i.e., why they are

numbered 1 to 7 rather than just 1 and 2) is in the near-coincident fault rate used to calculate

the N 's.
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3.2.1. Automatic Incorporation of Coverage Models

The FEHM models are solved in isolation for the exit probabilities for the three exits
(R, C, and S) and for some measure of time to exit. The probabilities are then adjusted
according to the probability of an interfering (near-coincident) fault to produce (state-dependent)
coverage probabilities, which are then used to modify the transition rates in the Markov chain.
Additionally, two failure states are added to the model, one to represent single-point failures
and one to represent near-coincident faults. (See �g. 17.)

Figure 17. Automatic insertion of FEHM's.

More speci�cally, assume that a fault of component type 1 in state (i; j) leads to state
(i� 1; j) in the perfect coverage Markov chain. In the imperfect coverage Markov chain, this
transition to state (i� 1; j) is completed with probability C(i;j);(i�1;j), and a transition to the

single-point failure state occurs with probability S(i;j);(i�1;j). A transition back to state (i; j)
occurs with probability r(i;j);(i�1;j), and a transition to the near-coincident failure state occurs
with the following probability:

N(i;j);(i�1;j)= 1� C(i;j);(i�1;j)�R(i;j);(i�1;j)� S(i;j);(i�1;j)

This probability of imperfect coverage is then incorporated into the Markov chain by �rst
reducing the rate of 
ow from state (i; j) to state (i� 1; j) by multiplying the original rate 


from state (i; j) into the FEHM of component type 1 by C(i;j);(i�1;j) and by then adding arcs

from state (i; j) to the failure states. These additional arcs represent a 
ow of 
S(i;j);(i�1;j) to
the single-point failure state and a 
ow of 
N(i;j);(i�1;j) to the near-coincident fault failure state.
These computations are performed for all arcs between operational states. For example, when
(i; j) = (3;2) then 
 is 3
. (See �g. 17.)
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These coverage failure states can be di�erentiated from the exhaustion of components failure
state, if the user desires a comparison of the respective failure probabilities. Figure 18 shows the

imperfect coverage representation of the three-processor, two-memory system of �gure 15, where

FSPF represents the single-point failure state, and FNCF represents the failure of the system

caused by a near-coincident fault. In this �gure, the coverage factors have single subscripts for

ease of notation. The Markov chain of �gure 18 is an approximation (see section 2.1) to the

stochastic process represented by �gure 17.

Figure 18. Imperfect coverage representation of three-processor, two-memory system.

The state diagram of �gure 17 is automatically reduced by HARP to that of �gure 18; HARP
solves this Markov chain for state probabilities. The FEHM information is captured in the C, R,

S, and N parameters and is passed to the engine for solution. Note that the stochastic process

represented by �gure 18 (�g. 17) is generally rather large and generally non-Markovian. For

instance if all FEHM types chosen are semi-Markovian, then the stochastic process of �gure 17

is either semi-Markov (if all failure rates are constant) or nonsemi-Markov (if one or more of the

failure rates is chosen to be Weibull). Similarly, if a simulated FEHM is chosen, the stochastic

process of �gure 17 will be more general than a semi-Markov process. Even when a Markovian

FEHM is chosen, the process represented by �gure 18 (�g. 17) is generally a very sti� Markov

model. The instantaneous coverage approximation in HARP (�g. 18) avoids the generation and

the solution of the large and sti� stochastic process. This approximation results in considerable

savings in storage and in time. At run time, the user is simply queried as to the numerical values

for the failure (and repair) rates and which near-coincident fault rate calculations are to be used

in the solution of the FEHM's (explained in section 2.7).

The derivation of the C, R, S, andN parameters can be illustrated by way of a simple example

system architecture that is a variation of the three-processor two-memory system, that is,

consideration of only the three-processor part of the three-processor two-memory system. Again,

we automatically incorporate the possibility of imperfect coverage into the perfect coverage

Markov chain, as shown in our three-processor example (�g. 19). While in the coverage model

denoted by FEHM 1, a second processor fault is possible with rate 2 � �. Therefore, one of the

exits, R, C, or S must be reached before time to the second fault (which is an exponentially

distributed random variable with parameter 2 � �) if a near-coincident fault is to be avoided.
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Figure 19. Three-processor system. FEHM's with C, S, R, and N exit probabilities.

Figure 20. Three-processor systemshowing near-coincident faults.

Figure 21. Reduced model of the three-processor systemwith near-coincident faults.

Likewise, while in the coverage model denoted by FEHM 2, another processor failure can occur

with rate �.

Assume that FEHM 1 and FEHM 2 in �gure 19 are exponentially distributed delays with

rate �. (See �g. 20.) Thus, S = R = 0. Note that in the absence of a near-coincident fault,

C = 1. However, with the near-coincident fault occurring at the rate 2 � � from FEHM 1,

the probability of a successful C exit before the occurrence of a second near-coincident fault

is easily shown to be C3 =
�

�+2��
. Similarly for FEHM 2, C2 =

�

�+�
. The reduced model is

shown in �gure 21. In �gure 21, N3 = 1� C3 and N2 = 1� C2. The inclusion of interfering

faults causes the coverage values to become state dependent. HARP automatically derives the
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coverage factors by taking the Laplace transform of the time-to-exit distributions. We compute
the transforms for the single fault model and then substitute the second near-coincident fault
rate for the Laplace transform variable to obtain the state-dependent coverage values. If the
time-to-exit distribution is not available in closed form, a Taylor series expansion of the Laplace
transform yields an expression that depends on the powers of the next fault rate and on the
moments of the distribution. These moments are easily obtained from empirical or simulation
data. See reference 6 for the mathematical derivations.

We need not restrict ourselves to single-state FEHM's. Let us again look at a portion of the
CARE III coverage model that was introduced in section 2.6.7. (See �g. 22.)

Figure 22. Permanent CARE III FEHMwith N, C, and S exits.

Now the FEHM probabilities when replaced by a branch point are as follows:

C3 =
�

� + �+ 2 � �
+

�

� + �+ 2 � �
�

q � �

� + 2 � �
C2 =

�

� + �+ �
+

�

� + �+ �
�

q � �

�+ �

and

S3 =
�

� + �+ 2 � �
�

(1� q)� �

� + 2 � �
S2 =

�

� + �+ �
�

(1� q)� �

�+ �

As previously mentioned, these probabilities are determined by HARP based on the user inputs
for the rates and probabilities in the model.

3.2.2. State-Dependent FEHM|Overriding the Default Model

Suppose we want to override the FEHM �le associated with a particular component type. In
the three-processor, two-memory example, the processors have a FEHM parameter �le entitled
FEHM.HRP. Assume that from state 2, 2 recovery from a processor failure is more closely modeled
by a di�erent FEHM model, which is stored in FEHM.NEW. In this case, we change the description
of the Markov state transition from 2*LAMBDA; to 2*LAMBDA:FEHM.NEW;. This change does not
a�ect any other transitions triggered by a processor failure. If we instead want to turn o� the
FEHM for this transition, we can use the keyword NONE. For this example, the state transition
is 2*LAMBDA:NONE;.
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If for a particular component type the user has chosen to provide the actual coverage values
(rather than use a FEHM model), has chosen to ignore near-coincident faults, or has chosen to

ignore coverage, then the default model (or rather, the lack of a model) cannot be overridden.

These original choices results in state-independent coverage values, which cannot be later made

state dependent. Likewise, a FEHM cannot be overridden by typing VALUES because of its state

independence.

3.3. Numerical Solution Techniques

Once the FEHM models have been solved and the state-dependent coverage factors have

been automatically inserted into the model, the Markov chain representation of the FORM

model remains to be solved. The Markov chain (such as the one in �g. 18) produces a linear

system of ordinary di�erential equations as follows:

P 0(t)= A(t)P (t) (P (0)= PI)

where P (t) is the column vector of the state probabilities, and A(t) is the associated matrix of

(possibly) time-dependent transition rates (the matrix entry aij(t) represents the transition rate

from state j to state i at time t). This analytic model is solved for the state probabilities Pi(t) in

one of two ways, which are described in the following sections. The reliability and unreliability

of the system are then given by the sums of the appropriate state probabilities:

R(t)=
X

i�UP states

Pi(t)

U (t)=
X

i�DOWN states

Pi(t)

Additionally, the probability of each type of failure (exhaustion of redundancy, single-point
failure, near-coincident faults) is reported separately. In case repair transitions are emanating

from down states, HARP uses the previous equation to compute the instantaneous availability

and unavailability.

3.3.1. Default Solution Technique

Under normal circumstances, the Markov chain is solved for the state probabilities with a

variation of the adaptive Runge-Kutta procedure, GERK (ref. 50). GERK has been reliable and

robust for a large variety of models. Although GERK solves sti� systems correctly, it can take

a long time; thus, an alternative solution method has been de�ned for these systems.

Note that the maximum global error reported in the .RS* �le is the global numerical dis-

cretization error of the di�erential equation solver (GERK output). It does not include the

round-o� error or numerical deviation resulting from behavioral decomposition. Modeling devi-

ations contributed by behavioral decomposition are conservative. Model deviations contributed

by the FORM/FEHM merging process depend upon the user's speci�cation of the multifault

model. In most cases, these deviations can be tracked with the simple bounds. (See section 3.4.1.)

When the sojourn times of the FORM and the FEHM's are separated by over 2 orders of mag-

nitude, the HARP results are much more accurate than the input data supporting the HARP

results. When the sojourn times approach each other, the HARP results become increasingly

more conservative. A warning message is issued to alert the user of this possibility. When

behavioral decomposition is not invoked, GERK speci�es the errors in the .RS* �le (round-o�

error not included).
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3.3.2. Sti� System Solution

If the largest of the transition rates in the Markov chain is bounded by q and the mission
time is t, then the sti�ness index of the Markov chain is de�ned to be their product qt. When qt

is large (say greater than 100), a special sti� solver is invoked.

As mentioned in the previous section, HARP uses a variation of an adaptive Runge-Kutta
procedure to solve the system of ordinary di�erential equations derived from the Markov chain
representation of the FORM. It performs well for the transient solution of nonsti� Markov
models. However, in sti� systems, the step size h may need to be intolerably small (because
the time scale is chosen as a function of the slow failure rates) before acceptable accuracy is
obtained. Thus, substantial computation time requirements result.

HARP uses a special method called TR-BDF2 to deal with the problem of sti�ness16(ref. 51).
This method combines the trapezoidal method (TR) with the second-order backward's di�erence
(BDF2). Because TR-BDF2 is an implicit method17 (whereas GERK is an explicit method), its
step size can be adaptively changed. Thus, for sti� models, TR-BDF2 takes much less solution
time than GERK. The TR-BDF2 method has provided good accuracy and excellent stability on
sti� problems. The choice of which solver to use is made internally by HARP. MCI-HARP uses
a simulation technique based on the variance reduction technique, called importance sampling,
which is e�ective for solving sti� systems.

3.3.3. Computational Precision

The coverage value precision and hence the system unreliability computation actually depends
primarily upon the FEHM being used in the model. The coverage value precision is 10�13 for all
FEHM's except ESPN FEHM, which is speci�ed by the user. HARP's unreliability predictions
are valid from unity to 10�15 and are a function of the precision of the coverage computation
as determined by the EPX variable. If a smaller value is computed, then a warning message
is issued. If the user requires smaller predictions than 10�15, the EPX value can be adjusted
as required; however, the user must determine whether the computing platform is capable of
producing that precision. When no FEHM's are used, the unreliability precision is determined
by GERK and the round-o� error.

Each coverage model in the HARP engine utilizes an epsilon variable entitled EPX. If a
coverage factor falls within EPX and 0, the value is set to 0. Likewise, if the coverage factor
falls within the 1:0� EPX and 1.0, the value is set to 1. In all other cases, the actual computed
coverage value is retained. Whenever the computed coverage value is changed to 0 or 1, the
overall system reliability can be suspect when the unreliability is below 10�15. This problem can
be alleviated by changing the value of the EPX variable in the following �les: aries.for, care.for,
dists.for, empir.for, moments.for, and simdrv.for. The value is set twice in each �le|once for
the nominal computation and once for the bounds computations.

3.4. Error Bounds

Two di�erent kinds of bounds are provided by the HARP program; simple model (parametric)
bounds and truncation model bounds. Depending on the system being modeled, none, one, or
both kinds of bounds are applicable.

The simple parametric bounds are computed for two distinct classes of models: (1) the AS IS
model that does not use any FEHM's, where behavioral decomposition is not invoked, and

16 Sti�ness refers to a mathematical model that contains widely separated time constants associated with a system of

ordinary di�erential equations.
17 Implicit means dependent variable is not isolated from other terms of the equation, and explicit means it is.
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(2) those models that do invoke FEHM's and behavioral decomposition. Both models can also
be modi�ed to re
ect the model state reduction technique called truncation (section 3.4.2).

The AS IS model is used strictly for parametric analysis, which reports the e�ect on system
unreliability as a function of the user-speci�ed parametric variation. These data are useful for
sensitivity analyses. The simple parametric bounds for this model class are true bounds for the
original user-speci�ed model (M1).

When FEHM's and behavioral decomposition are invoked, the simple bounds take on two
manifestations. When no parametric variation is speci�ed and the user selects the simple bounds
computation (prompted by HARP), simple upper and lower bounds are computed based on
estimated maximum and minimum imperfect coverage and lack of su�cient redundancy. If
parametric variation is also speci�ed, a combined e�ect is estimated, that is, imperfect coverage
with insu�cient redundancy and parametric variation. Unlike the AS IS model, the simple lower
bound on unreliability associated with behavioral decomposition is a conditionally true bound.
The conditions when it becomes questionable are delineated further in this section.

HARP does not allow bounds to be evaluated when any failure rate is Weibull. When the
system being modeled has repair, bounds are evaluated only when an absorbing state is present
in the model.

3.4.1. Simple Model (Parametric) Bounds

3.4.1.1. AS IS Model

Because many input parameters to the FORM model are not known exactly (e.g., the user
can only know a range of values for the failure rates), HARP allows the FORM input parameters
to be expressed in terms of ranges of values rather than point estimates. HARP produces upper
and lower bounds on the system unreliability that are a function of these ranges of values. The
model evaluates the overall system failure probability by taking the lower bound on the failure
rates and the upper bound on the repair rates as the best case and by taking the upper bound
on the failure rates and the lower bound on the repair rates as the worst case. It also produces
the predicted unreliability based on the nominal values. The simple parametric bounds for this
model class are true bounds18 for the original user-speci�ed model (M1).

3.4.1.2. Models Using Behavioral Decomposition

We approach the analysis of errors by decomposing the original model into two simpler models
that can be combined to obtain a conservative unreliability estimate (refs. 9, 52, and 53). The
general form of the simple bounds is given as follows:

P (A [B)� min[1; P
�
Ahigh

�
+ P (Bmax)]

P (A [B)� max[P (Alow); P (Bmin)]

The �rst rule gives the conservative bound and the second rule gives the optimistic bound.19

The �rst expression gives the upper unreliability bound while the second gives the lower
unreliability bound. The system failure probability P (A) is caused by the lack of su�cient

18Mislabeling a failure transition as a repair transition or vice versa can cause inverted bounds. HARP does not check

for these types of user mistakes.
19 Validity of these bounds are subject to correct speci�cation of multifault models, where applicable (see section 2.7).
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redundancy. The probabilities P (Ahigh) and P (Alow) are used instead of P (A) when parametric
tolerance are selected to cause P (A) to be maximum to get P (Ahigh) and P (A) to be minimum to
get P (Alow). The probability of system failure due to imperfect coverage is P (B). When FEHM's
are speci�ed for behavioral decomposition, P (B) is computed for the minimum imperfect
coverage to get P (Bmin) and the maximum imperfect coverage to get P (Bmax). The probability
P (A) is further modi�ed when transients are speci�ed in at least one FEHM. The perfect
redundancy model (coverage assumed to be perfect) transition rates are modi�ed by coe�cients
that re
ect transient restoration probabilities. The net e�ect reduces the probability of failure
by redundancy exhaustion because transient restoration occurs.

The simple bounds computed by HARP are the bounds on the instantaneous jump model
(M2, M3, and M4 of �g. 3), which produces the unreliability result (M4) and can also bound
the user's original model M1 under certain conditions: The simple upper bound on the system
unreliability is always a true (conservative)20 bound with respect to both the instantaneous
jump model (M2, M3, and M4) and the user-speci�ed model (M1) (provided all failure rates
are constant).21

When the automatically generated multifault models are used, the validity of the optimistic
bound with respect to the user-speci�ed model (M1) depends on the use of large numbers of
fault containment regions that require the use of the ALL multifault model. (See chapter 7 for
an example of a practical fault containment model.) Figure 23(a) depicts the normally expected
HARP computations. With many fault containment regions, the situation shown in �gure 23(b)
is possible. The lower bound graph is above the full model graph but below the instantaneous
jump model graph. For such system models, a valid accurate lower bound can be obtained by
modifying the HARP generated ASCII �les.

Remember that the HARP simple bounds are used for preliminary estimates of unreliability.
They are provided as a quick-look computation that can be used in the early stages of system
design when only ranges of parameter values are available. The essence of HARP output is the
nominal result and not the simple bounds. We emphasize that if the model is solved AS IS,
without any FEHM's or with the VALUES FEHM, the HARP bounds are true bounds for the
user-speci�ed model (M1), that is, the full model.

3.4.2. Truncation Bounds

As mentioned in section 2.8, truncation bounds are obtained as follows. When the truncated
model is solved, the probability of being in each of the TA states is calculated. By adding these
probabilities to that of the down (failed) states (DS) before the truncation line, we get an upper
bound on the system unreliability (SU ). All states beyond the truncation line are assumed to
be failed states. To get a lower bound on unreliability, we add only the probabilities of the
failure states before the truncation line. Thus, the TA states are automatically considered to be
functional states by HARP. To use some notation, the states in the truncated model are denoted
with a subscript tr and the states in the full model have the subscript full. The bounds on the
system unreliability are given by the following:

Pr(DStr)� SUfull � Pr(TAtr)+ Pr(DStr)

HARP not only gives the system unreliability but also provides a breakdown of individual
failure probabilities. Failure causes are the exhaustion of di�erent components, FNCF and FSPF.

20 It is conservative in that the reliability of the system being modeled is not less than the HARP reliability estimate.
21 HARP FEHM's andmultifault models only support single recovery transitions. System models with multiple recovery

transitions can cause the simple upper bound to improperly bound the HARP unreliability result (M4) or the original

model (M1). For such systems, the user can edit HARP generated ASCII �les or use XHARP. The HARP AS IS model

can also be used to provide accurate results.
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Figure 23. Typical and pathological simple lower bounds.

In a truncated model, HARP gives bounds on the system unreliability as well as individual
failure probabilities. F1 denotes a state where fewer components than the minimum required
of component type 1 are still operational. If an F1 state occurs before the truncation level, we
use the probability of being in the F1 state as a lower bound on the probability of failure due
to exhaustion of component 1. All transitions due to failure of component 1 that fall on the
truncation line and do not lead to state F1 are directed into a state called TA1.

Probability of failure due to exhaustion of component 1, P r(F 1full), is bounded as follows:

Pr(F 1tr)� Pr(F 1full)� Pr(TA1tr)+ Pr(F 1tr)

The bounds on the probability of exhaustion of other components are obtained in a similar
manner. Now we obtain bounds for the probability of a FNCF and a FSPF.
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The probability of being in the FNCF state before the truncation level is a lower bound on
the FNCF probability. The upper bound is taken to be this lower bound probability added to

the combined probability of all TA states:

Pr(FNCFtr)� Pr(FNCFfull)� Pr(TAtr)+ Pr(FNCFtr)

The bounds on probability of SPF are obtained in a similar manner as follows:

Pr(FSPFtr)� Pr(FSPFfull)� Pr(TAtr)+ Pr(FSPFtr)

3.4.3. Combined Bounds

When parametric bounds (via a simple model) are desired from a truncated model, the bounds

are combined in the following way. The simple model solution uses the optimistic parameters

(lowest possible failure rates, highest possible repair rates and coverage factors) to produce an

upper bound on the reliability (Rhigh) of the system (ref. 53).

Rhigh(t)= 1�max[Peshlow(t); Pcovlow(t)]

where Peshlow is the system failure probability due to exhaustion of system redundancy

and Pcovlow is the system failure probability due to minimal coverage.

If the model from which the simple bounds are derived is a truncated model, then the

truncation aggregation states are taken to be operational states (for the optimistic bound).

Likewise, the simple model solution uses the pessimistic parameters (highest possible failure

rates, lowest possible coverage factors and repair rates) to produce a lower bound on the

reliability (Rlow) of the system (ref. 53).

Rlow(t)= 1�min
�
Peshhigh(t)+ Pcovhigh(t); 1

�

If the model from which the simple model bounds are derived is a truncated model, then the

truncation aggregation states are taken to be failure states (for the pessimistic bounds). The �rst

type of bounds are reported as simple model bounds, the second type are reported as truncated

model bounds, and the combined bounds are reported as truncated simple model bounds.

The use of behavioral decomposition and the instantaneous jump model factors have been

proven to result in conservative estimates of reliability (ref. 8), when failure rates are constant

(exponential times to failure). Both bounding techniques (simple and truncation) produce

bounds on this conservative estimate of reliability. For practical highly reliable systems, the

HARP (simple and truncation) bounds also encompass the reliability of the original model.

When the disparity of the model sojourn times are too close to guarantee valid bounds, a

warning message is issued.
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Chapter 4

HARPStructureandUserInput

4.1. Overview of Program Structure

The HARP solution of a reliability model consists of running three sequential programs:

tdrive for model construction, �face for interface, and harpeng for solution. (See �g. 24.)

Figure 24. HARPprogram structure.

In tdrive, the user is stepped through the model construction phase to produce the FORM,

any FEHM's, and a dictionary �le for the system. The FORM can be either as a fault tree (for

nonrepairable systems) or a Markov chain, and the FEHM's can be any of the ones supported

by HARP. For each component in the system, the dictionary �le contains the logical name of

the component, the symbolic name for the failure rate, the name of the FEHM parameter �le,

and any user-de�ned near-coincident fault rates. When the name of the FEHM parameter �le

is speci�ed, the user can create the �le at that time or specify that it already exists.

Supplied with this model representation, the tdrive program creates several output �les that

can be carefully edited and rerun or used by the interface program �face. By keeping the input

and interface programs separate, the user can use the fault tree or Markov chain information for

any purpose by designing the appropriate interface. The �face program uses the �les created in

tdrive to construct the symbolic transition rate matrix for use by the solution program harpeng.

Additionally, symbol table information and failure state information is passed to the solution
program which translates these representations into the system unreliability over a user-speci�ed

time period. If desired, the optimistic and conservative bounds are also supplied.

4.2. File Naming Conventions

Several �les are created when running the HARP program, and the names of these �les are

derived from the user-supplied model name. Once the user has speci�ed a model name that model

name is used to create the �lenames used throughout the HARP program. The model name
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(up to nine characters in length, eight for PC) is appended with three character extensions to
produce the reserved �les. Special characters that can interfere with the user's operating system

should be avoided, e.g., avoid using * or & as a model name or extension. Figure 25 shows

the HARP structure and identi�es the �les with the program segment tdrive, �face, or harpeng.

The following sections give a representative listing of each of the HARP �les. The typical �le

contents shown were obtained by running the example of �gure 15 through HARP.

Figure 25. File structure of HARP.

4.2.1. MODELNAME.TXT

The symbolic textual fault tree description �le is entered at the terminal by the user in

program tdrive. It is then converted to MODELNAME.FTR so that it can be converted to a

Markov chain for solution. Typical �le contents using the example model in section 5 �gure 14

are as follows:

NODE 1: TYPE BASIC, 3 OF COMPONENT 1

NODE 2: TYPE BASIC, 2 OF COMPONENT 2

NODE 3: TYPE AND , 1 INPUTS: 1

NODE 4: TYPE AND , 1 INPUTS: 2

NODE 5: TYPE OR , 2 INPUTS: 3 4

NODE 6: TYPE FBOX, INPUT: 5

4.2.2. MODELNAME.FTR

The fault tree description �le is created either from the textual description �le (.TXT) in the

tdrive program or directly from the graphics program and is converted to a Markov chain for

solution. Those lines beginning with an 'N' represent Markov chain nodes and those beginning

with an 'A' designate arcs, arrows, or lines (connectors). The �elds for the nodes are: N xcoor
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ycoor type node node label. (See vol. 3 of this TP for more details.) Typical �le contents are
as follows:

N 1 1 16 3*1

N 2 2 16 2*2

N 3 3 19

A 1 1 3 3

N 4 4 19

A 2 2 4 4

N 5 5 17

A 3 3 5 5

A 4 4 5 5

N 6 6 22

A 5 5 6 6

4.2.3. MODELNAME.DIC

The dictionary �le contains the logical name for each component type (e.g., processor, sensor),
its symbolic failure rate parameter (e.g., lambda, mu) and the FEHM parameter �lename (if
any). It also contains the user-speci�ed interfering component types. This �le is created either
by the textual input program or from the graphics program. Typical �le contents are as follows:

1 PROCESSOR LAMBDA FEHM.CAR

INTERFERING COMPONENT TYPES: 2

2 MEMORY MU NONE

INTERFERING COMPONENT TYPES:

FEIDS (See section 4.3.2.)

7 6

The dictionary is required for fault tree FORM's. A Markov chain FORM requires the dictionary
if coverage is to be included in the model. The dictionary matches failure rates with the coverage
information �le to correctly solve the model. It is designed as a tool for both the user and the
program. The user can make changes in the dictionary �le to accommodate any special modeling
requirements. When creating the dictionary, do not use the symbol $ as a character in a failure
rate symbol name. This symbol causes the program to ask the user to declare the meaning of
the name without the symbol $ as well as with it, that is, two symbols result when only one is
intended.

4.2.4. MODELNAME.INT

The symbolic textual Markov chain description �le is created by tdrive. It is read by the
interface program �face and is converted to the symbolic transition rate matrix �le (.MAT) for
the HARP engine. The �rst line of the �le is SORTED if the Markov chain was created from
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a fault tree and either SORTED or UNSORTED if the input was a Markov chain. Typical �le
contents are as follows:

SORTED

1 2 3*LAMBDA;

1 3 2*MU;

2 4 2*LAMBDA;

2 5 2*MU;

Refer to section 3.3 for further information on the MODELNAME.INT �le.

4.2.5. MODELNAME.MAT

The symbolic textual transition rate matrix is read by the HARP engine. The HARP engine
requires a speci�c ordering of its matrix, with row and column values of nonzero entries entered
in ascending order. Matrix entry i; j represents a transition rate from state j to state i. For
entry 2,1 in the second row in the following table, for example, means that i = 2 and j = 1 and
3*LAMBDA*C1 is the transition rate from state 1 to state 2. The number 10 in the �rst row is
the number of model states. Additionally, a symbol X is created and is concatenated to those
transitions leading to the failure due to exhaustion state. It serves as a 
ag variable for the
bounds computation. The end of the matrix is 
agged with value 0,0. This �le is created by
program �face. Typical �le contents are as follows:

10

2 , 1

3*LAMBDA*C1;

3, 1

2*MU;

4, 2

2*LAMBDA*C2;

5, 2

2*MU;

5, 3

3*LAMBDA*C3;

6, 3

MU*X;

6, 8

4.2.6. MODELNAME.SYM

The symbol table and failure (and possibly operational) state information �le also contains
whatever symbol table information can be deduced from the graph. Speci�cally, for each
coverage factor (i.e., Ci), it lists the symbol type number (always a 3 for FEHM types other
than VALUES) and the parameter �le containing the FEHM information. Additionally, for
FEHM type VALUES, the corresponding Ri and Si are listed for each component type with
the \VALUES" designation. In this case, the symbol type numbers are 7 for the Ci, 8 for Ri,
and 10 for Si. If near coincident fault rates are being considered, the Ni values are also printed
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with a symbol type number of 9. The symbol X, which appears in the *.INT �le (not shown in
MODELNAME.INT) denoting transition to the failure state, is assigned the numeric value 999.

For the following �le contents, the data can be interpreted for �gure 17 as follows. The

coverage parameter C1 is de�ned by the FEHM given by the �le FEHM.CAR and has the

number 3 associated with it to designate that the FEHM is not a \VALUES" FEHM. Figure 17

shows C1 as a factor in the transition rate, 3�C1 between states 3, 2 and 2, 2. The C4 parameter

in the �le has the number 7 below it, which designates that C4 is de�ned by a VALUES FEHM

and the value of C4 is 0.7000000000 with tolerance 0.0000000. Likewise, the probabilities and

tolerances for the R4, N4, and S4 transitions are listed as well. (See section 2.6 for details of

their meaning.)

The user has the option of entering the values for these parameters in program �face or in

program harpeng. If the user elects to enter the values in the engine, �face lists the values

as �1:00. All failure states (and operational states whose probabilities are desired) are listed

in this �le as well as their location in the matrix. To interpret where a failure state is located,

subtract 1000 from the absolute value of the number listed. This �le is created by program

�face. Typical �le contents are as follows:

C1

3

FEHM.CAR

C2

3

FEHM.CAR

C3

3

FEHM.CAR

C4

7

0.700000000000 0.000000000000

R4

8

0.100000000000 0.000000000000

N4

9

0.100000000000 0.000000000000

S4

10

0.100000000000 0.000000000000

X

999
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END SYMBOL DEFINITION

F1

1007

F2

1006

FSPF

1009

FNCF

1010

END FAILURE STATE DEFINITION

4.2.7. MODELNAME.ALL, MODELNAME.SAM, and
MODELNAME.USR

The near-coincident fault rate information �les are also created by program �face. For

each coverage factor (i.e., Ci), they list the symbolic value of the near-coincident fault rate.

MODELNAME.ALL lists the symbolic value of the ALL-inclusive near-coincident fault rate,

MODELNAME.SAM the SAME-type near coincident fault rate, MODELNAME.USR the

USER-de�ned near-coincident fault rate. Section 2.7 gives more information on user-de�ned

near-coincident fault rates. Typical �le contents for MODELNAME.ALL, MODELNAME.SAM,

and MODELNAME.USR are similar. The following expression Ci is the near-coincident fault

rate associated with the Ci transition. It is not equal to Ci.

C1

2*LAMBDA+2*MU;

C2

LAMBDA+2*MU;

C3

3*LAMBDA+MU;

C4

2*LAMBDA+MU;

4.2.8. MODELNAME.INP

The MODELNAME.INP is an echo �le containing the name of the matrix �le and values

for the symbolic rates de�ned by the user at runtime (of the HARP engine). This �le can be

edited after the HARP engine program has completed; thus, the need to enter parameter values

during future runs is eliminated. This �le is an output of the HARP engine program. Typical

�le contents are as follows:

3P2M.MAT

Symbol No. Symbol Type Value Variation

1 LAMBDA 1 0.10000000D-03 0.10000000D-06

2 MU 1 0.10000000d-01 0.10000000D-04
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Refer to section 3.5 for more details on the input �le.

4.2.9. MODELNAME.RS*

The MODELNAME.RS* is a textual �le with the reliability/unreliability values for the model
is an output of the HARP engine program. Each time the HARP engine is rerun during the same
session, the output is appended at the end of MODELNAME.RS*. The asterisk (�) is an integer,
beginning with 1, that is incremented for each rerun of the engine during the same session. The
HARPO module reads this �le to make interactive graphical analysis available. (The HARPO
module expects an upper case �lename extension.) Up to nine runs can be executed during the
same session. (Note: if the program is terminated and then rerun, all �les are destroyed and
rewritten.) Typical �le contents are as follows:

----------------- HARP -----------------------

- The Hybrid Automated Reliability Predictor -

------------ Release Version 7.0 -------------

--------------- February 1993 ----------------

Modelname:

3P2M

Input description (from dictionary file):

Component type: 1 Name: PROCESSOR

Symbolic failure rate:

LAMBDA Constant failure rate:

0.10000000D-03 +/- 0.10000000D-06

FEHM file name: FEHM.CAR

For this FEHM model, the exit probabilities are:

(in the absence of near-coincident faults)

Transient restoration: 0.00000000D+00

Permanent coverage: 0.99956467D+00

Single-point failure: 0.43532615D-03

Component type: 2 Name: MEMORY

Symbolic failure rate:

MU Constant failure rate:

0.10000000D-01 +/- 0.10000000D-04

FEHM file name: NONE

ALL-INCLUSIVE near-coincident fault rate used.

Time(in Hours): 0.100D+02

State Probabilities

State name: F1 0.99203074D-09

State name: F2 0.90559086D-02
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State name: FSPF 0.13012236D-05

State name: FNCF 0.13617744D-06

--------------------------------------------------

Reliability = 0.99094265D+00

Unreliability = 0.90573470D-02

Total failure by redundancy exhaustion = 0.90559096D-02

--------------------------------------------------

Parametric Bounds using SIMPLE Model:

Lower Bound on Unreliability = 0.90387040D-02

Upper Bound on Unreliability = 0.90745973D-02

See Users Guide, section 3.4.1 for interpretation.

GERK ODE solver: global error value 0.200D-15

relative error value 0.100D-08

See Users Guide, section 3.3.1 for interpretation.

0 Reports from the GERK ODE solver.

4.2.10. MODELNAME.PT*

A textual �le containing the unreliability values for the model is plotted along with the

bounds values (if any) and output by the HARP engine program. In the following table, the

left most column gives the times at which their corresponding unreliability values in the right

column are computed. These values are provided as input data for a user's plotting program.

The asterisk (�) is an integer, beginning with 1, that is incremented for each rerun of the engine

during the same session. Up to nine runs may be executed during the same session. (Note: if

the program is terminated and then rerun, all �les are destroyed and rewritten.) The contents

of this �le can be created with a text editor and used as input to the HARPO module. Also, if

data are generated by another program and can be put into the *.PT �le format, HARPO can

display that data also, possibly for comparative analysis. Typical �le contents are as follows:

0.00000000 0.00000000E+00

10.00000000 0.90570200E-02

Additionally, the input programs create the fault/error handling model parameter value

de�nition �les. These �les have di�erent formats, corresponding to the choice of the fault/error
handling model speci�cation technique. The �rst line of the �le speci�es the type of model,

such as HARP.SINGLE.FAULT.MODEL, and the necessary parameters follow. Note: these

�les do not have the near-coincident-fault rate expressions; instead, the near-coincident fault-

rate expression is an attribute of the particular coverage symbol. Di�erent coverage symbols

may have the same fault/error handling model parameter �les but use di�erent near-coincident

fault-rate expressions. These �les are created in the textual and graphical input programs.
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4.3. Inputting a Markov Chain FORM

4.3.1. State Transition Speci�cation

A Markov chain is entered in the following format:

state x state y rate transition

The user can enter the information in sorted or unsorted order. If the sorted option is chosen,
the state names must be integers listed in row-wise order (beginning with the number 1). First,
all transitions emanating from state 1 are listed, then those from state 2, etc. If the unsorted
option is chosen, the state names can be nonintegers listed in any fashion. However, the �rst
state listed is assumed to be the initial state of the Markov chain. It is assigned an initial state
probability of 1, while all other states have an initial state probability of 0. Also, if the input
is unsorted, the size of the model is limited|a total of 500 states can be included and up to
2050 transitions. For sorted (or fault tree) input, the number of states is increased to 10 000
and the number of transitions to 90 000. These limits can be changed, however, as explained
in a section 5.3. For either type of Markov chain input, the state names cannot be more than
13 characters. Comments can be imbedded in the text by beginning and ending a line with the
asterisk (*) so that the line is printed in the MODELNAME.INT �le but ignored by program
�face.

4.3.2. Failure State Speci�cation

In HARP, any state whose label begins with the letter F is considered a failure state. Four
types of failure states are represented. For failure by redundancy exhaustion, one failure state is
associated with each component type in the system. These failure states are labeled Fi, where i

is the component type number failing and F stands for \failure due to exhaustion." For those
models with imperfect coverage, the occurrence of a single-point failure and near-coincident fault
failure is recognized by failures states FSPF and FNCF, respectively. These latter two states
are added by the interface program, �face, automatically. Any other state label beginning with
F contributes to the system unreliability but not to the speci�c failure probabilities.

When the Markov chain input type is sorted, the user must enter the state names as numbers;
therefore, a state label beginning with an F is not allowed. In this instance, HARP can recognize
the failure states in one of two ways. First, to run bounds in the engine program, those transitions
entering failure states must have �X appended to them. Therefore, when inputting the FORM,
the user can add this �X to the appropriate transitions to designate the state into which the
transition goes as a failure state. Second, the user can edit the dictionary �le (.DIC) by adding
the following lines for failure ID's (FEIDS) to the end of the �le:

FEIDS

f1 f2 f3 ... fn

where f1, f2, f3, ..., fn are positive integers that identify the failure states F1, F2, F3, ..., FN,
respectively. Note that adding �X to the failure state in an unsorted Markov chain is not allowed.

4.3.3. Solving Arbitrary Markov Chains

HARP can be used to solve arbitrary (general) Markov chains simply by stating that the
model being described is to be solved AS IS. Under this designation, no FEHM models are
inserted.
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4.3.4. Sorted Versus Unsorted Input

When the FORM input is a fault tree, HARP converts this fault tree into a sorted Markov

chain. However, many systems cannot be modeled using fault trees. Hence, the user must enter

a Markov chain as input. As previously mentioned, the user can enter the Markov chain in

sorted or unsorted order. If the model being evaluated is very large, then the user should input

the Markov chain in sorted order because only 500 states and up to 2050 transitions can be

included in an unsorted model. A sorted model, on the other hand, can have 10 000 states and

up to 90 000 transitions.

Several di�erences should be noted about sorted and unsorted Markov chains. If in a sorted

Markov chain, �X's are appended to the failure states, then HARP evaluates bounds on the

reliability. Moreover, only the probabilities associated with the failure states are given, not those

of the operational states. However, if no �X's or FEIDS are speci�ed in the input, the program
harpeng (solution stage) asks the user to specify failure states. If the user does not specify any

failure state, the state probabilities of all states are printed while the system reliability is not

given (since no failure states are speci�ed). If the user does specify failure states when asked,

then the system reliability and the failure state probabilities are printed. In either case, bounds

are not evaluated.

For sorted input, if FEIDS are speci�ed, then the resulting failure probabilities are listed in

the order in which the states are listed in the FEIDS. For example, if state 12 is mentioned �rst

under FEIDS in the MODELNAME.DIC �le, then the failure state F1 corresponds to state 12

and F2 to the next state mentioned under FEIDS and so on.

4.3.5. Labeling Transitions

The Markov chain transitions are normally symbolically labeled with an expression of the

form: constant � failure rate. Failure rate transitions are denoted by a single failure rate variable

(i.e., � or �) even though HARP does not require the failure rates to be constant. The failure

distribution is speci�ed as either exponential or Weibull at run time. In general, an arc between

states (i; j) and (i� 1; j) is labeled with the value i � � (if � is the failure rate of component

type 1). Likewise, an arc between states (i; j) and (i; j � 1) is labeled with the value j � � (if �

is the failure rate of component type 2).

Although most transitions are of the type previously described, transitions between arbitrary

pairs of states with arbitrary labels are certainly permitted. However, the following restrictions

apply:

� There can be only one level of parentheses.

� Only addition and subtraction are allowed within the parentheses.

� Only addition, subtraction, and multiplication are allowed outside the parentheses.

� The rate expression cannot exceed 23 characters.

� Other than the previously listed mathematical symbols, only alphabetic characters (upper

or lower case) and numerals are understood by the HARP engine.

4.4. Inputting a Fault Tree FORM

4.4.1. Replicated Basic Events

To reduce the size of a model, HARP allows statistically identical components to be combined

into single basic events. A replicated basic event is labeled with an expression of the form
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m � n, representing m replications of redundant, functionally identical components of type n.
Replication is useful when modeling statistically identical components with the same failure rate
value, for example, three processors (�g. 15). Because HARP converts the fault tree to a Markov
chain for solution, this combination of equivalent components reduces the size of the resulting
Markov chain considerably. Suppose a fault tree has j basic events, each with a replication
factor of ki. If every component were required to fail before the system fails, then the resulting
Markov chain using the multiple basic events would have

Q
(ki+ 1)� 1 + j states. If the basic

events were all separate, then there would be
P
ki basic events and the resulting Markov chain

would have 2
P

ki states. Consider such a system having 5 basic events, each with a replication
factor of 3. The Markov chain resulting from the tree with replicated basic events would have
1028 states, and the Markov chain resulting from the fault tree without replicated basic events
would have 215 = 32768 states.

4.4.2. Representation of Shared Events

The user should be aware of a source for potential confusion when constructing fault trees.
The di�culty is only evident when the fault tree contains shared events because HARP uses a
representation for shared events that di�ers from the one often found in the literature. A shared
event is a basic event that is used more than once in the fault tree, that is, a basic event that
a�ects the failure of the system in more than one way and thus has more than one parent gate or
box. In the literature, such repeated events are sometimes depicted by multiple occurrences of
its basic event node in the fault tree. However, HARP uses the convention that each basic event
node represents a distinct basic event that is assigned a numeral by the user. If a single basic
event is used in more than one place in the fault tree, then it should still be depicted by only one
basic event node, that is, the same node numeral. This basic event node has multiple outgoing
arcs, one to each parent node, to represent the fact that the event is a shared event. The GO
program (see vol. 3 of this TP) represents a shared event as a double circle. The shared basic
event is initially drawn as a single circle. All other multiple occurring events associated with the
initial basic event are referenced back to the initial single circle basic event. The double circle
notation is provided for drawing convenience and to simplify the drawing by reducing connecting
arcs.

Conversely, two or more basic events with the same label but di�erent node numerals represent
two or more distinct basic events that happen to be the same component type. The fact that
basic events have the same label does not make them a shared event, having the same node
numeral does.

In the fault tree labeled \Event Repeated" in �gure 26, a single component, node 2 labeled 2
(P2 in MODELNAME.DIC), appears as an input to two di�erent gates (node 2 is shared). In
the fault tree labeled \Event Not Repeated," two individual components, nodes 2 and 3, are
both labeled 2 (P2 in .DIC), each being an input to only one gate (not shared). In the latter
case, the two individual components, nodes 2 and 3, are functionally di�erent components within
the fault tree, although they happen to have the same label and therefore are the same type of
component.

4.4.3. Example of a Functional Dependency Gate

This section introduces a functional dependency gate that can be used to simplify the
generation of a fault tree model of a system exhibiting structural dependencies of components.
Suppose a system is con�gured such that the failure of some component (called a trigger

component) causes other dependent components to become inaccessible or otherwise unusable.
In this case, later failures of the dependent components will not further a�ect the system and
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Figure 26. Repeated and distinct basic events inHARP.

should not be considered. A functional dependency gate has a single trigger input (either a
basic event or the output of another gate in the tree), a normal output (re
ecting the status of
the trigger event), and one or more dependent output events. The dependent outputs are basic
events that depend on the trigger event. When the trigger event occurs, the dependent basic
events are forced to occur. The occurrence of any dependent basic events has no e�ect on the
trigger event.

For an example, consider the Cm� system (ref. 20) (shown in �g. 27), which consists of
clusters of processors and memories connected by links. Each cluster consists of eight local switch
interface controllers (S.local), each attached to one processor and one 12K-memory module. Each
processor has 4K of memory on board. The K.map is a cluster controller connecting the S.locals;
the clusters are connected by intercluster communications (L.inc). A fault in the K.map renders
the S.locals (and their connected processors and memories) inaccessible, while a fault in the
S.local makes the processors and memories connected to it inaccessible.

The development of the fault tree model for the Cm� system (shown in �g. 28) is simpli�ed
by the use of the functional dependency gate. The dependence of the S.locals on the K.map
can be captured by two functional dependency gates, each with a K.map trigger event and
four S.local dependent events. Similarly, the dependence of the processors and memories on the
S.locals is captured in eight functional dependency gates, each with an S.local as the trigger event
and the associated processor and memory as the dependent events. The system is considered
operational as long as three processors can communicate with three memories. As long as the
L.inc is operational, the requirements can be satis�ed by the components of both clusters (thus
the 6/8 gates). If the L.inc fails, the requirements must be met within one cluster (thus the
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Figure 28. Fault tree model of Cm� system.

2/4 gates). The outputs of the functional dependency gates need not be used as inputs to any
other gates in this instance.

The fault tree to Markov chain conversion uses the functional dependency gate to alter that
state descriptor. In a state representing the occurrence of a trigger event, the state descriptor is
changed such that all dependent events are recorded as having failed, if they have not already
done so. No coverage model is considered for these dependent component failures to insure that
the possibility of imperfectly covered failure of a component that is unusable or inaccessible
cannot contribute to system failure. (The absence of a coverage model produces an optimistic
result because any coverage value other than unity reduces system reliability.) Furthermore,
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the basic events that are forced to occur by a trigger event do not count as component failures
when determining the failure level of a state. If the �rst component failure is a trigger event
that removed two additional components, then the resulting state has three component failures.
However, this state is considered to be on the �rst failure level of the Markov chain (i.e., it
is a member of the set of states that result from the covered failure of one component only).
A coverage model is included on the arc representing the failure of the trigger event. Because
no explicit arc represents the occurrence of the dependent basic events, no coverage model is
included for these events.

Although the functional dependency gate does not increase the modeling capacity of the fault
tree, it can reduce the e�ort required to develop a fault tree model of a system with complex
interconnections.

4.4.4. Example of Priority and Gate

The priority and gate is logically equivalent to an AND gate, with the added requirement
that the input events occur in a speci�c order (refs. 54 and 55). In HARP, the number of inputs
for a priority and gate is limited to two for implementations reasons. However, priority and gates
can be cascaded together to achieve the e�ect of multiinput priority and gates. (See �g. 9.) As
an example of the use of a priority and gate in a fault tree, consider a system that consists of two
channels, as shown in �gure 29. Each channel has two sensors, A1 and A2, that are connected
by a device interface unit (DIU). One sensor is a primary channel, the other is an alternate.
The system begins by operating in channel one. Upon the �rst failure a�ecting channel one,
the system switches to channel two if channel two has not experienced any component failures.
After switching to channel two, the system continues to use channel two until it fails, at which
time the system fails. If after the �rst failure on channel one, the system does not switch to
channel two, then it remains on channel one until channel one fails, at which time the system
fails.

DIU

Sensor A1

Sensor A1

CPU1 Channel 1

DIU

Sensor A2

Sensor A2

CPU2 Channel 2

Figure 29. Two-channel system.

Figure 30 is a fault tree model of this system. The fault tree for this system utilizes two
priority and gates, which input to two and gates. The leftmost priority and gate represents
the situation where a failure occurs on channel one, causing a switch to channel two, and then
channel two fails. The rightmost priority and gate represents the situation where something fails
on channel two (and thus when a failure on channel one occurs the system stays on channel one)
and then channel one fails subsequently.

4.4.5. Example of Cold Spare Gate

As an example of the use of the cold spare gate, consider a system consisting of six
components: A, B, C, D, E, and F . The system operates as a triad, with A, B, and C active
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Figure 30. Fault treemodel of two-channel system.

initially and D, E, and F as cold spares (inactive but not subject to failure). Components D

and E can substitute for A if A su�ers a covered permanent failure. Component D is the �rst

alternate; it gets put into active use when A fails. If D then experiences a covered failure, E is

switched into active use. Components D and E cannot fail before they are switched into use.

Component F can substitute for either B or C, whichever fails �rst. Thus, F is a shared cold

spare (also called a pooled spare). Note that if an external event called G causes a spare called D

to fail, then component D is no longer available for the cold spare gate connected to it.

The fault tree model for this system appears in �gure 31. The cold spares dependencies

are captured by the boxes labeled \Cold Spare Gate." The leftmost input to the cold spare

gate is the primary component, and the others are the alternates (cold spares) for the primary

component. The order in which the cold spare components input to the cold spare gate (left

to right) implies the order in which the spares are switched into active use. The output of the

cold spare gate �res when the primary component and all its alternates have failed. For shared

cold spares, the output �res if the primary component has failed, and either its alternate fails

or its alternate has already been switched into active use for another component (and thus is

no longer available for use as an alternate for the primary component). All inputs to cold spare

gates must be basic events (possibly replicated). The input events of the cold spare gate are not
allowed to have Weibull failure rates in HARP. (See section 2.9.1.)

4.4.6. Example of Sequence-Enforcing Gate

Figure 32 shows the use of sequence-enforcing gates to model state dependent FEHM's in

the fault tree notation. This fault tree models a majority voting 2 out of 3 system where perfect

(unity) coverage is assumed for the �rst failure and a user-speci�ed FEHM is assigned to the

second failure. The details of this model are discussed in chapter 7.
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Figure 32. Fault treemodel of systemwith a sequence-enforcing gate.

4.5. Editing MODELNAME.INP File

The MODELNAME.INP �le is an output of harpeng. It is a text �le containing the name

of the matrix �le and the type and values for the symbolic rates de�ned by the user at runtime

(of the HARP engine). This �le can be edited after the HARP engine program run is complete.

This eliminates the need to enter the parameter values again during future runs of the same

model.

Because the old format of the MODELNAME.INP �le was inconvenient for the user, it is

now written in tabular form, as shown in section 4.2. For a Weibull failure rate, the value of the
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symbol refers to the lambda parameter and the variation is the alpha parameter. Also, symbol
type 21 denotes that the symbol has a Weibull failure rate of type 1 and symbol type 22 denotes
that the symbol has a Weibull failure rate of type 2. The HARP engine program still accepts
any MODELNAME.INP �le written in the old format and rewrites it in the new format.

When the system being modeled is large, the symbolic matrix generated by the model can be
too large to store in the data structures internal to HARP. Then, any calculations that require
reevaluation of the symbolic matrix, for example, the computation of bounds, are not possible.
In such cases, the HARP engine does not need the parameter variation values in the input. If
the engine requires the variation value and it has not been speci�ed, then it is assumed to be
zero.

The exact size of the model that causes the generated symbolic matrix to be too large for the
HARP internal data structures cannot be determined because the size of the symbolic matrix
for the model depends on the size and number of transitions in the model.

4.6. Entering Dictionary in tdrive

The dictionary is both a tool for the user and for the HARP program. As previously
mentioned, the dictionary is required for fault tree input and for Markov chain input if coverage
modeling is desired. Each component type that can fail in the system should be listed, that
is, processors, sensors, and actuators. (For Markov chain FORM's, do not enter component
repair information in the dictionary.) For each component type, the failure rate symbol is given,
that is, lambda, mu, rho, etc. The tdrive program then asks for the coverage model to be used
(ESPN, ARIES, CARE, distributions, moments, empirical, values, none) for the component type.
The user can then specify a preexisting �le containing the appropriate parameter information
or create the FEHM �le by supplying a �lename into which the model parameters should be
stored. Once this information is given for each component type in the system, the user is asked
about user-de�ned near-coincident faults (only if there are coverage models other than NONE
or VALUES). For each appropriate component type, the user lists all component types that
can a�ect the given component type in terms of a second fault crashing the system. Once the
dictionary is complete, the FORM is entered.

To model certain peculiar features of the system under study, the modeler can alter the
dictionary manually. However, care must be taken in making any changes to the dictionary. For
example, the length of the rate parameters and component names cannot exceed 12 characters.
The user must ensure that the number of component types in the dictionary equals the number
of failure exhaustion states in the MODELNAME.INT �le. The grammar associated with the
MODELNAME.DIC �le is restrictive; therefore, while making changes, the user should not
delete the blanks at the end of each line. If the interfering component type numbers exceed
more than one line in the dictionary, they should be continued on the next line starting from
the �rst position (i.e., no blanks at the beginning of the line).

4.7. State-Dependent FEHM|Overriding Default Model

Overriding the FEHM associated with a component type on a speci�c failure transition is
possible. To do so, a colon is inserted into the transition label before the semicolon, followed by
the name of the new FEHM �le or by the word NONE (signifying no FEHM for this transition).
For instance, if the transition label is 4*GAMMA;, we can change the label of the Markov state
transition to 4*GAMMA:FEHM.NEW;. This change does not a�ect any other transitions triggered
by a failure of the speci�c component type. If we want, we can instead turn o� the FEHM for
this transition by using the keyword NONE. For this example, the state transition label then
becomes 4*GAMMA:NONE;.
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In some cases, state dependent FEHM's can be described at the fault tree level with the
sequence gate. (See section 2.5 and chapter 7.) As an example, consider a three-processor system
where each processor has a failure rate of �. When all three processors are operational, the
FEHM associated with the transition is say, FEHM.1. After the �rst fault (i.e., two operational
processors), the FEHM used is FEHM.2. The system fails when two out of three processors
have failed. This model can be described by a sequence gate with two inputs A and B, where A
occurs before B. Input A has associated failure rate of �1, which is assigned the numerical value
of 3 � � at run time. Input B has associated failure rate of �2, which is assigned the numerical
value of 2 � � at run time. In the dictionary �le, FEHM.1 is assigned to �1 and FEHM.2 is
assigned to �2.

If for a particular component type the user has speci�ed type VALUES in the dictionary,
(rather than a FEHM model), has chosen to ignore near-coincident faults (NONE), or has
chosen to ignore coverage completely, then the default model (or lack of a model) cannot be
overridden. This restriction exists because each of these choices results in state-independent
coverage values, which cannot be later made state dependent. Likewise, a transition cannot be
overridden by typing VALUES because of its state independence.

To make it easier for the user to decipher the state of individual components for a particular
Markov chain state, the MODELNAME.INT �le can be optionally augmented by comment lines.
If the user responds a�rmatively to the tdrive question \Include state tuples as comments in
the .INT �le?", then each line (arc designation) in the MODELNAME.INT �le is preceded by
a comment line (beginning with a \*" in the �rst column). This comment line shows the state
descriptor for the source and destination states for the arc. For example, suppose there is an arc
from some state 41 to some other state 56 in the MODELNAME.INT �le. Suppose further that
state 41 represents a con�guration with three components of type 1, two components of type 2,
and zero components of type 3, and the arc represents a failure of component type 2. Then, the
entry in the MODELNAME.INT �le is: 41 56 2*LAMBDA2;. If the MODELNAME.INT �le is
commented, then the line preceding this line is: * 3 2 0 -> 3 1 0 2*LAMBDA2;.
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Chapter 5

Technical Information

5.1. Error andWarning Messages

An electronic �le called MESSAGES.TXT is included on the tape with the source code; this

�le explains the meaning of each error or warning message from HARP. Within each program,

error messages are numbered beginning with 500; warning message numbers are less than 500.

To discern the meaning of an error or warning message, simply search the MESSAGES.TXT

�le for the corresponding message number. The text lists the subroutine name and source �le

from which the message originated, an explanation of the message, and a course of action (where

possible) for correcting the error.

5.2. Installation of HARP Program

The HARP package, which is received on magnetic media has six directories: TDRIVE,

FIFACE, HARPENG, TESTDIR, EXECUTE, FSOLVER. For a DEC VMS installation, the

user has two options for compiling and linking: using command �les or using MMS (Module

Management System) �les. In the TDRIVE, FIFACE, and HARPENG directories contain source

�les and a FORTIT.COM �le and a LINKIT.COM �le. The former creates the needed object

modules, and the latter creates the executable. The user can invoke the *.com �les by typing

@FORTIT.COM then @LINKIT.COM in that order for each subdirectory. The MMS �le is

entitled DESCRIP.MMS and also appears in each directory along with the *.COM �les. The

user can invoke MMS by typing mms in each subdirectory. For a UNIX installation, Make�les

are included in each directory. The user can invoke the Make�les by typing make in each

subdirectory. The executables are entitled TDRIVE for the driver portion of the code, FIFACE

for the interface and HARPENG for the engine. Once compiled, the user can move these

executable �les to a new location. Generally, we operate with these �les in the EXECUTE

directory and put this directory in our path. The code is con�gured to model systems with at

most 10 000 states and up to 90 000 transitions (excluding diagonals of the matrix as HARP

automatically calculates the diagonals). These limits can be changed using the information
provided in the next section.

Once installed, the version can be tested against the three examples in directory TESTDIR.

In addition, scripts of actual runs are found in the EXECUTE directory, named SCRIPT.FT

and SCRIPT.MC. These �les create 3P2M1BFT and 3P2M1BMC, respectively. The output �les

of these runs are also in directory EXECUTE.

The directory FSOLVER contains the source code for the CFEHM program, an editor for

FEHM's. Use the FORTIT.COM and LINKIT.COM �les or DESCRIP.MMS listed therein to

create the DEC VMS executable. Make�les can be used for UNIX installation. Section 5.4

contains information on the CFEHM program. The accompanying tutorial will help familiarize

the user with running the HARP program.
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5.3. Changing Limit Sizes for HARP Program

The HARP program as received is con�gured for up to 10 000 states and up to 90 000 tran-

sitions.22 In addition, the HARP engine program has a limit of 15 000 symbols in the model.

These parameters can all be changed as described in the following sections.

5.3.1. Program tdrive

To change the number of states in program tdrive, perform the following steps:

1. In the ft2mc.for source �le, locate the following line (occurs only once) with an editor:

PARAMETER (MSTATS = oldval)

where \oldval" is an integer and represents the maximum number of states TDRIVE
is currently set to handle. Change \oldval" to the new value \newval" desired for the

number of states.

2. Recompile and relink.

Internally, tdrive uses linked lists implemented by routines that allocate and manage indi-

vidual regions of large integer arrays. Two such arrays are de�ned in the subroutine FT2MC()

in �le ft2mc.f. The array POOL() has its length de�ned by parameter PLEN; similarly array

DPOOL() has its length de�ned by parameter DPLEN. If a HARP error message indicates an op-

eration failed because of insu�cient memory, increasing PLEN and/or DPLEN and recompiling

the program may prove su�cient.

5.3.2. Program �face

To change program �face so that it can run larger problems, the following variables must be

changed. The program �face has two state and transition sizes|those for SORTED input and
those for UNSORTED (or with symbolic state names) input. If input is in sorted order (a fault

tree converted to a Markov chain from TDRIVE is always in sorted order), then the state size

can be up to 10 000 and transitions size up to 90 000. On the other hand, if the input is not in

row-wise order or if the state names are symbolic, then the limits are 500 for state size and 2050

for transition size. If your model is UNSORTED and does not �t in the data structures, �rst try

to put the MODELNAME.INT �le in row-wise order with state names having increasing integer

values beginning with 1. (This scheme is more e�cient and easier than altering the code.) If the

state size and transition size are still too small, increase the following sizes for SORTED input.

� NODES: in common block DATACB

The size of this array represents the number of TRANSITIONS in a SORTED model.

DATACB contains the transitions of the SORTED model. Files with this common block

are

covs, fiface, ld, nxt, printit, transpose

22 By using the HARP truncation option, considerably greater system models can be solved. System models with 71 basic

events can be solved with a truncation at level 3 by HARP on a VAX or Sun workstation. A truncation level 2 or 1 allows

the solution of even larger system models (more than 71 basic events) with possible decrease in accuracy. Larger systems

can be solved on larger computing platforms, up to 296 states (96 basic events) with appropriate truncation. A system of

this size, however, requires expanding the default state size of 10 000 to well over 60000. (See section 2.8.)
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� ROWPTR: in common block DATACB

The size of this array equals the number of STATES+1 in a SORTED model. ROW-

PTR is an array of matrix row o�sets, for each state in the model it tells how many

transitions emanate from it. Files with this common block are

covs, fiface, ld, nxt, printit, transpose

� PARMS: in common block CHRDAT

The size of this array equals the number of TRANSITIONS in a SORTED model. PARMS

contains the rate parameters of the SORTED model. Files with this common block are

covs, ld, nxt, printit, transpose

� JAT: in common block TRARRY

The size of this array equals the number of TRANSITIONS in a SORTED model. Gen-

erally, JAT is the row pointer array. Files with this common block are

ld, printit, transpose

� AT: in common block TRARRY

The size of this array equals the number of TRANSITIONS in a SORTED model. AT

points to the character rate parameters for each transition in the model. Files with this

common block are

ld, printit, transpose

� IAT: in common block TRARRY

The size of this array equals the number of STATES+1 in a SORTED model. Gener-

ally, IAT is the column pointer array. Files with this common block are

ld, printit, transpose

� SYMBOL: in common block COMSYM

The size of this array equals the number of STATES allowed in an UNSORTED model.

SYMBOL contains the symbolic name for each state in the UNSORTED model. Files

with this common block are

ld, nxt

� MCPARM: in common block COMSYM

The size of this array equals the number of TRANSITIONS allowed in an UNSORTED

model. MCPARM contains the rate parameters for each transition in the UNSORTED

model. Files with this common block are

ld, nxt
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� MCNODE: in common block DATACA

The size of this array represents the number of TRANSITIONS allowed in an UNSORTED
model. MCNODE contains the transitions of the UNSORTED model. Files with this com-
mon block are

ld

In addition, in routine INITSZ of �face.for, the following four limits must be changed. Note:
It is unnecessary to change each occurrence of each variable in the �le; instead, change the
declaration.

� STSIZ|new number of states for sorted input

� TRSIZ|new number of transitions for sorted input

� MCSTZ|new number of states for unsorted input

� MCTRZ|new number of transitions for unsorted input

We also have the following �le names and variables that must be changed:

� covs.for: NODES, ROWPTR, PARMS

� �face.for: NODES, ROWPTR, STSIZ, TRSIZ, MCSTZ, MCTRZ

� ld.for: NODES, ROWPTR, PARMS, JAT, AT, IAT, SYMBOL, MCPARM, MCNODE

� nxt.for: NODES, ROWPTR, PARMS, SYMBOL, MCPARM

� printit.for: NODES, ROWPTR, PARMS, JAT, AT, IAT

� transpose.for: NODES, ROWPTR, PARMS, JAT, AT, IAT

5.3.3. Program harpeng

To increase the number of states in the HARPENG program, the user must change the
following parameters and array dimensions:

� MAXST|the number of states (originally set to 10 000)

� TRANS|the number of transitions (originally set to 90 000)
(We generally assume an average of nine transitions per state, but this number can be
lower or higher.)

� MAXSYM|the number of symbols (originally set to 15 000) Estimate the number of
symbols in the model. A good estimate is 100 + total number of FEHM instances (i.e.,
C1, C2, ..., CN in the model means N FEHM instances) +3*number of coverage symbols
of type VALUES + number of failure states (number of component types +2) + number
of active states whose probabilities the user wants to see (only applies for unsorted Markov
chain input|see section 2.7.1). The number of symbols can be reduced tremendously by
telling program FIFACE that the user is not interested in near-coincident faults. If so,
the coverage values is state independent, and the number of coverage symbols is reduced
from (total number of FEHM instances) to (number of components with FEHM models).

� MAXFAC|the number of factors (originally set to 15 000)

� MAXTRM|the number of terms (originally set to 7500)
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� DIAG: in common block MATRXN

The size of this array equals MAXST. DIAG contains the value of each diagonal en-
try (which is the negative sum 23of the outgoing arcs for the state; that is, DIAG(2,2) is
the negative sum of all arcs leaving state number 2). Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� ENTVAL: in common block MATRXN

The size of this array equals TRANS. ENTVAL contains the value of each o� diago-
nal entry of the transition rate matrix. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� SYMENT: in common block MATRXN

The size of this array equals MAXFAC. Along with with FACTYP and NXTFAC,
SYMENT is a vector of symbolic entries. It either contains a pointer to the symbol
table or a constant (integer, 
oat, or double). Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� SYMVAL: in common block MATRXN

The size of this array equals MAXSYM. SYMVAL contains the variation value of each
symbol in the model. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� SYMVAR: in common block MATRXN

The size of this array equals MAXSYM. SYMVAR contains the variation (if any) of
each symbol in the model. For Weibull failure rates, SYMVAR is the vector of the alpha
parameter value. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� SYMNOM: in common block MATRXN

The size of this array equals MAXSYM. SYMNOM contains the nominal value of each
symbol in the model. Files with this common block are

bounds, eval, fill, gcall, harpeng, set, store, sym

� ROWPTR: in common block COMM1

The size of this array equals MAXST+1. ROWPR contains row pointers into the sparse
matrix data structure. The di�erence between ROWPTR(i) and ROWPTR(i+1) is the
number of nonzero entries stored for the corresponding row. Files with this common block
are

bounds, eval, fill, gcall, harpeng, set

23 The negative of the sum of the absolute values of the outgoing transition rates.
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� COLIND: in common block COMM1

The size of this array equals TRANS. COLIND contains pointers to the sparse matrix

columns. Files with this common block are

bounds, eval, fill, gcall, harpeng, set

� FACLHD: in common block COMM2

The size of this array equals MAXTRM. Together with NXTTRM, FACLHD constitutes

a term node. The term node stores pointers to symbolic expressions. FACLHD points to

the head of a factor list containing the symbolic expression (see FACTYP, SYMENT, or

NXTTRM). NXTTRM points to the next term in the expression (terms are separated by

a plus or minus). Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

� NXTTRM: in common block COMM2

This size of this array equals MAXTRM. Together with FACLHD, NXTTRM constitutes

a term node. The term node stores pointers to symbolic expressions. FACLHD points to

the head of a factor list containing the symbolic expression (see FACTYP, SYMENT, or

NXTTRM). NXTTRM points to the next term in the expression (terms are separated by

a plus or minus). Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

� FACTYP: in common block COMM2

The size of this array equals MAXFAC. Combined with NXTFAC and SYMENT,

FACTYP is a vector of symbolic entries. It contains an integer specifying the type of

factor pointed to by FACLHD: 0 = Constant, 1 = x, 2 = �x, 3 = ` and 4 = '. Files with

this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

� NXTFAC: in common block COMM2

The size of this array equals MAXFAC. Combined with FACTYP and SYMENT,

NXTFAC is a vector of symbolic entries. It contains a pointer to the next factor in

the term. Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym

� ETLHD: in common block COMM3

The size of this array is between 2 and COLIND, that is, 2 � ETLHD � COLIND.

ETLHD determines how much of the matrix can be read in at one time. If the size of the

array is small, the evaluation takes longer; however, the size of the program is smaller. If

the size of the array is small enough to allow only a portion of the matrix to be read in at

a time, bounds and Weibull failure processes are disallowed. The size of this array should

be stored in MAXENT. Files with this common block are

eval, fill, gcall, get, harpeng, hrputil, set, store, sym
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� SYMNAM: in common block MATRXC

The size of this array equals MAXSYM. SYMNAM contains the name of each symbol
in the model. Files with this common block are

bounds, eval, fill, gcall, get, harpeng, hrputil, sym

� SYMFN: in common block MATRXC

The size of this array equals MAXSYM. SYMFN contains the �lename of each
symbol in the model, if the symbol is a coverage factor. Files with this common block are

bounds, eval, fill, gcall, get, harpeng, hrputil, sym

� STDEF

The dimension of STDEF should be changed to MAXST in bounds .for, set.for, and
gcall.for

� WORK

The dimension of WORK should be changed to (8*MAXST+3) in gerk.for and gcall.for

Also, in routine INITMX of hrputil.for, the following �ve limits must be changed:

� MAXST|new number of states

� MAXTRM|new number of terms

� MAXFAC|new number of factors

� MAXSYM|new number of symbols

� MAXENT|new number of size of ETLHD array

We also have the following �le names and variables that must be changed. Note: It is
unnecessary to change each occurrence of each variable in the �le; instead, change the declaration.

� bounds.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, SYMNAM, SYMFN, STDEF

� eval.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, FACLHD, NXTTRM, FACTYP, NXTFAC, ETLHD, SYMNAM,
SYMFN

� �ll.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, FACLHD, NXTTRM, FACTYP, NXTFAC, ETLHD, SYMNAM,
SYMFN

� gcall.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, SYMNAM, SYMFN, STDEF, WORK

� gerk.for: WORK

� get.for: FACLHD, NXTTRM, FACTYP, NXTFAC, ETLHD, SYMNAM, SYMFN

� harpeng.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, SYMNAM, SYMFN, WORK

� hrputil.for: FACLHD, NXTTRM, FACTYP, NXTFAC, ETLHD, SYMNAM, SYMFN,
MAXST, MAXTRM, MAXFAC, MAXSYM, MAXENT

69



� set.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, ROWPTR,
COLIND, FACLHD, NXTTRM, FACTYP, NXTFAC, ETLHD, STDEF

� store.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, FACLHD,

NXTTRM, FACTYP, NXTFAC, ETLHD

� sym.for: DIAGS, ENTVAL, SYMENT, SYMVAL, SYMVAR, SYMNOM, FACLHD,

NXTTRM, FACTYP, NXTFAC, ETLHD, SYMNAM, SYMFN

If the symbolic transition rate matrix �ts in these data structures, then bounds and Weibull

failure processes are allowed by the program. If the matrix does not �t, then the portion of the

matrix that is read in at each step is evaluated and the space is reused. Once the entire matrix

is evaluated, the unreliability (or unavailability) is computed.

5.4. CFEHM|An Editor for FEHMModels

The stand-alone program CFEHM allows the user to create new FEHM �les or change

parameter values in existing ones. A user creating a new FEHM �le is stepped through the

input as in tdrive, with the same models available, as described in section 4.2. In addition to

creating the �le, the FEHM is solved immediately and the exit probabilities are displayed on

the terminal. CFEHM allows the user to change any existing FEHM �les and supports change

of single parameters, adding phases as in the ARIES Transient Recovery Model or changing
distributions as in the ESPN model. The FEHM �le is displayed line by line followed by the

(Y=N) option, where yes means that the user wants to change a value and no means that the

user wants to retain the old value. If the change option is chosen, the user is prompted for the

new input and subsequent dependent values.

5.5. Solving Large Models

This version of HARP is con�gured for a problem that requires up to 10 000 states.24 A

problem of this size can be solved easily on a DEC VAX 750 computer, which is the machine

on which HARP was developed. The limiting factor on the size of the problem is the amount of

storage required to store the symbolic transition rate matrix. On a DEC VAX 8600 computer,

we have solved problems as large as 25 000 states (one user reported success in solving a system

with 45 000 states on a DEC VAX 11-785). This section discusses some methods that the user

can utilize to solve very large problems.

If the symbolic matrix is too large to store in the data structures internal to HARP (but there

are still fewer than 10 000 states), the portion of the matrix that has been stored is evaluated,

and the space is reused. This method allows the user to solve larger problems (without increasing

the data storage requirements) but disallows any calculations that require reevaluation of the

symbolic matrix (bounds, Weibull failure rates). If the problem is still too large for HARP

to solve, for example if there are too many symbols, the user can ignore the consideration of

near-coincident faults. This action signi�cantly reduces the number of distinct symbols in the

model because the coverage factors are now state independent.

To solve models that are larger than 10 000 states, see the section 4.3, which discusses how

to change the limits on the various variables used in HARP.

5.6. System Resources

When HARP is executed on a DEC VAX 11-700 series computer, the following resources are

required for the default 10 000 state limits:

24 The con�gured state size of 10 000 is the actual number of state occupancy probabilities that are computed. By using

the truncation technique of chapters 1 and 4, systems with much larger states can be solved. The maximum system size is

296equivalent Markovian states; however, the computational resources required to use this size model may be unavailable.
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� 4096 physical pages (2 MB of real memory)

� 40 000 virtual pages (20 MB virtual address space)

Under a UNIX environment, the same bytes of real memory and virtual address space are
required. The system parameters may also need to be changed to allow a single user a large
working set size. These parameters include the working set maximum and the virtual page
count. For execution under MS DOS, see section 1.2.4.
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Chapter 6

DynamicFaultTreeGates

6.1. Modeling Nonrepairable Systems of Arbitrary Complexity
With Fault Trees

The dynamic dependency gates for fault tree modeling are not traditional fault tree gates

and will be unfamiliar to most HARP users. This chapter familiarizes the user with the detailed

speci�cation and mathematical model for each dynamic dependency gate. The original research

on the dynamic fault tree gate models is reported in reference 36. As with any modeling language,
the modeler must properly apply these gates according to their speci�cations.

For the purposes of our discussion we use the following notation. We identify a particular

Markov chain state by listing a set of the components that failed while producing the state in

question. For example, if the system has �ve di�erent components (one of each type present)

and if components 2 and 5 have failed (�rst component 2 followed by component 5), then the

system is left in a state denoted by an index I = (2; 5). Because the new fault tree gates model

system behavior for which the sequence in which the components fail is important, the order

in which the components fail can be signi�cant. Therefore, we note that state (2; 5) generally

cannot be equivalent to state (5; 2).

States can also be denoted with tuples, indicating which components are still working and

which have failed. We call these component status tuples because they denote the working status

of all system components. It is not possible to denote the sequence in which the components

have failed with only the component status tuple notation. For example, both state (2; 5) and

state (5; 2) can be denoted by the tuple 10110. For this reason, if the sequence of component

failures is signi�cant, then the Markov chain state labeling method may need to be extended by

appending to the component status tuple some additional information indicating the sequence

in which certain events took place. The form of this additional information is determined by the

structure of the fault tree. For example, an additional element may be added to the component

status region of the tuple for each priority and gate (see section 6.1.3) in the fault tree to indicate
which of the gate's inputs (left or right) �red �rst (or whether any inputs have �red at all yet).

In this way, states can be denoted that are identical in terms of components working or failed

but which are distinguished by the sequence in which component failures occurred, as expressed

by one or more priority and gates. Yet another type of additional information (described in

section 6.1.4) is appended to the component status region of the state tuple for each cold spare

gate in the fault tree that shares any of its spares with one or more other cold spare gates in the

fault tree.

Components of identical type that serve a redundant function in the system can be grouped

together in what are called replicated basic events. The previous notation is easily extended to

accommodate these: the tuple notation is nonbinary with redundant sets of components denoted

by members of the tuple whose value is greater than one. Conversely, the component failure list

notation can simply contain multiple occurrences of component type i in the list denoting the

failure of more than one member of the redundant set of components of type i. For example,

if the system containing �ve types of components has a group of two redundant components of

type 2, the original state tuple (denoting \all components working") is 12111. If one component

of type 2 fails, followed by one component of type 5 failing, followed by the other component of

type 2 failing, the resulting state is denoted by either the component failure list (2; 5;2) or the

state tuple 10110. If the sequence in which these components fail is signi�cant (for example, if
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state (2;5; 2) is distinct from state (2; 2;5) in the Markov chain), then additional information
needs to be appended to the tuple 10110 to indicate the sequence in which the components failed.

In general, the form of that additional information is determined by the structure of the fault

tree, as previously described. In most cases, the component failure list notation are preferred

over that of the component status tuple notation for reasons of simplicity and clarity.

We assume that component i fails at a constant rate �i. A state labeled F j is entered

whenever a component of type j fails and there are no spare components to take its place

(exhaustion of redundancy); thus, a system crash results. We denote the probability of being in

state I at time t by PI(t), and the Laplace transform for the state by LI(s). For example, the

probability and Laplace transform for state (2; 5) are P2;5(t) and L2;5(s), respectively. The initial

state (the one in which all components are operational) is denoted by the index 0 (e.g., P0(t)

and L0(t)).

6.1.1. Functional Dependency Gate

The functional dependency gate is the simplest of the sequence-dependent gates to de�ne. It

has an input, called the trigger input, which can be any general event (e.g., the output of any

other fault tree gate or any basic event). For ease of presentation, we assume without loss of
generality that the trigger event is a single unreplicated basic event. The gate also has a number

of dependent events, which must be (possibly replicated) basic events. Finally, the gate has an

output (which we call the nondependent output) whose value is always identical to the value

of the input event (i.e., the nondependent output event occurs if and only if the input event

occurs). This output is provided to simplify the display of complex fault trees where the trigger

event is required as an input to another gate.

Figure 33 depicts the functional dependency gate as described here. The trigger event is

event 1, the dependent events are events 3 through n, which can be replicated (i.e., groups of mi

redundant components of type i), and the output event is denoted by the outgoing arc at the

top of the gate. Figure 34 depicts the Markov model that de�nes the behavior of the functional

dependency gate shown in �gure 33, where the states have been labeled with failed component

lists. Figure 35 depicts the same Markov model with the states labeled with component status

tuples. Figure 35 gives a better indication of the component failures than �gure 34. The Markov

model contains two states: the initial state depicting the situation before the trigger event occurs

and the �nal state representing the situation after the trigger event occurs.

Figure 33. Functional dependency gate.
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Figure 34. Markov model de�ning action of functional dependency gatewith failed component lists.

Figure 35. Markovmodel de�ning action of functional dependency gate with component status tuples.

In �gure 35, the initial state tuple indicates that neither the trigger event nor any of the
dependent events (interpreted here as component failures) has occurred by showing that the
trigger component and all dependent components are still operational (all tuple members are
still greater than 0). The �nal state indicates that the trigger event has occurred (trigger
component has failed), and the action of the gate causes all dependent events to occur as well
(all dependent components are forced to fail). Thus, all members of the tuple correspond to
dependent events becoming zero (note that the tuple member corresponding to component 2
is still nonzero because component 2 was not dependent on the trigger component). The rate
at which this occurs is the rate of occurrence of the trigger event �1. The output event of
the functional dependency gate is de�ned to be equal to the trigger event. The Chapman-
Kolmogorov equations and the single-sided Laplace transform equations are given for state 0 in
equations (1) and for state 1 in equations (2) as follows:

dP0(t)

dt
= ��1P0(t)

L0(s)=
1

s+ �1

9>>=
>>;

(1)

dP1(t)

dt
= �1P0(t)

sL1(s)= �1L0(s)

L1(s)=
1

s
�1

1

s+ �1

= �1

�
1=�1
s

+
�1=�1
s + �1

�

=
1

s
�

1

s+ �1

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(2)

The probability of the output event of the gate is as follows:

P1(t)= 1� e��1t (3)

Although this example is simple enough to be solved by inspection, we have used a three-step
analysis to obtain a mathematical expression for the gate's output event (and hence a de�nition
of the action of the gate) to illustrate the general procedure used to analyze all these gates.
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We �rst identify a minimal Markov model that de�nes the action of the gate. We then use the
Laplace transform equation for the output event of the gate. We �nally obtain an expression for

the probability of the output event by inverting the Laplace transform.

6.1.2. Sequence-Enforcing Gate

We next consider the sequence-enforcing gate. This gate can have any number of inputs.

The leftmost input can be any general event (e.g., the output of any other fault tree gate or

any basic event). Again, for ease of presentation, we assume without loss of generality that this

leftmost event is a single unreplicated basic event. All other inputs to the gate must be (possibly

replicated) basic events. The gate has an output which is on when all gate inputs are on (i.e.,
have occurred). We note that when an input leads to a descendent node that is a replicated basic

event, the input event is not considered to occur until all redundant components of the replicated

basic event have failed. Figure 36 shows a sequence-enforcing gate for which the inputs all lead

to unreplicated basic events (representing components 1 through n). The sequence-enforcing

gate constrains the occurrence of its input events to follow the left-to-right order in which they

appear as inputs to the gate. For example, event 2 is not permitted to occur before event 1.

Similarly, event i+ 1 is not permitted to occur before event i. This process is accomplished by

not including in the Markov model any states for which event i+ 1 has occurred and event i has

not. The resulting Markov model that corresponds to �gure 36 is shown in �gure 37.

Figure 36. Sequence-enforcing gatewith unreplicated basic events.

Figure 37. Markovmodel de�ning action of n-input sequence-enforcing gate for output event of gate.

Using the Chapman-Kolmogorov equations, we can derive the Laplace transform equation as

follows:

L0(s)=
1

s+ �1
(4)
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dP1(t)

dt
= �1P0(t)� �2P1(t)

L1(s)=
1

s+ �2

�1L0(s)

= �1

1

s+ �2

1

s+ �1

9>>>>>>>>=
>>>>>>>>;

(5)

dP
1;:::;k(t)

dt
= �kP1;:::;k�1(t)� �k+1P1;:::;k(t)

L
1;:::;k(s)=

1

s+ �k+1

�kL1;:::;k�1(s)

=
1

s+ �k+1

�k
1

s+ �k

: : :
1

s+ �1

9>>>>>>>>=
>>>>>>>>;

(6)

dPFn(t)

dt
= �nP1;:::;n�1(t)

sLFn(s)= �nL1;:::;n�1(s)

LFn(s)=
1

s

nY
i=1

�i

s + �i

9>>>>>>>=
>>>>>>>;

(7)

Equation (7) is the Laplace transform equation for the output event of the sequence-enforcing

gate. Using the following partial fraction expansion method from reference 44:

N(s)Qn
i=1(s + ai)

=

nX
i=1

Ci

s+ ai

where

Ci =
N(s)Qn

i=1(s + ai)
(s + ai)js=�ai

and taking �0 = 0, we can obtain a form of equation (7) that is easily invertible:

LFn(s)=

nY
i=1

�i

nX
k=0

1=
Q

j=0;j=k

�
�k � �j

�
s + �k

(8)

Inverting equation (8) gives the probability of the output event of the sequence-enforcing

gate:

PFn(t)=

nY
i=1

�i

nX
k=0

e
��ktQ

j=0;j=k

�
�k � �j

� (9)

These �gures and equations are easily modi�ed to accommodate inputs leading to replicated

basic events. Figure 38 depicts such a sequence-enforcing gate. The corresponding Markov chain

is similar to that depicted in �gure 37 except that m1 failures of the components of type 1 occur

�rst followed by m2 failures of the components of type 2, and so on until the mn components of

type n are the last to fail. A straight-forward application of the Chapman-Kolmogorov equations
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shows that the Laplace transform for the gate output when the gate inputs lead to replicated

basic events generalizes from equation (7) to the following:

LFn(s)=
1

s

nY

i=1

2
4
m
i
�1Y

j=0

(mi� j)�i

s+(mi� j)�i

3
5 (10)

from which an expression for the probability PFn(t) can be obtained by using the same partial

fraction expansion procedure that was used before.

Figure 38. An n-input sequence-enforcing gate with replicated basic events.

6.1.3. Priority And Gate

The sequence-enforcing gate described in the previous section forces component failures to

follow a prescribed sequence in the Markov model by disallowing inclusion of any states in

the model for which component failures have occurred in other than the prescribed sequence.

In contrast, the priority and gate allows these states from the Markov model. However, if

components fail in other than the prescribed sequence for a particular gate, the gate never �res

(i.e., the output event of the gate never occurs). The output event only occurs if all input events

of the gate occur in the left-to-right sequence in which they appear as inputs to the gate. Our

implementation requires that each priority and gate has a maximum of two inputs. However,

two or more priority and gates can be cascaded together to achieve the e�ect of a multiinput

gate. Therefore, we assume a multiinput priority and gate (an unlimited number of inputs) for

the purpose of our analysis. The inputs of the priority and gate can be any general event (e.g.,

the output of any other fault tree gate or any basic event). As previously noted, when an input

leads to a replicated basic event, that input is not considered to be on (i.e., the event occurred)

until all redundant components in the replicated basic event have failed. Again, for ease of

presentation, we assume without loss of generality that the inputs to the priority and gate lead

to unreplicated basic events. Figure 39 depicts the Markov model that de�nes the action of a

multi-input priority and gate for which the leftmost input is event 1, the next leftmost is event 2,

up to the rightmost event, which is event n. The Laplace transform equation for the output

event of the gate can be obtained by again using the Chapman-Kolmogorov equations as follows:

L0(s)=
1

s+
Pn
i=1�i

(11)
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(14)

Taking a0 = 0 and ai
P

j2(1;:::;i)�j, we obtain a form of equation (14) that is easily invertible:

LFn(s)=

nY
i=1

�i

nX
k=0

1=
Q

j=0;j=k

�
ak � aj

�
s+ ak

(15)

Inverting equation (15) gives the probability of the output even of the priority and gate:

PFm(t)=

nY
i=0

�i

nX
i=0

e��ktQ
j=0;j=k

�
ak � aj

� (16)

We note here that equations (15) and (16) are identical to the expressions derived by Fussell
(ref. 54) except that our method of numbering the input events of the gate is di�erent.

6.1.4. Cold Spare Gate

The cold spare gate is the most complex gate in the set of sequence dependency gates. All
inputs to the cold spare gate must be (possibly replicated) basic events. The leftmost input
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Figure 39. Markov model de�ning action of n-input priority and gate.

represents one or more primary units that are initially on-line. All inputs to the right of the
leftmost input represent alternate (spare) units or groups of redundant units available as pooled
spares that are initially powered down (i.e., that are cold spares). Upon the failure of any of
the units that are active, replacements are selected from the set of spare units that have not
yet been placed on-line. The spare units must be switched into operation in the left-to-right
sequence in which they appear as inputs to the cold spare gate.

For example, all spare units from the second leftmost input must be activated as spares
for failed components before any units from the third leftmost input can be activated. So
long as at least m1 nonfailed components are present in the set of all components that are
inputs to the cold spare gate (whether on-line or powered down), m1 active (i.e., on-line)
components are always being \used" by the cold spare gate. Once enough failures occur so
that all remaining components are active (i.e., no spares remain that are powered down; they
are all on-line replacing components that have previously failed), then the number of components
being used by the cold spare gate is the number of the spare components that have not yet failed.
This number decreases fromm1 down to 1 as subsequent failures of the spare components occur.
Only when all components from all inputs to the cold spare gate have failed does the output of
the cold spare gate turn on (i.e., the output event occurs). Figure 40 depicts the general form
of the cold spare gate described here.
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Figure 40. An n-input cold spare gate with replicated basic events.

6.1.4.1. CSP Gate Behavior Without Intergate Interactions

When none of the inputs to a cold spare gate are shared with any other gate in the fault
tree, the operation of this general form of the cold spare gate is de�ned by the Markov chain
shown in �gure 41. The probability of the output event of the gate is obtained by solving the
Markov chain for and summing the probabilities of being in state F

i
. This computation can be

achieved with the analysis procedure (used in the previous examples) of deriving the Laplace
transform equation for each F

i
state, performing a partial fraction expansion, and then inverting

the resulting expression to obtain the probability expression (in the time domain) of the state F
i
.

The action of the cold spare gate is often more clearly illustrated when the Markov chain is
labeled with component status tuple notation rather than the list of component failures notation.
As mentioned in section 6.1, a component status tuple indicates how many of each type of
component in the system is still nonfailed. The term nonfailed refers to both active (on-line)
and cold (o�-line) components. Additional information can be added to the component status
tuple of each state to further clarify the action of the cold spare gate. That additional information
has the form of a second tuple containing one element for each input of the cold spare gate (for
fault trees that have several cold spare gates, one such auxiliary tuple can be added for each cold
spare gate in the fault tree). The value of each element indicates how many units are currently
being used (i.e., on-line and active) for each input of the cold spare gate. The component
status tuple is separated from the in-use descriptor tuple by a double bar. For example, a state
labeled m1m2 � � �mnku1u2 � � �un is one in which m1 components of type 1 are nonfailed (i.e.,
either operating on-line or powered down and awaiting activation), m2 components of type 2
are nonfailed, u1 primary units (of component type 1) are active and on-line (i.e., \in use"), and
u2 units of type 2 are on-line, etc. Note that u

i
� m

i
for 1 � i � n at all times. The initial \all

components working" state of a Markov chain for the cold spare gate in �gure A8 always has
the form m1m2 � � �mnkm10 � � � 0. This form indicates that the m1 primary units are initially
all on-line and working correctly and all spare units used by the cold spare gate are initially
powered down and therefore not yet in use by the gate. In general, a state is vulnerable to
failures of components under a cold spare gate in accordance with nonzero values for the in-use
tuple (i.e., the second tuple denoted by the u1u2 � � �un) of the gate because this tuple is the one
that indicates which components are active for the cold spare gate (and hence eligible to fail).

Figure 42 shows the transitions that can be experienced by a general state in the Markov
chain for the cold spare gate of �gure 40 when the component status tuple notation is used.
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Figure 41. Markov chain de�ning action of n-input cold spare gate with replicated basic events.

(We note that u
i
� w

i
and w

i
� m

i
for 1 � i � n, where w

i
denotes the number of components

of type i that are still working (i.e., nonfailed).) The incoming transitions come from upstream
states where for each transition at least one of the u

i
primary components has failed.

As an example, the action of the cold spare gate shown in �gure 43 is de�ned by the Markov
chain shown in �gure 44. Each state is labeled with a two-part state tuple. The �rst part of
the state tuple is the component status tuple. A double bar separates the �rst part of the tuple
from the second part. The second part of the state tuple is the in-use descriptor tuple for the
cold spare gate and contains the number of components of each type that are currently being
used by the cold spare gate. That is, the components being used are on-line and performing the
functions of the primary units of the cold spare gate that were initially on-line. The second part
of the tuple shows exactly which spares are currently active (replacing failed components).
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Figure 42. General state fromMarkov chain for cold spare gate with replicated basic events.

Figure 43. Example cold spare gate with replicated basic events.

Initially, the system begins with all three primary units (all of component type 1) operating

correctly. The two spare components of type 2 and the one spare component of type 3 are o�-
line. This status is indicated by the value 300 in the second part of the state tuple of the initial

state in the Markov chain. Eventually, one of the three primary units fails, and one of the spare

components of type 2 is switched on-line to take the place of the failed component. The system

moves to the state labeled 221k210. In this case, the second part of the state tuple indicates that

two components of type 1 and one spare component of type 2 are in use by the gate. The other

spare component of type 2 and the spare component of type 3 are still o�-line (powered down)

and hence not in use by the gate. Consequently, these two components cannot fail yet because

it is assumed that powered down components do not fail. Once the spare component of type 2

that is selected to replace the failed component is activated, it can fail at any time after it is

placed on-line. Therefore, the next failure the system experiences can be either one of the two

remaining components of type 1 (in which case the system goes to the state labeled 121k120) or
the active component of type 2 (leading the system to go to the state labeled 211k210).

When one of the components of type 1 fails, the remaining component of type 2 is activated

to replace the second failed component of type 1, and the system is left operating with one

component of type 1 and two components of type 2 (as indicated by the second part of the
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Figure 44. Markov chain de�ning action of cold spare gate with replicated basic events.

state tuple, 120). When the active component of type 2 fails, the second component of type 2
is activated to replace the �rst component of type 2 (which just failed), and the system is left
operating with two components of type 1 and one component of type 2 active. This status is
indicated by the second part of the state tuple, 210. Note that the second part of the state
tuple for this state (211k210) has not changed from the second part of the tuple for the previous
state (221k210) even though the system has one less component of type 2 in working order.
The second part of the state tuple records only the number of each type of component that is
in use by the cold spare gate, and from the previous state to the current state the number of
components of each type that are in use has not changed. One component of type 2 has failed
and been replaced by the other component of type 2; thus, the count of active components are
unchanged.
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While in state 211k210 the system can experience either a failure of one of the two components
of type 1 or a failure of the component of type 2. Either kind of failure results in the last spare (of

component type 3) being activated and placed on-line. If one of the components of type 1 fails,

then the system goes to state 111k111 in which one of each component type is operating on-line.

If the component of type 2 fails, the system goes to state 201k201 in which two components of

type 1 and the component of type 3 are all operating on-line. Note that all or some components

of type 2 can fail before all components of type 1 fail, and components of type 3 can be activated

before all components of type 1 fail. The cold spare gate with replicated basic events di�ers

from the sequence-enforcing gate with replicated events in this respect. The fact that the

cold spare gate enforces the sequence of component activation rather than failure accounts for

this di�erence. The cold spare gate prevents any components that have not been activated

from failing. Once activated, however, components can fail at any time. Consequently; once

components A and B are both active, component B can fail before component A even though

component A may have been activated before component B. By contrast, the sequence-enforcing

gate enforces the sequence of allowed component failures (or, more generally, the sequence of

event occurrences); thus, all components of type 1 must fail before any components of type 2 or

type 3 can fail.

The remainder of the Markov chain in �gure 44 can be similarly interpreted. Note that the

sum of all components in use by the cold spare gate (as indicated by the second part of the

state tuple) always equals the original number of primary units (in this case, three) until fewer

than that number of components remain that have not yet failed. Then, all remaining spare

components have been activated and placed on-line, and subsequent failures are not replaced by

spares (there are no spares left). Thus, degraded system performance results. The output of the

cold spare gate turns on only when one of the states labeled F1, F2, or F3 is reached.

The system modeled by the fault tree in �gure 43 remains operating as long as is at least

one component among the primary and spare units is working. However, sometimes the system

to be modeled has a critical minimum component count of components that must be operating

for the system to remain functional. For example, suppose the system shown in �gure 43 can
only remain operational if at least three components from among the primary and spare units

remained operational. This system can be modeled easily by adding an M-out-of-N gate (where

M is one greater than the critical minimum number of components that need to be operational,

and N is the total number of components that are inputs to the cold spare gate) to the cold

spare gate. All inputs to the cold spare gate must also be inputs to the M-out-of-N gate. The

outputs of the M-out-of-N gate and the cold spare gate should then become inputs to an or gate.

Figure 45 shows the system for which at least three components from among the primary and

spare units must be operational in order for the system to be operational. Figure 46 shows the

resulting Markov chain.

6.1.4.2. CSP Gate Behavior With Spares Shared Between CSP Gates

Unlike the sequence-enforcing gate, the cold spare gate can interact with other gates of the

fault tree in two special ways. The �rst occurs when two or more cold spare gates share an

alternate (spare) unit (or group of pooled spare units). Figure 47 depicts a situation where

n� 1 system components share a spare unit between them. In the �gure, the �rst cold spare

gate to have its primary unit fail does not \�re" (i.e., the output event does not occur) until

the spare unit subsequently fails. In the meantime, any subsequent failure primary unit of any

other cold spare gate (before the spare unit fails) causes that cold spare gate to �re immediately

because the shared spare is no longer available to replace failing primary units (it has already

been used to replace the �rst failed primary unit). Figure 48 shows the equivalent Markov model

that de�nes this interaction between cold spare gates sharing spare units. The probability of
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Figure 45. Cold spare gate with critical minimum complement.

Figure 46. Markov chain de�ning action of cold spare gate with critical minimum complement.

the top event of the fault tree of �gure 47 is obtained by solving the Markov model in �gure 48

for the probability of each of the states labeled Fi and then summing the probabilities of those
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Figure 47. Fault tree with n�1 cold spare gates sharing a spare.
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Figure 48. Markov model de�ning action of n�1 spare-sharing cold spare gates.

states. This computation can be accomplished with the analysis method used in the preceding

sections to analyze the Markov models for the other gates.

An additional consideration arises when a replicated basic event representing a group of

pooled spares is shared between two or more cold spare gates. The order in which failures

occur among activated members of such a group of pooled spares can be signi�cant and must be

accounted for in the Markov chain. To illustrate this point, consider the fault tree in �gure 49.

The Markov chain for this system is shown in �gure 50. The �rst part of the label of each state
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Figure 49. Fault tree with cold spare gates sharing pooled spares.

is the component status tuple. The next part, separated by a double bar from the �rst part,
is an in-use tuple denoting the components that are in use by the leftmost cold spare gate in
�gure 49. The last part of the state label (again separated by a double bar from the previous
part) is an in-use tuple denoting the components that are in use by the rightmost cold spare
gate in �gure 49. In this example, two spare units of type 3 are pooled together and shared by
the two cold spare gates in the fault tree. If component 1 fails �rst, one of the components of
type 3 is activated to replace it. If component 2 fails next, the other component of type 3 is
activated to replace it. If a component of type 3 (one of the units in the replicated basic event
labeled 2�3) fails next, the order in which the two components of type 3 fail is now signi�cant. If
the component selected to replace the failed component of type 1 fails �rst, the system behavior
can be di�erent than if the component selected to replace the failed component of type 2 fails
�rst. The order of failures is illustrated in �gure 50 in the transitions from state 00211k010k010 to
states 00111k001k010 and 00111k010k001. The set of descendent states of state 00111k001k010
(and hence the behavior of the system once it has reached state 00111k001k010) di�ers from the
set of descendent states of state 00111k010k001. This di�erence in system behavior is accounted
for by the fact that the process of activating and replacing failed components has transformed
the two components of type 3 from being functionally equivalent units (which they were when
they were o�-line pooled spares that were powered down) to being functionally distinct units in
the system. This transformation need not always occur. For example, suppose that in �gure 49
two components of type 1 instead of one were attached to the leftmost input of the leftmost
cold spare gate. Further, suppose that both of these components of type 1 have failed and that
both of the components of type 3 were activated to replace them. If the next failure is one of
the components of type 3, then which one of the two actually fails �rst is not signi�cant. The
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Figure 50. Markov chain for fault tree with cold spare gates sharing pooled spares.

subsequent behavior of the system is the same no matter which component of type 3 fails. On
the other hand, suppose only one of the components of type 1 fails and is replaced by one of
the components of type 3, and then the component of type 2 fails and is replaced by the other
component of type 3; then suppose the next failure is a component of type 3. In this case, the
system behavior may depend on which of the two components of type 3 fails �rst.

This type of sequence dependency can be subtle and di�cult to track in the Markov chain
for a fault tree that has cold spare gates that share pooled spares. However, the use of the
auxiliary in-use tuples previously described provides a satisfactory way of accounting for these
sequence dependencies in the Markov chain. This state labeling method, which is perhaps not
the most e�cient method of recording sequence dependencies in Markov chain states, makes it
comparatively easy for human modeling engineers to understand what is going on in the Markov
chain (and consequently the fault tree) model of the system.
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6.1.4.3. CSP Gate Behavior for Spare Shared With Functional Dependency
Gate

The second special intergate interaction of a cold spare gate occurs when a spare unit for
a cold spare gate is also a dependent event for a functional dependency gate. Normally, the
cold spare gate disallows the spare from failing before the primary unit fails. However, if the
spare unit is disabled as a result of the failure of some other component through the action of a
functional dependency gate, then the failure of the spare is permitted even though the primary
unit may still be operational. This apparent exception to the cold spare gate de�nition is needed
because the disabling of a spare unit (modeled with the functional dependency gate in this way)
is expressed by considering the spare unit as functionally failed, even though the unit may
not actually have failed. Figure 51 shows the simplest fault tree that models this situation, and
�gure 52 shows the equivalent Markov model that de�nes this interaction between the functional
dependency gate and the cold spare gate. The normal action of the cold spare gate would have
prevented state 1,3 (and any of its descendent states) from being generated. The e�ect is that
component 3 is prevented from failing before component 2 fails, and component 1 is prevented
from failing before component 2. However, because component 3 (the spare of the cold spare
gate) is a dependent event of the functional dependency gate, state 1,3 is generated and included
in the Markov chain along with its descendent states. The probability of the top event of the
fault tree of �gure 51 is obtained by solving the Markov model in �gure 52 for the probability
of each of the states labeled Fi and then summing the probabilities of those states.

Figure 51. Fault tree interaction between functional dependency gate and cold spare gate.

6.2. Fault-Tree-to-Markov-Chain Conversion Algorithm

An arbitrary fault tree can be converted into an equivalent Markov chain with a fault-tree-to-
Markov-chain conversion algorithm. The original version of this algorithm is described in detail
in reference 49. This original algorithm has been expanded to allow the addition of sequence-
dependency gates to the standard set of traditional fault tree gates. A sketch of the updated
algorithm is as follows:
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Figure 52. Markov model interaction between functional dependency gate and cold spare gate.

Algorithm ft2mc

input component failure rates;

input and build internal representation for fault tree;

determine number of basic even nodes;

determine system ``initial operational state'';

open output file;

initialize state queue and state table;

place ``initial operational state'' onto the state queue;

while (state queue not empty) do

f

remove next originating state from queue;

for each component i in the state tuple do

f

simulate a failure of one of component i;

evaluate the effect on the resulting state of

Functional Dependency gates;

evaluate the effect on the resulting state of

Cold Spare gates;

evaluate the effect on the resulting state of

Priority-AND gates;

evaluate the effect on the resulting state of

Sequence Enforcing gates;

look up resulting state in the state table;
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if (resulting state is new, i.e. not in

state table) then

f

if (not system failure) then

add resulting state to queue;

record resulting state in state table;

g

output arc from originating state to resulting state;

undo simulated failure of one of component i;

g /* End of for loop */

g /* End of while loop*/

close output file;

end ft2mc.

This algorithm has been modi�ed somewhat to allow lumping together of multiple transitions

from an originating state to a single resulting state. However, this algorithm is the simplest

conceptual expressure of the fault-tree-to-Markov-chain conversion algorithm and su�ces for

the purpose of describing our work here.
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Chapter 7

AdvancedModelingTechniques
This chapter informs the advanced user of some important modeling features of HARP. The

�rst section illustrates a technique for specifying FEHM's directly from a fault tree instead of the
typical FEHM speci�cation. The extent to which the FEHM speci�cation can be implemented
in the fault tree notation has not been explored.

The second section addresses the application of HARP's multifault models to a speci�c class
of system architectures that use nearly independent fault containment regions. A study has
shown that as the number of fault containment regions increase, HARP's multifault ALL model
produces an increasing greater conservative result.

7.1. State-Dependent FEHM's in Fault Trees

Figure 53 shows the use of the sequence-enforcing gate to force state-dependent FEHM
insertion in a fault tree. The FORM without FEHM's for the model in the �gure is an or
gate with the same top event (FBOX) and basic events 3*1 and 3*2. This notation speci�es
three units of type 1, shown as P (e.g., a processor) in the �gure and three units of type 2,
shown as Q (e.g., buses). By splitting the number of P and Q units and renaming the groups
of two units as 2P1 and 2Q2 (1*1, 1*2, 2*3, 2*4 in HARP notation), di�erent FEHM's can
be assigned to the units. In this example, no FEHM's are assigned to P and Q, but the same
or di�erent FEHM's can be assigned to the 2P1 and 2Q1 units, respectively. The sequence-
enforcing gates enable this capability by precluding the 2P1 and 2Q1 units from failing until
the P or Q unit fails. The modeling e�ect is that because no FEHM's were speci�ed for the
�rst P or Q failure, a unity fault/error recovery probability (coverage) is modeled for the �rst of
these failures. Subsequent failures have the speci�ed FEHM's inserted into the resulting Markov
chain as usual.

FBOX

SEQSEQ

P 2P1 Q 2Q1

State-Dependent FEHM's

P, Q (No FEHM's)
2P1, 2Q1 (FEHM's)

Note:  Dictionary names are shown here.

Figure 53. State-dependent FEHM's fault tree. (This �gure is identical to �gure 32.)

7.2. Approximating Multifault Models

As discussed in section 2.7, HARP o�ers three simpli�ed models, ALL-inclusive, SAME-
type, and USER-de�ned, for automatic multifault model generation when invoking behavioral
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decomposition. The penalty for utilizing a simpli�ed multifault model when all failure modes
are captured is an increase in the conservatism of the unreliability predictions. The degree

of conservatism is a function of the disparity of the FORM and FEHM sojourn times. The

advantage of using a simpli�ed multifault model is a considerable reduction in computation and

user e�ort to de�ne the input for the detailed model. For most systems the simpli�ed models

provide acceptable results (refs. 27, 32, and 34). When this is not the case, the user can modify

the HARP generated ASCII �les to get an accurate model with behavioral decomposition. Using

the AS IS model and using the X Window System (XHARP) are alternative ways to obtain more

accurate results (ref. 5).

Figure 54 is an example of the use of the ALL-inclusive model for a system where transitions

out of recovery states is possible (ref. 5). With behavioral decomposition, HARP ignores these

transitions unless the user invokes the ALL-inclusive multifault model, as shown in �gure 54.

The system consists of two triads with failure rates �1 = �2 = 0:25� 10�4/hr and the recovery

rate � = 0:72� 104/hr (12-sec mean recovery). Recovery is always successful, unless a near-

coincident fault occurs. A near-coincident fault in the same triad causes that triad to go o�-line,

but the system remains operational. A near-coincident fault in the other triad causes a system

failure. Both triads cannot be executing recovery procedures simultaneously, and the system is

operational if at least one triad is operational. For a mission time of 100 hr, the unreliability

is 0:504� 10�9. Figure 55 shows the instantaneous model when the ALL-inclusive model is

chosen.

Figure 54. Two triad fault-tolerant system|full model.
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Figure 55. Two triad fault-tolerant system|instantaneous HARPmodel.

Because HARP uses a simple multifault model (ALL-inclusive model in this case) and

behavioral decomposition, the instantaneous coverage requires that the near-coincident fault

transitions (e.g., from R2 to F 3) be modeled as system failures. This instantaneous model

solution produced an unreliability of 0:608� 10�9, which is a conservative error of 20.6 percent.

Conservative errors of this magnitude should be acceptable for most applications. If not, the

XHARP system applied to this model yields an unreliability of 0:504� 10�9.

7.3. Markovian Models With Hot Weibull Spares

Markov models with Weibull hot spares behave di�erently than Markov models with constant

failure rate hot spares. Constant failure rate models exhibit the so called memoryless property.

That is, when a spare (warm or cold) is switched in, the spare that has not failed behaves as if

it were brand new. By de�nition, this condition is guaranteed for a cold spare. The constant

failure rate spare does not remember its past use history.

A Weibull spare, by contrast, does remember its use history. So when a hot Weibull spare is

switched in, it behaves as if it were operating from time zero with the exception that it was not

allowed to fail until it switched in. If the Weibull is a decreasing failure rate, the part that is

switched in has a lower instantaneous failure rate than a brand new part. The opposite is true

for a cold Weibull spare. When the cold Weibull spare is switched in, its instantaneous failure

rate is at maximum. Thus, Weibull cold spares may not increase system reliability as much as a

hot Weibull spare for decreasing rates. This failure behavior di�ers from what constant failure

rate parts exhibit (ref. 19).

7.4. Non-Markovian ModelsWithWeibull Failure Rates

AMarkov chain with nonconstant failure rates such as the Weibull is called a nonhomogeneous

Markov chain. This stochastic process has one time variable (mission clock) that starts at time

zero with a value of zero. When a cold or warm Weibull spare is introduced into such a model,
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another time variable is required that is initiated when the cold or warm spare is activated.

Stochastic processes of this type are called mixed-Markov processes, that is, Markov and semi-

Markov. Mixed-Markov models are di�cult to solve analytically, and HARP does not have this

capability. MCI-HARP uses a specialized Monte Carlo simulation engine that was designed to

solve mixed-Markov models.

A nonhomogeneous Markov chain with Weibull failure distributions is no longer Markovian if

repair is introduced. As in the models previously discussed, a separate clock must be established

to track repaired components. Although MCI-HARP has not been applied in this manner, the

basic capability exists.

NASALangley Research Center

Hampton, VA 23681-0001

June 27, 1994
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AppendixA

KnownBugs inHARPVersion6.1
This appendix lists known bugs in HARP version 6.1. These bugs were �xed in version 6.2.

1. An in�nite loop is encountered if the mission time, sampling interval, or variation is entered

as anything but a number.

2. The ESPN FEHM model has the following bugs.

� It does not recognize a net in which all transition �ring times are constant and therefore

cannot solve it.

� When only one exit is reachable in the net or the probability of reaching the exit is

su�ciently close to 1.0, an in�nite loop occurs as the program keeps doubling the trials.

� Higher moments of time to reach various exits are sometimes incorrectly set to zero.

� In cases where S exit is a rare event, the outcome of the simulation may vary drastically

and cause the unreliability of the overall system to change dramatically.

� In the case of transient faults, the program does not always simulate the net exactly as

the drawing indicates.

� The seed for the random generator in the UNIX version can repeat itself; hence, the

simulation can have undesired correlation.

3. The ARIES model has the following bugs:

� It does not accurately calculate each exit probability correctly and ignores the variable

that pertains to failure of the recovery hardware. However, the model is correct as de�ned

in this Technical Paper.

� It incorrectly calculates the moments for each exit in the case that one or more component

failure times are Weibull distributed.

4. Certain combinations of cold spare gates and functional dependency gates give rise to a CSP

gate behavior that has not yet been implemented in HARP. The a�ected combinations of

gates are somewhat unusual and should rarely be needed. The behavior of the cold spare

gate and its proper uses are de�ned in full in this Technical Paper. In particular, users of

HARP version 6.1 should avoid combining functional dependency gates and cold spare gates

with shared spares in such a way that an input event of one of the cold spare gates is also a

dependent event of the functional dependency gate.
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AppendixB

WarningandErrorMessages
This appendix contains the warning and error messages for the HARP program.

+++ WARNING C100: ILLEGAL PARAMETER IN WEIBULL DEVIATE GENERATOR SUBROUTINE,

ALPHA = 0 in DVWEBL +++

File: DEVGEN

Subroutine: DVWEBL

Meaning: If the FEHM model chosen is the HARP default ESPN model, this model is

simulated for solution. In the course of the simulation, deviates of the distributions for the

timed transitions are generated. When the speci�ed distribution is Weibull and alpha, the

shape parameter (ref. 44), is zero, the resulting function is not a distribution. In this case, the

deviate returned is set to zero.

+++ WARNING C150: MORE TRIALS NEEDED FOR NORMAL APPROXIMATION IN SIMULATOR +++

File: HARPSIM

Subroutine: STATS

Meaning: If the FEHM model chosen is the HARP default ESPN model, this model is

simulated for solution. This warning may appear during the statistical analysis of the simulation

data. In estimating the con�dence intervals about the exit probabilities, a normal approximation

to the binomial distribution is used. This approximation is valid if n*p is greater than 5. (This

rule is discussed more fully in ref. 44.) If n*p is less than 5, then the number of trials is doubled

and the simulation continues. The initial number of simulation trials run is 1000, so this message

appears if any of the exit probabilities are less than 0.005.

+++ WARNING C155: MORE SIMULATION TRIALS ARE NEEDED TO REDUCE PERCENT**** ERROR

TO WITHIN THE VALUE SPECIFIED BY USER +++

File: HARPSIM

Subroutine: STATS

Meaning: If the FEHM model chosen is the HARP default ESPN model, then this model is

simulated for solution. This warning may appear during the statistical analysis of the simulation

data. Con�dence intervals about the exit probabilities are generated, and a check is made as to

the relative size of the interval. If the band/estimate (*100) is greater than the percent error

speci�ed by the user, then more trials are needed to reduce the width of the interval (band).

In this case, the number of trials is doubled, and the simulation continues. The initial number

of simulation trials run is 1000; this number is doubled until percent error in all three exit

probabilities is less than the value speci�ed by the user. If this message appears more than 5 or

6 times, the simulation may be long (maybe an hour), and the user may want to reduce the

percent error requested. Each time this message appears, the percent error for the exit being

analyzed is displayed.
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**** ERROR C500: ILLEGAL VALUE FOR COVVAL ***

File: COVFAC

Subroutine: COVNOM

Meaning: This error is displayed whenever the numeric value for a coverage factor is greater
than 1 or less than zero. If all the inputs are correct, this error signi�es that the basic justi�cation
for the behavioral decomposition has been violated. That is, the average amount of time spent in
the coverage model is comparable with the time between failures rather than relatively di�erent
orders of magnitude.

**** ERROR C600: CALLING FOR A DEVIATE FOR NODIS ***

File: DEVGEN

Subroutine: DEVGEN

Meaning: If the FEHM model chosen is the HARP default ESPN model, then this model
is simulated for solution. During the simulation, deviates of the distributions for the timed
transitions are generated. If the user has speci�ed \No Distribution" (believing that the
corresponding transition would never be enabled), and a deviate is called for, then this error is
printed and execution halts.

**** ERROR C750: FEHM FILE NOT FOUND ***

File: COVFAC

Subroutine: COVNOM or COVVAR

Meaning: This error appears if the �le containing the parameters to be used for the FEHM
�le does not exist. The name of the �le requested is displayed. The obvious correction is to be
certain that the FEHM �les listed in the dictionary do indeed exist.

**** ERROR C755: UNRECOGNIZED FEHM TYPE ***

File: COVFAC

Subroutine: COVNOM or COVVAR

Meaning: The �rst line of a �le containing the parameters for a FEHM �le states the model
type being described. If the COVFAC routine does not recognize the �le type, this message is
printed, as is the �rst line of the FEHM parameter �le, and the name of the FEHM �le.

**** ERROR C900: INVALID RATE FOR EXPONENTIAL DIST

File: DISTS

Subroutine: EXP or MEXP

Meaning: This message appears if the rate parameter (1/mean) for the (negative) exponential
distribution (for DISTRIBUTIONS FEHM model) is less than or equal to zero. To correct this
error, check the FEHM �le(s) to be certain that the speci�ed value of any rate parameter is
positive.
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**** ERROR C905: SCALE PARAMETER FOR WEIBULL IS ZERO

File: DISTS

Subroutine: WEIBL or MWEIBL

Meaning: This message appears if the parameter for the Weibull distribution of time to exit

the FEHM model is illegal. To correct this error, check the FEHM parameter �le(s) to be certain

that the scale (rate) parameter for the Weibull distribution is positive.

**** ERROR C910: SHAPE PARAMETER FOR WEIBULL IS ZERO

File: DISTS

Subroutine: WEIBL or MWEIBL

Meaning: This message appears if the parameter for the Weibull distribution of time to exit

the FEHM model is illegal. To correct this error, check the FEHM parameter �le(s) to be certain

that the shape (alpha) parameter for the Weibull distribution is positive.

**** ERROR C915: HIGH VALUE < LOW VALUE FOR UNIFORM DIST.

File: DISTS

Subroutine: UNIFRM or MUNIF

Meaning: This message appears if the parameters for the uniform distribution of time to exit

the FEHM model are illegal (i.e., if the upper limit is less than or equal to the lower limit).

To correct this error, check the FEHM parameter �le(s) to be certain that the upper and lower

limits are correct.

**** ERROR C920: SCALE PARAMETER FOR GAMMA IS ZERO

File: DISTS

Subroutine: GAMDST or MGMDST

Meaning: This message appears if the scale parameter for the gamma distribution of time to

exit the FEHM model is zero. To correct this error, check the FEHM parameter �le(s) to be

certain that the scale (rate) parameter for the gamma distribution is positive.

**** ERROR C925: SHAPE PARAMETER FOR GAMMA IS ZERO

File: DISTS

Subroutine: GAMDST or MGMDST

Meaning: This message appears if the shape parameter for the gamma distribution of time

to exit the FEHM model is zero. To correct this error, check the FEHM parameter �le(s) to be

certain that the shape (alpha) parameter for the gamma distribution is positive.

**** ERROR C930: ILLEGAL PARAMETER FOR HYPEREXP DIST.

File: DISTS

Subroutine: HYPER or MHYPER

Meaning: This message appears if a rate parameter or probability for the hyperexponential

distribution of time to exit the FEHM model is less than or equal to zero. To correct this
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error, check the FEHM parameter �le(s) to be certain that the probabilities and rates for the
hyperexponential distribution are positive.

**** ERROR C935: ILLEGAL PARAMETER FOR HYPOEXP DIST.

File: DISTS

Subroutine: HYPO or MHYPO

Meaning: This message appears if a rate parameter for the hypoexponential distribution
of time to exit the FEHM model is less than or equal to zero. To correct this error, check the
FEHM parameter �le(s) to be certain that the probabilities for the hypoexponential distribution
are positive.

++++ WARNING E031, WEIBULL FAILURE RATE USED WITH REPAIR

File: FILL

Subroutine: FILSYM

Meaning: The model contains both a (time varying) Weibull failure rate transition and a
constant repair rate transition. The results may be meaningless with this combination.

Action: The user needs to analyze the model and determine if the combination of time-varying
transitions with repair transitions is correct.

++++ WARNING E032, WEIBULL FAILURE RATE USED WITH COLD SPARES

File: FILL

Subroutine: FILSYM

Meaning: The model contains both a (time varying) Weibull failure rate transition and a
cold spare (as speci�ed in the fault tree). The results of the solution of this model are suspect.

Action: Check the model to be sure that it is the one intended.

++++ WARNING E033, BEHAVIORAL DECOMPOSITION ASSUMPTIONS VIOLATED

File: HARPENG

Subroutine: HARPENG

Meaning: The model contains states that are too fast (relative to the slowest FEHM). This
warning arises when the fastest mean time to exit for any FEHM is less than 1000 times the
mean sojourn time in the fastest state. The warning is issued to alert the user that predicted
unreliabilities/availabilities may be overly conservative. The \magic number" 1000 was chosen
based on observed typical system models so that this message does not appear too often.

Action: Check the model to be sure that it is the one intended.

++++ WARNING E060, INVALID INPUT CHARACTER -x- IS IGNORED

File: SCAN

Subroutine: ICLASS

Meaning: A character in the input stream of a symbolic expression cannot be classi�ed as a
digit, upper or lower case alphabetic, operation sign, or parenthesis. It is ignored.
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Action: If an input �le is being used, it should be edited to remove or correct the o�ending
character. If the character is not printable (i.e., a blank or null character appears between the
dashes in the error message), the o�ending character may be a control character.

++++ SKIP: WARNING E061 - UNEXPECTED END OF FILE

File: FEHMUTL

Subroutine: SKIP

Meaning: The SKIP() subroutine skips a speci�ed number of lines in an input �le. If an EOF
is encountered unexpectedly during this operation, this warning message is produced.

Action: Check the input �les for harpeng; one of them might be corrupted.

++++ GERK WARNING E200, MANY STEPS

File: GCALL

Subroutine: GCALL

Meaning: This message re
ects an error code of 3 from the GERK ODE solver. Thus,
the integration was not completed because more than 9000 derivative evaluations were needed
(�500 steps). The model may be too sti� for GERK to handle accurately and/or the mission
time may be too long.

Action: Determine whether the sti�ness is inherent in the model formulation and/or if the
mission time can be reduced. If the model cannot be changed, then another ODE solver may
be more appropriate.

++++ GERK WARNING E201, TOLERANCES RESET: x.xxx-xx y.yyy-yy

File: GCALL

Subroutine: GCALL

Meaning: This message re
ects an error code of 4 or 5 from the GERK ODE solver. Code 4
means that the integration was not completed because the solution vanished, making a pure
relative error test impossible. Thus, GERK must use a nonzero absolute error tolerance to
continue. Code 5 means that the integration was not completed because the requested accuracy
could not be achieved with the smallest allowable stepsize. Thus, GERK must increase the error
tolerance before continued integration can be attempted.

Action: No user action is required. The GCALL subroutine automatically sets a positive
absolute error tolerance for a code 4 return and increases the relative error tolerance by a factor
of 10 for a code 5 return.

++++ GERK WARNING E202, MUCH OUTPUT

File: GCALL

Subroutine: GCALL

Meaning: This message re
ects an error code of 6 from the GERK ODE solver. Thus, GERK
is being used ine�ciently in solving the model; too much output is restricting the natural stepsize
choice.

Action: If convenient, reduce the mission time.
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++++ GERK WARNING E300, (BND) MANY STEPS

File: GCALL

Subroutine: GCALL2

Meaning: This message re
ects an error code of 3 from the GERK ODE solver. Thus,
the integration was not completed because more than 9000 derivative evaluations were needed
(�500 steps). The model may be too sti� for GERK to handle accurately and/or the mission
time may be too long.

Action: Determine whether the sti�ness is inherent in the model formulation and/or if the
mission time can be reduced. If the model cannot be changed, then another ODE solver may
be more appropriate.

++++ GERK WARNING E301, (BND) TOLERANCES RESET: x.xxx-xx y.yyy-yy

File: GCALL

Subroutine: GCALL2

Meaning: This message re
ects an error code of 4 or 5 from the GERK ODE solver. Code 4
means that the integration was not completed because the solution vanished, making a pure
relative error test impossible. Thus, GERK must use a nonzero absolute error tolerance to
continue. Code 5 means that the integration was not completed because the requested accuracy
could not be achieved with the smallest allowable stepsize. Thus, GERK must increase the error
tolerance before attempting continued integration.

Action: No user action is required. The GCALL2 subroutine automatically sets a positive
absolute error tolerance for a code 4 return and increases the relative error tolerance by a factor
of 10 for a code 5 return.

++++ GERK WARNING E302, (BND) MUCH OUTPUT

File: GCALL

Subroutine: GCALL2

Meaning: This message re
ects an error code of 6 from the GERK ODE solver. Thus, GERK
is being used ine�ciently in solving the model; too much output is restricting the natural stepsize
choice.

Action: If convenient, reduce the mission time.

**** ERROR E510, NUMBER OF STATES OUT OF RANGE

File: FILL

Subroutine: FILL

Meaning: The number of states speci�ed for the model was either less than one or more than
the maximum number allowed by the program.

Action: Rede�ne the number of states for the model. If a larger model is to be run, consult
section 5.3 of this Technical Paper.
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**** ERROR E511, ROW AND COLUMN OUT OF ORDER

File: FILL

Subroutine: FILL

Meaning: The program requires that matrix entries be entered in row-major order so that

the sparse matrix data structure can be built properly (i.e., rows must be entered in ascending

order, and within a row columns must be in ascending order). This message indicates that the

program detected an entry out of this order.

**** ERROR E512, ROW AND COLUMN OUT OF RANGE

File: FILL

Subroutine: FILL

Meaning: The row or column index used to specify a matrix entry is greater than the number

of states.

Action: Rerun �face for the model.

**** ERROR E530, PARAMETER TYPE UNRECOGNIZED

File: FILL

Subroutine: FILSYM

Meaning: When reading from an echo �le, the parameter type given does not match a de�ned

value.

Action: Rerun the model through harpeng without the echo �le.

**** ERROR E550, NEW SYMBOL ADDED IN NEXT FAULT RATE EXPRESSION

File: GET

Subroutine: GETNF

Meaning: To reduce the number of symbol de�nition and evaluation passes over the symbol

table, no new parameters may be de�ned by the next fault rate symbolic expression. This error

indicates that a new parameter was introduced in the next fault rate expression.

Action: Be sure that any symbols that appear in the near-coincident fault rate expression

appear in the dictionary.

**** ERROR E570, INCORRECT SYNTAX - EXPRESSION INCOMPLETE

File: SYM

Subroutine: SYMINP

Meaning: The symbolic expression was prematurely terminated by a semicolon. The

semicolon may have appeared after an operation symbol (+;�;�) or the expression may lack

closing parentheses.

Action: Rerun �face for the model.
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**** ERROR E580, INCORRECT SYNTAX, UNEXPECTED SYMBOL

OFFENDING SEQUENCE IS:

File: STORE

Subroutine: STORE

Meaning: The symbolic expression does not conform to the proper syntax as implemented in

the syntax table.

Action: Correct the symbolic expression. The following are usual suspects:

1. No multiplicative sign between a token and its coe�cient

2. Double ��, ++, or ** signs

3. No semicolon

**** ERROR E590, TRYING TO DEALLOCATE WRONG TERM

File: ALLOC

Subroutine: DALLCT

Meaning: A call to the DALLCT subroutine has been made with a pointer to a TERM node

that was not the most recently allocated.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input �les for this model to the �rst author of this Technical Paper.

**** ERROR E591, POINTER TO TERM LIST NEGATIVE

File: ALLOC

Subroutine: DALLCT

Meaning: A call to the DALLCT subroutine has been made before a TERM node has been

allocated.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input �les for this model to the �rst author of this Technical Paper.

**** ERROR E600, OUT OF SPACE FOR TERM LIST

File: ALLOC

Subroutine: ALLOCT

Meaning: More TERM nodes are required to represent the model than are currently allocated

by the program.

Action: To run such a large model, the program must be recompiled with more storage space

for the data structures FACLHD and NXTTRM. See section 5.3 of this Technical Paper.

**** ERROR E610, OUT OF SPACE FOR FACTOR LIST

File: ALLOC

Subroutine: ALLOCF

Meaning: More FACTOR nodes are required to represent the model than are currently

allocated by the program.
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Action: To run such a large model, the program must be recompiled with more storage space
for the data structures FACTYP, SYMENT, and NXTFAC. See section 5.3 of this Technical

Paper.

**** ERROR E620, OUT OF SPACE FOR SYMBOL TABLE

File: ALLOC

Subroutine: ALLOCS

Meaning: More symbol table entries are required to represent the model than are currently

allocated by the program.

Action: To run such a large model, the program must be recompiled with more storage space

for the symbol table. See section 5.3 of this Technical Paper.

**** ERROR E700, IMPROPER CALL TO GERK

File: GCALL

Subroutine: GCALL

Meaning: This message re
ects an error code of 7 from the GERK ODE solver. Thus, a

call to the GERK subroutine has been made with invalid input parameters. Possible reasons

are NEQN <= 0, T = TOUT and IFLAG = /, +1, or �1, RELERR < 0, ABSERR < 0,

IFLAG = 0, IFLAG < � 2, IFLAG > 7.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input �les for this model to the �rst author of this Technical Paper. There is

no intermediate circumvention.

**** ERROR E710, WRONG FUNCTION CODE TO SETVAL

File: SET

Subroutine: SETVAL

Meaning: A call to the SETVAL subroutine has been made with an unde�ned function code.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input �les for this model to the �rst author of this Technical Paper. There is

no intermediate circumvention.

**** ERROR E720, NEGATIVE TRANSITION RATE

File: EVAL

Subroutine: SYMEVL

Meaning: One of the o�-diagonal symbolic transition rates has appeared as a negative

number.

Action: Check the values assigned to the symbols, and check the numeric evaluation of the

rate.

**** ERROR E800, (BND) IMPROPER CALL TO GERK

File: GCALL
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Subroutine: GCALL2

Meaning: This message re
ects an error code of 7 from the GERK ODE solver. Thus, a

call to the GERK subroutine has been made with invalid input parameters. Possible reasons

are NEQN < = 0, T = TOUT and IFLAG = /, +1, or �1, RELERR < 0, ABSERR < 0,

IFLAG = 0, IFLAG < � 2, IFLAG > 7.

Action: A serious logical error has occurred in the program and should be reported along

with a copy of the input �les for this model to the �rst author of this Technical Paper. There is

no intermediate circumvention.

++++ RDDICT: WARNING F100 - FAILURE RATE VARIABLE, rate,

TOO LONG - TRUNCATED TO size CHARACTERS ++++

File: RDDICT

Subroutine: RDDICT

Meaning: The character string representing a failure rate variable that was read from the

dictionary was longer than the allowable size for a failure rate variable and was truncated to the

maximum legal size.

Action: Correct the o�ending failure rate variable in the dictionary or use the truncated one.

++++ FT2MC: WARNING F102 - STATE TABLE TOO SMALL TO

REMEMBER ALL SYSTEM STATES, RETRYING... ++++

File: FT2MC

Subroutine: FT2MC

Meaning: To prune the state search tree, system states are remembered by storing them in

a State Table when they are �rst generated. If a previously generated state is regenerated at

some point, it does not need to be retested for system failure or added to the queue for later

expansion. Both unique nonfailure states and states that cause overall system failure are stored

in the State Table. When the fault tree causes so many of these states to be generated that

the State Table is �lled, this message is printed. FT2MC() tries to reprocess the fault tree by

placing itself in a mode where the states representing system failure are not individually stored,

but instead only a single FE (failure due to exhaustion) state is stored for each component.

The unique nonfailure states are still stored in the State Table. Depending on the fault tree,

the conversion process to a Markov chain may take longer, but this method may allow larger

systems to be processed than could be handled before.

Action: None. If error F508 occurs after FT2MC() makes its second attempt, then the State

Table is too small and the number of states parameters (MSTATS in FT2MC, TABLEN and

PRIME2 in INISTA (in CKSTAT.FOR source �le)) must be increased to handle a fault tree of

this size. See section 5.3 of this Technical Paper for information on increasing the number of
states HARP can handle.

++++ FT2MC: WARNING F103 - MARKOV CHAIN TRUNCATED BEFORE ANY FAILURE

EXHAUSTION STATES WERE REACHED ++++

File: FT2MC

Subroutine: FT2MC
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Meaning: When truncation of the Markov chain to a user-speci�ed number of states is
enabled, the generation of states is stopped after the speci�ed number of components have
failed throughout the system. If the redundancy of each component type in the system is larger
than the user-speci�ed truncation cuto� number of failures, than no FE states have been reached
in the Markov chain when FT2MC stops generating states. This warning message is produced
in that situation.

++++ CKSTAT: WARNING F200 - STATE n FOUND ALREADY IN STATE TABLE

WHILE ATTEMPTING TO ADD TO THE STATE TABLE ++++

File: CKSTAT

Subroutine: CKSTAT

Meaning: When adding a (supposedly) new system state to the State Table, CKSTAT()
found that the state was already present in the State Table. This action has no functional e�ect
on the operation of the conversion process, but it may indicate an internal programming problem
somewhere in the FT2MC subsystem.

Action: Report warning message to the �rst author of this Technical Paper.

++++ INPTRE: WARNING F300 - MAX BASIC COMPONENTS ALLOWED

IN FAULT TREE = maxcmpts ++++

File: INPTRE

Subroutine: INPTRE

Meaning: When entering a textual description of a fault tree, the user has attempted to
specify more basic component nodes than the system currently allows.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of basic
component nodes allowed; that is, increase the MCMPTS parameter in all FORTRAN source
�les, recompile, and relink.

++++ INPTRE: WARNING F301 - MAX NO. NODES ALLOWED IN FAULT TREE = maxnodes ++++

File: INPTRE

Subroutine: INPTRE

Meaning: When entering a textual description of a fault tree, the user has attempted to
specify more fault tree nodes than the system currently allows.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of
fault tree nodes allowed; that is, increase the MNODES parameter in all FORTRAN source
�les, recompile, and relink.

**** ENCSTA: ERROR F400 - # FAILURES EXCEED DECLARED LENGTH OF AN ENCODED STATE

File: ENCSTA

Subroutine: ENCSTA/DECSTA

Meaning: ENCSTA() encodes a system state from a tuple of working components to a list
of the components that failed to bring the system from its original state to the current STATE.
DECSTA() performs the corresponding inverting conversion. Both routines declare a vector of
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a certain length to hold the encoded state. If more component failures have occurred than can
be stored in the declared vector, this error message is produced. As currently implemented, this
error represents an internal programming error within FT2MC.

Action: Report error to the �rst author of this Technical Paper.

**** DECSTA: ERROR F401 - CMPNT TYPE cmp SPECIFIED IN ENCODED STATE IS

OUT OF RANGE

File: ENCSTA

Subroutine: DECSTA

Meaning: ENCSTA() encodes a system state from a tuple of working components to a list
of the components that failed to bring the system from its original state to the current STATE.
DECSTA() performs the corresponding inverting conversion. If during the decoding process
DECSTA() encounters in the list of failed components a component type that is not present in
the system, this error message is produced. This error represents an internal programming error
within FT2MC.

Action: Report error to the �rst author of this Technical Paper.

**** FT2MC: ERROR F500 - FAULT TREE NAME TOO LONG ****

File: FT2MC

Subroutine: FT2MC

Meaning: The modelname passed to FT2MC() was too long and was rejected.

Action: Specify a shorter modelname.

**** FT2MC: ERROR F504 - ERROR OPENING MARKOV CHAIN OUTPUT FILE filename ****

File: FT2MC

Subroutine: FT2MC

Meaning: The FT2MC() subroutine encountered an error while trying to open the Markov
chain output �le. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** OUTARC: ERROR F505 - ERROR retcode RETURNED BY INTCHR() ****

File: FT2MC

Subroutine: OUTARC

Meaning: The OUTARC() subroutine outputs a Markov chain arc between an originating
system state and a new system state produced when a component fails in the originating state.
For the component that fails, the number of those components operational before the failure
in
uences the transition rate of the arc. Thus, the number of components operational before
the failure must be converted to a character string and printed. The INTCHR() subroutine
encountered an error while attempting to convert this number of components to a character
string. This error represents an internal programming error in FT2MC.

Action: Report error to the �rst author of this Technical Paper.
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**** FT2MC: ERROR F510 - TOO MANY STATES GENERATED, MAX = mstats

File: FT2MC

Subroutine: FT2MC

Meaning: FT2MC() has generated more than the maximum allowable number of states during

the conversion of the fault tree model into a Markov chain.

Action: Increase the MSTATS parameter in the tdrive source �les and recompile the entire

program.

**** EXTID: ERROR F511 - STATE state tuple NOT FOUND IN LINKED LIST

File: FT2MC

Subroutine: EXTID

Meaning: As states are generated during the conversion process, they are stored in a linked

list. This list makes it possible to determine whether each state has been generated before or

is being generated for the �rst time. If the state has been generated before, it will have been

assigned an external ID number when it was created. EXTID() looks up such a previously

generated state in the linked list to determine its ID number. This error message occurs when

a state that should be in the linked list is not found there.

Action: Report error to the �rst author of this Technical Paper.

**** FRSTIM: ERROR F512 - INCOMPATIBLE ROOT STATE (state tuple) FOR

STATE state tuple

File: CKSTAT

Subroutine: FRSTIM

Meaning: FRSTIM() uses a STATE and its parent state RSTATE in performing its function.

At several places, FRSTIM() performs a consistency check between STATE and RSTATE to

ensure that STATE is indeed a proper descendent state of RSTATE. If this consistency check

fails (i.e., it is determined that STATE could not possibly be a descendent state of RSTATE),

then this error message is produced. This error represents an internal programming error in

FT2MC.

Action: Report error to the �rst author of this Technical Paper.

**** RDDICT: ERROR F600 - DICTIONARY FILE NOT FOUND ****

File: DICT

Subroutine: RDDICT

Meaning: The RDDICT() subroutine was unable to �nd the dictionary �le.

Action: Make sure the dictionary �le for the fault tree (modelname.DIC) exists before the

FT2MC subsystem is called.

**** RDDICT: ERROR F601 - DICTIONARY OVERFLOW, MAX NUMBER OF

COMPONENT TYPES = num ****

File: DICT

Subroutine: RDDICT
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Meaning: The RDDICT() subroutine found that the dictionary �le for the fault tree contains
more than the maximum number of component types allowed in a fault tree.

Action: This fault tree cannot be run through FT2MC unless the FT2MC subsystem is rebuilt

with a larger value for MTYPES, which is the limit for the maximum number of component

types allowed in a fault tree.

**** RDDICT: ERROR F602 - ERROR OPENING DICTIONARY FILE ****

File: DICT

Subroutine: RDDICT,WRTDCT

Meaning: The RDDICT() subroutine encountered an error while trying to open the dictionary

�le. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** RDDICT: ERROR F603 - UNEXPECTED EOL ENCOUNTERED WHILE PARSING NEXT

ITEM FROM INPUT LINE, OFFSET = offset ****

File: DICT

Subroutine: RDDICT

Meaning: The NXTWRD() subroutine encountered an unexpected End-Of-Line while reading

an input line from the dictionary. The dictionary �le may be corrupted.

Action: Check the dictionary �le. Recreate it if necessary.

**** RDDICT: ERROR F604 - ERROR ENCOUNTERED WHILE PARSING NEXT ITEM FROM

INPUT LINE, OFFSET = offset ****

File: DICT

Subroutine: RDDICT

Meaning: The RDDICT() subroutine encountered an error while reading an input line from

the dictionary. The dictionary �le may be corrupted.

Action: Check the dictionary �le. Recreate it if necessary.

**** RDDICT: ERROR F605 - COMPONENT ENTRIES OUT OF ORDER IN DICTIONARY ****

File: DICT

Subroutine: RDDICT

Meaning: While reading the dictionary �le, the RDDICT() subroutine found that an entry

for a component was not in consecutive order with the other entries. The dictionary �le may be

corrupted or the user may have made an error when creating the dictionary �le.

Action: Check the dictionary �le. Recreate it if necessary.

**** PASS1: ERROR F700 - FAULT TREE DESCRIPTION FILE (filename) NOT FOUND ****

File: BLDLST

Subroutine: PASS1
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Meaning: The PASS1() subroutine could not �nd the graphics speci�cation language input
�le containing the fault tree speci�cation.

Action: Make sure that an input �le containing a fault tree speci�cation (either a .FTR
graphics format input �le or a .TXT textual speci�cation language format input �le) exists
before the FT2MC subsystem is called.

**** PASS1: ERROR F701 - UNEXPECTED FIRST INPUT ITEM - OBJECT TOO LONG ****

File: BLDLST

Subroutine: PASS1

Meaning: The �rst item of every line in a graphics speci�cation language format input �le is
either 'N' (indicating that this line describes a fault tree node) or 'A' (indicating that this line
describes an arc). Either item is only one character in length. If the �rst item read from an
input line is longer than one character in length, then there is an error. The input �le is either
corrupted, or it is not a graphics speci�cation language format input �le.

Action: Make sure the input �le <ftreename.FTR> has the correct format (graphics
speci�cation language).

**** PASS1: ERROR F702 - ERROR OPENING INPUT FILE filename ****

File: BLDLST

Subroutine: PASS1

Meaning: The PASS1() subroutine encountered an error while trying to open the input �le
containing the fault tree speci�cation in graphics speci�cation language format. This error is an
operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** PASS1: ERROR F703 - ERROR ENCOUNTERED WHILE PARSING NEXT WORD FROM

INPUT LINE: line ****

File: BLDLST

Subroutine: PASS1

Meaning: The NXTWRD() subroutine encountered an error while reading an input line from
the fault tree speci�cation input �le. The input �le may be corrupted or contain errors.

Action: Check the input �le for format errors. Recreate it if necessary with tdrive or the
graphics fault tree input facility.

**** PASS1: ERROR F704 - INDEX LIST OVERFLOW, TOO MANY FT NODES ****

File: BLDLST

Subroutine: PASS1

Meaning: The fault tree speci�cation read from the input �le has so many nodes that it
over
owed the index list table.

Action: Rebuild the FT2MC subsystem with a larger index list size. The FT2MC()
subroutine calls BLDLST() so that the QUEUE array is used for the Index List by BLDLST.
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This double duty for the QUEUE array is possible because BLDLST does not use a queue and
FT2MC does not use the index list after BLDLST returns. Therefore, space can be saved by
using the same array for both purposes. Consequently, to increase the index list size, increase
QLEN, the size of the QUEUE array, in the FT2MC() subroutine.

**** PASS2: ERROR F705 - UNEXPECTED FIRST INPUT ITEM - OBJECT TOO LONG ****

File: BLDLST

Subroutine: PASS2

Meaning: The �rst item of every line in a graphics speci�cation language format input �le is
either 'N' (indicating that this line describes a fault tree node) or 'A' (indicating that this line
describes an arc). Either item is only one character in length. If the �rst item read from an
input line is longer than one character in length, then there is an error. The input �le is either
corrupted, or it is not a graphics speci�cation language format input �le.

Action: Make sure the input �le <MODELNAME.FTR> has the correct format (graphics
speci�cation language).

**** PASS2: ERROR F706 - ILLEGAL FORM FOR M/N GATE LABEL: label ****

File: BLDLST

Subroutine: PASS2

Meaning: This error occurs if the length of the token that is supposed to be a label for an
M/N gate is less than three. An M/N gate label has the form: m/n, where m and n are integers.
The label therefore must have a length of at least three. If it does not, then it cannot possibly
be a valid M/N gate label.

Action: Check the input �le <ftreename.FTR> for an M/N gate label with an illegal format
and correct it.

**** PASS2: ERROR F707 - TOO MANY BASIC COMPONENTS (LEAVES) IN FAULT TREE ****

File: BLDLST

Subroutine: PASS2

Meaning: The fault tree speci�cation read from the input �le contains more Basic Component
nodes than the maximum number allowed in a fault tree.

Action: FT2MC cannot process this fault tree unless FT2MC is rebuilt with a larger value
for MCMPTS, the maximum number of Basic Component nodes allowed in the fault tree.

**** PASS2: ERROR F708 - ILLEGAL FAULT TREE NODE TYPE: nodetype ****

File: BLDLST

Subroutine: PASS2

Meaning: A fault tree node type read from the input �le is not one of the supported types
de�ned in the GATES COMMON block. The value for <nodetype> printed as part of the
previous message is an integer value.

Action: Check the input �le <MODELNAME.FTR> for an error in one of the fault tree
node description lines.
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**** PASS2: ERROR F709 - LOOKUP IN INDEX LIST FAILED FOR ITEM AT

LOCATION (x,y) ****

File: BLDLST

Subroutine: PASS2

Meaning: The PASS2() subroutine could not �nd an entry in the index list for one of the

fault tree nodes. This error represents an internal programming error in PASS1 and PASS2.

Action: Report error to the �rst author of this Technical Paper.

**** PASS2: ERROR F710 - DEST COORD MISMATCH FOR INCOMING ARC ****

File: BLDLST

Subroutine: PASS2

Meaning: The graphics fault tree input facility records both incoming and outgoing arcs for

fault tree nodes in the fault tree speci�cation �le that it produces for FT2MC. An incoming arc

description speci�es both the node at the source of the arc and the node at the destination of

the arc. The destination node for an incoming arc is the node currently being processed. An

outgoing arc description speci�es only the node at the destination of the arc. FT2MC only needs

to concern itself with incoming arcs. FT2MC can determine whether an arc description is for an

incoming arc or an outgoing arc by looking for the destination node to be the same as the node

currently being processed. If it is not and no destination node is speci�ed, then the arc is an

outgoing arc and can be ignored. However, if the destination node is speci�ed and it is not the

same as the node currently being processed, then there is an error in the fault tree speci�cation.

This error message is produced in that event.

Action: Check the fault tree speci�cation in the input �le <MODELNAME.FTR> and

correct it.

**** PASS2: ERROR F711 - ERROR OPENING INPUT FILE filename ****

File: BLDLST

Subroutine: PASS2

Meaning: The PASS2() subroutine encountered an error while trying to open the input �le

containing the fault tree speci�cation in graphics speci�cation language format. This error is an

operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** PASS2: ERROR F712 - ERROR PARSING NEXT WORD FROM INPUT LINE: line ****

File: BLDLST

Subroutine: PASS2

Meaning: The NXTWRD() subroutine encountered an error while reading an input line from

the fault tree speci�cation input �le. The input �le may be corrupted or contain errors.

Action: Check the input �le for format errors. Recreate it if necessary with tdrive or the

graphics fault tree input facility.
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**** LOOKUP: ERROR F713 - ILLEGAL FUNCT: f ****

File: BLDLST

Subroutine: LOOKUP

Meaning: The value of f in the previous message is an integer. The LOOKUP() subroutine

looks up a fault tree node in the index list and allows the calling routine to either read or write

to the pointer �eld (points into place table) of the index list entry for the fault tree node. The

calling routine speci�es which operation it wants to do through a subroutine argument FUNCT,

where FUNCT = 0 means read and FUNCT = 1 means write. Any other value of FUNCT is

unsupported and produces this error message. This error represents a programming error within

PASS2.

Action: Report error to the �rst author of this Technical Paper.

**** LOOKUP: ERROR F714 - PLACE AT (x,y) NOT FOUND IN INDEX LIST ****

File: BLDLST

Subroutine: LOOKUP

Meaning: The LOOKUP() subroutine could not �nd an entry in the index list for one of the

fault tree nodes. This error represents an internal programming error in PASS1 and PASS2.

Action: Report error to the �rst author of this Technical Paper.

**** PASS3: ERROR F715 - CARDINALITY OF INCOMING ARCS (c) FOR m/n GATE

DO NOT MATCH N = n of M/N GATE ****

File: BLDLST

Subroutine: PASS3

Meaning: The values of c, m, and n in the previous message are integers. The fault tree

speci�ed in the modelname.FTR input �le contained an m/n gate whose number of incoming

arcs did not match the parameter n of the gate. Compound arcs (i.e., arcs whose sources are basic

component nodes representing several redundant components) count as several individual arcs

rather than as one arc. For example, a compound incoming arc whose source node is a basic

component node representing three redundant components of type 1 (a 3*1 basic component

node) counts as three individual arcs rather than as one arc.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any m/n gates that do not have exactly n incoming arcs (considering compound arcs as described

previously).

**** PASS3: ERROR F716 - DEPENDENT EVENTS FOR A FUNCTIONAL DEPENDENCY

GATE MUST BE BASIC EVENTS; ARC arc OF NODE node

IS NOT A BASIC EVENT

File: BLDLST

Subroutine: PASS3

Meaning: Functional Dependency gates can have only basic event nodes as dependent events

(i.e., all events after the �rst, or leftmost, incoming arc to the gate). The trigger event (�rst, or

leftmost, incoming arc) can be any type of event (i.e., the trigger arc may come from any legal
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type of gate or node). If any dependent events of the Functional Dependency gate are not basic
events (i.e., the arc does not come from a basic component node), then this error message is

printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any Functional Dependency gates with dependent events that are not basic events.

**** PASS3: ERROR F717 - ALL DESCENDENT EVENTS FOR A COLD SPARE GATE MUST

BE UNREPLICATED BASIC EVENTS; ARC arc OF NODE node

IS NOT A BASIC EVENT

File: BLDLST

Subroutine: PASS3

Meaning: Cold Spare gates can have only unreplicated basic event nodes as descendent events

(i.e., all incoming arcs must come from basic component nodes). If any descendent events of the

Cold Spare gate are not basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any Cold Spare gates with descendent events that are not basic events.

**** PASS3: ERROR F718 - PRIORITY-AND GATES MUST HAVE 2 INCOMING ARCS;

NODE node HAS numarcs ARCS

File: BLDLST

Subroutine: PASS3

Meaning: Priority And gates must have exactly two incoming arcs. If a Priority And gate

has any number of incoming arcs other than two, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any Priority And gates that have other than exactly two incoming arcs.

**** PASS3: ERROR F719 - ALL DESCENDENT EVENTS FOR A COLD SPARE GATE MUST

BE UNREPLICATED BASIC EVENTS; ARC arc OF NODE node

IS A REPLICATED BASIC EVENT

File: BLDLST

Subroutine: PASS3

Meaning: Cold Spare gates can have only unreplicated basic event nodes as descendent events

(i.e., all incoming arcs must come from basic component nodes). If any descendent events of the

Cold Spare gate are replicated basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct
any Cold Spare gates with descendent events that are replicated basic events.

**** PASS3: ERROR F720 - COLD SPARE GATES SHARING A SPARE WITH

OTHER COLD SPARE GATE(S) MUST HAVE 2

INCOMING ARCS; NODE node HAS numarcs ARCS

File: BLDLST

Subroutine: PASS3
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Meaning: Cold Spare gates whose spare (dependent) component is shared with another Cold
Spare gate are restricted to having only one spare. The gate can therefore have only two

incoming arcs|one for the primary component and one for its spare (each of these must be an

unreplicated basic event, as described for error F719). If a Cold Spare gate that shares a spare

with any other Cold Spare gate(s) has any number of incoming arcs other than two, this error

message is printed. NOTE: Cold Spare gates that do not share any spares with other Cold Spare

gates are not subject to this restriction; they may have any number of incoming arcs up to the

maximum (speci�ed by the MARCS parameter).

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any Cold Spare gates with shared spares that have other than exactly two incoming arcs.

**** PASS3: ERROR F721 - ALL DESCENDENT EVENTS EXCEPT THE LEFTMOST

EVENT OF A SEQUENCE GATE MUST BE BASIC EVENTS;

ARC arc OF NODE node IS NOT A BASIC EVENT

File: BLDLST

Subroutine: PASS3

Meaning: Sequence gates can have only (possibly replicated) basic event nodes as descendent

events (i.e., all incoming arcs must come from basic component nodes) except for the leftmost

descendent event, which can be any general event. If any descendent events of a Sequence gate

other than the leftmost are not basic events, this error message is printed.

Action: Examine the MODELNAME.FTR or the MODELNAME.TXT input �le and correct

any Sequence gates with descendent events that are not basic events.

**** TRVTRE: ERROR F800 - TABLE TOO SMALL TO HOLD STACK ****

File: TRVTRE

Subroutine: TRVTRE,DEPCHK,CSPCHK,PACHK

Meaning: The TRVTRE() subroutine uses a stack to simulate a recursive traversal of the

fault tree. This stack is stored at the end of the place table constructed by BLDLST(). If

TRVTRE() �nds that the stack it needs is too big to �t onto the end of the place table array,

this error message is produced.

Action: FT2MC cannot process this fault tree unless FT2MC is rebuilt with a larger value

for FTLEN, which is the size of the array containing the place table.

**** TRVTRE: ERROR F801 - ILLEGAL PLACE TYPE (nodetype) FOR PLACE node AT

OFFSET offset IN PLACE TABLE ****

File: TRVTRE

Subroutine: TRVTRE,DEPCHK,CSPCHK,PACHK

Meaning: The values for <nodetype>, <node>, and <o�set> in the previous message are

all integers. The TRVTRE() subroutine detected an illegal fault tree node type stored in the

place table. Thus, the place table is probably corrupted. This error represents an internal

programming error in BLDLST and/or TRVTRE.

Action: Report error to the �rst author of this Technical Paper.
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**** TRVTRE: ERROR F806 - INTERNAL ERROR: PLACE TABLE OFFSET < 0 ( neg val )

File: TRVTRE

Subroutine: TRVTRE,DEPCHK,CSPCHK,PACHK

Meaning: This internal error indicates that a fault tree arc has been 
agged as severed and

incorrectly handled.

Action: Report error to the �rst author of this Technical Paper.

**** TRVTRE: ERROR F807 - CSP GATE AT OFFSET place IN PLACE TABLE

NOT FOUND IN TABLE OF CSP GATES (CSPTAB)

File: TRVTRE

Subroutine: TRVTRE,DEPCHK,PACHK,SEQCHK

Meaning: This internal error indicates a Cold Spare gate in the fault tree was not found in

the table of Cold Spare gates (CSPTAB).

Action: Report error to the �rst author of this Technical Paper.

**** CSPCHK: ERROR F808 - LINKED LIST OF CSP GATE DESCENDENTS

(CSPRNT or REPEAT) IS CORRUPTED:

COMPONENT cmpnt IS NOT A DESCENDENT

OF CSP GATE gate AT LOCATION cspoff

IN PLACE TABLE

File: TRVTRE

Subroutine: CSPCHK,DETUSD

Meaning: This internal error indicates that a component that was supposed to be a descendent

of a Cold Spare gate according to either the REPEAT linked list or one of the CSPRNT() linked

lists was in fact found not to be a descendent of the speci�ed Cold Spare gate according to the

fault tree data structure (the Place Table). The two internal data structures therefore do not

agree.

Action: Report error to the �rst author of this Technical Paper.

**** CSPCHK: ERROR F809 - COMPONENT cmpnt HAS SEVERAL CSP GATE

PARENTS, INCLUDING CSP GATE gate

(AT LOCATION cspoff IN THE PLACE

TABLE) WHICH IS SUPPOSED TO HAVE

NO SHARED SPARES

File: TRVTRE

Subroutine: CSPCHK

Meaning: This internal error occurs when a component is supposed to be a descendent of

several Cold Spare gates (according to the CSPRNT() array of linked lists) and one of these

Cold Spare gates is not supposed to share any of its spares with any other Cold Spare gate
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according to the SHRDSP �eld of its entry in the fault tree data structure (the Place Table).
By de�nition, the component has to be shared between the several Cold Spare gates to be their
descendent; thus, the Cold Spare gate is either incorrectly marked as not sharing spares, or the
CSPRNT() data structure is corrupted.

Action: Report error to the �rst author of this Technical Paper.

**** DETUSD: ERROR F810 - CANNOT TELL HOW MANY OF COMPONENT TYPE

compnt ARE BEING USED BY CSP GATE gate

(AT LOC cspoff IN THE PLACE TABLE)

File: TRVTRE

Subroutine: DETUSD

Meaning: This internal error occurs when subroutine DETUSD() is called to try to determine
how many components of a basic event are on-line and in use by a Cold Spare gate that does
not share any of its spares with any other Cold Spare gate. Cold Spare gates that share spares
with other Cold Spare gates have a \components-in-use" descriptor in the state tuple. Cold
Spare gates that do not share any of their spares do not have such a descriptor in the state
tuple. Since DETUSD() determines how many of a components are in use by examining the
appropriate descriptor, it cannot determine how many of the requested components are in use
(because there is no descriptor to examine). Since DETUSD() should never be called for a Cold
Spare gate that does not share its spares, this error is an internal error.

Action: Report error to the �rst author of this Technical Paper.

**** CVRTXT: ERROR F900 - FAULT TREE NAME TOO LONG ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The modelname passed to CVRTXT() was too long and was rejected.

Action: Specify a shorter modelname.

**** CVRTXT: ERROR F901 - "NODE" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;
the o�ending line is printed for the user's inspection. The keyword \NODE" is not present where
it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F902 - TOO MANY NODES, MAX NO. NODES ALLOWED = maxnodes ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The fault tree described in the MODELNAME.TXT input �le contains too many
nodes.
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Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of
fault tree nodes allowed; that is, increase the MNODES parameter in all FORTRAN source

�les, recompile, and relink.

**** CVRTXT: ERROR F903 - NODE NUMBER MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;

the o�ending line is printed for the user's inspection. The number that identi�es a node is not

present where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the

fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F904 - "TYPE" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;

the o�ending line is printed for the user's inspection. The keyword \TYPE" is not present where

it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F905 - TOO MANY BASIC COMPONENTS, MAX NO. = maxcmpts ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The fault tree described in the MODELNAME.TXT input �le contains too many

basic component nodes.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of basic

component nodes allowed; that is, increase the MCMPTS parameter in all FORTRAN source

�les, recompile, and relink.

**** CVRTXT: ERROR F906 - "OF" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;

the o�ending line is printed for the user's inspection. The keyword \OF" is not present where

it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the

fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F907 - "COMPONENT" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT
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Meaning: A syntax error occurred in an input line read from the modelname.TXT �le; the
o�ending line is printed for the user's inspection. The keyword \COMPONENT" is not present
where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F908 - "INPUT" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;
the o�ending line is printed for the user's inspection. The keyword \INPUT" is not present
where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F909 - SOURCE NODE NUMBER MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;
the o�ending line is printed for the user's inspection. The number that identi�es the node at
the source of an input arc is not present where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F910 - "LABEL" MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;
the o�ending line is printed for the user's inspection. The keyword \LABEL" is not present
where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F911 - NUMBER INCOMING ARCS MISSING ON INPUT LINE line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;
the o�ending line is printed for the user's inspection. The number of incoming arcs for a fault
tree node is not present where it should be in the input line.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the
fault tree) and �x the syntax error in the appropriate line.
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**** CVRTXT: ERROR F912 - TOO MANY INCOMING ARCS, MAX NO. = maxarcs ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The fault tree described in the MODELNAME.TXT input �le contains one node

that has too many incoming arcs.

Action: Rebuild the FT2MC subsystem with a larger value for the maximum number of
incoming arcs per node allowed; that is, increase the MARCS parameter in all FORTRAN

source �les, recompile, and relink.

**** CVRTXT: ERROR F914 - ERROR ENCOUNTERED READING SOURCE OF INCOMING

ARC arc IN LINE: line ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The NXTWRD() subroutine encountered an error while reading the number of the

node at the source of an incoming arc.

Action: Examine the o�ending input line in the MODELNAME.TXT input �le for syntax

errors.

**** CVRTXT: ERROR F915 - ILLEGAL TYPE FOR FAULT TREE NODE ---> type ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: A syntax error occurred in an input line read from the MODELNAME.TXT �le;

the o�ending line is printed for the user's inspection. The input line speci�es a fault tree node

whose type is unsupported.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the

fault tree) and �x the syntax error in the appropriate line.

**** CVRTXT: ERROR F916 - "SYSTEM-FAILURE" BOX NOT SPECIFIED, FAULT TREE

INCOMPLETE ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The fault tree description contained in the MODELNAME.TXT �le does not

include a \System-Failure" box (FBOX) at the top node (root) of the fault tree. The FT2MC

subsystem requires all fault trees to have an FBOX or they cannot be processed.

Action: Edit the input �le MODELNAME.TXT (containing the textual description of the

fault tree) and add an FBOX node at the top of the fault tree.

**** CVRTXT: ERROR F917 - ERROR OPENING TEXT DESCRIPTION FILE filename ****

File: CVRTXT

Subroutine: CVRTXT
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Meaning: The CVRTXT() subroutine encountered an error while trying to open the text
description �le. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F918 - ERROR OPENING FAULT TREE FILE filename ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The CVRTXT() subroutine encountered an error while trying to open the fault

tree �le. This error is an operating system error rather than an FT2MC error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F919 - NXTWRD() ENCOUNTERED ERROR err PARSING NEXT

ITEM, OFFSET = offset ****

File: CVRTXT

Subroutine: CVRTXT

Meaning: The NXTWRD() subroutine encountered an error while parsing the next item on

the input line from the text description �le. The o�set within the input line where the error

occurred is printed.

Action: Check the text description �le. Edit it if necessary to correct any errors.

**** INPTRE: ERROR F920 - FAULT TREE NAME TOO LONG ****

File: INPTRE

Subroutine: INPTRE

Meaning: The modelname passed to INPTRE() was too long and was rejected.

Action: Specify a shorter modelname.

**** INPTRE: ERROR F921 - RDDICT() RETURNED ERROR err WHILE TRYING TO

READ DICTIONARY FILE ****

File: INPTRE

Subroutine: INPTRE

Meaning: The RDDICT() subroutine returned an error while trying to read the dictionary �le.

Several conditions may cause this message. Look at the error messages that occur immediately

before this message to determine the cause.

Action: Report error to the �rst author of this Technical Paper.

**** INPTRE: ERROR F922 - ERROR OPENING DICTIONARY FILE filenams ****

File: INPTRE

Subroutine: INPTRE

Meaning: The INPTRE() subroutine encountered an error while trying to open the dictionary

�le. This error is an operating system error rather than an INPTRE error.

Action: Consult the operating system manuals for the cause and possible solutions.
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**** INPTRE: ERROR F923 - ERROR OPENING TEXT DESCRIPTION FILE filename ****

File: INPTRE

Subroutine: INPTRE

Meaning: The INPTRE() subroutine encountered an error while trying to open the text
description �le. This error is an operating system error rather than an INPTRE error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** CVRTXT: ERROR F940 - UNEXPECTED OR INVALID TOKEN (token) ON LINE:

line

File: CVRTXT

Subroutine: CVRTXT

Meaning: An unexpected or invalid token was detected during the parsing of the indicated
line from the .TXT input �le.

Action: Check the text description �le. Edit it if necessary to correct any error(s).

+++ WARNING I20: CANNOT FIND THE PARAMETER ', *************

IN THE DICTIONARY. RESULTS MAY BE INCORRECT.

File: COVS

Subroutine: NEWREP

Meaning: The user has speci�ed no repair in the model. However, there are rates in the
model not included in the dictionary.

Action: To insure that the results are correct, run the program again and respond yes when
questioned about repair.

+++ WARNING I110: ASSUMING FIRST STATE ENCOUNTERED IN THE .INT

FILE TO BE THE INITIAL STATE OF THE MODEL!

File: FIFACE

Subroutine: MAIN

Meaning: The �rst line of the .INT �le reads either SORTED or UNSORTED. The next line
begins the actual Markov chain entries of the form STATE1 STATE2 RATE; regardless of the
initial FORM type (fault tree or Markov chain), the �rst state listed (i.e., STATE1) must be
the initial state of the system. HARP gives the initial state a probability of 1.0. This warning
is only given for UNSORTED input.

Action: If the �rst state listed is not the initial state, edit the .INT �le so that it is the �rst
state.

+++ WARNING I120: ONLY 96 COMPONENTS ALLOWED ALL OTHERS ARE IGNORED'

files: FIFACE

Subroutine: READIC

123



Meaning: Only 96 components are acknowledged by HARP. Any additional component types
will not be read into the data structure.

Action: If the model has more than 96 component types, HARP will not run. The model
must be reconstructed with fewer component types.

+++ WARNING I130: ************** IS GREATER THAN 12 CHARACTERS

IT WILL BE TRUNCATED TO: ************

files: FIFACE

Subroutine: READIC

Meaning: Component word length in the dictionary is restricted to 12 characters. This
restriction does not a�ect the outcome of the program.

+++ WARNING I135: EXTRANEOUS LINE FOUND AT END OF DICTIONARY FILE: line

files: FIFACE

Subroutine: READIC

Meaning: At the bottom of the dictionary �le are listed the state id numbers of all the FEn
(failure due to exhaustion) states and/or the TAn (truncation aggregation) states. There should
be no other lines of data after these state id numbers. If any other lines are found following
them, this warning message is printed.

Action: If the model has more than 96 component types, HARP will not run. The model
must be reconstructed with fewer component types.

+++ WARNING I150 - CAN''T PARSE *******, NCF RATES MAY NOT BE CONSERVATIVE

File: PARSE, SUMCOF

Subroutine: PARSE, ALLSET

Meaning: The string passed to the parser cannot be converted to a numerical value.
Therefore, the NCF rates will be calculated only by the arcs emanating from the target state
and may not be conservative.

Action: To insure conservative rates, rates should be of the form coe�cient*dictionary rate.
A single rate may also be a numerical value or a repair rate.

+++ WARNING I170 - CAN''T FIND OVERRIDING FEHM FILENAME FOR LINE ,WHERE

File: NXTFLT

Subroutine: HIRFND

Meaning: HARP cannot �nd the overriding FEHM �le that was declared in the .INT �le.

Action: Send copies of all input �les along with the version of the program to the �rst author
of this Technical Paper.

**** WARNING I190: USE OF OVERRIDING FEHMs

File: COVS

Subroutine: TOADD
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Meaning: Overriding FEHM's are being used in a model where there may be more than one
rate going from the same source state to the same destination state on the same input line.

The program �face cannot accommodate this situation. If there is only one rate, continue by

answering yes when prompted to continue.

Action: List the rates explicitly for each transition as follows:

YES: 1 2 3*LAM:NEW;

1 2 2*MU:OLD;

NO: 1 2 3*LAM:NEW+2*MU:OLD;

*** ERROR I510: ALLOWABLE NUMBER OF TRANSITIONS

EXCEEDED FOR SORTED INPUT

File: LD

Subroutine: LDSORT

Meaning: The number of allowable transitions for the program has been exceeded. This

number, TRSIZ, is originally set to 10 000.

Action: Change the value of TRSIZ in routine INITSZ in �face.for, recreate the object

module, and recompile the program.

*** ERROR I511: ALLOWABLE NUMBER OF TRANSITIONS

EXCEEDED FOR UNSORTED OR SYMBOLIC INPUT

File: LD

Subroutine: LODFIL

Meaning: The number of allowable transitions for unsorted input has been exceeded. This

number, MCTRZ, is originally set to 2050.

Action: Change the value of MCTRZ in routine INITSZ in �face.for, recreate the object

module, and recompile the program. Note, it would be better to sort the input (or use numeric

rather than symbolic input) to reduce the run time.

*** ERROR I520: STATE SIZE EXCEEDED FOR SORTED INPUT

File: LD

Subroutine: LDSORT

Meaning: The number of allowable states for the program has been exceeded. This number,

STSIZ, is originally set to 1000.

Action: Change the value of STSIZ in routine INITSZ in �face.for, recreate the object module,

and recompile the program.

*** ERROR I521: STATE SIZE EXCEEDED FOR

UNSORTED OR SYMBOLIC INPUT

File: LD

Subroutine: STNUM
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Meaning: The number of allowable states for unsorted input has been exceeded. This number,
MCSTZ, is originally set to 500.

Action: Change the value of MCSTZ in routine INITSZ in �face.for, recreate the object
module, and recompile the program. Note, it would be better to sort the input (or use numeric
rather than symbolic input) to reduce the run time.

*** ERROR I530: PARAMETER EXCEEDS ALLOWABLE'

SIZE OF ',PSIZE-9, ' TRUNCATING.'

File: LD

Subroutine: LDPARM

Meaning: The variable PSIZE, set in routine INITSZ of �le �face.for has been exceeded.
The rate parameter is set to 32 with 9 characters being allowed for the coe�cient, 12 for
the rate symbol, and the rest for coverage and the multiplicative signs and semicolon (i.e.,
1.2345678*RATPARAMETER*C1234567;). The program actually allows only PSIZE-9, so it
can add the coverage factor without exceeding the size of 32.

Action: The value of PSIZE can be changed in routine INITSZ. However, the HARP engine
also has a hard limit of 13 characters for the rate symbol. Also, change the data structure for
PARMS and MCPARM (currently set to 32).

*** FIFACE: ERROR I610 - MISSING KEYWORD "UNSORTED" OR "SORTED"

IN THE .INT FILE. SHOULD BE THE FIRST LINE.

File: FIFACE

Subroutine: MAIN

Meaning: The �rst line of the .INT �le must be one of two keywords: UNSORTED or
SORTED.

Action: Edit the .INT �le so that the �rst line reads SORTED if the .INT �le is a converted
fault tree or a Markov chain without symbolic input and in row-wise order or UNSORTED if it
is a Markov chain with symbolic input or not in row-wise order.

*** READIC: ERROR I620 - ERROR IN DICTIONARY FILE LINE:

File: FIFACE

Subroutine: READIC

Meaning: There must be four entries on the dictionary line in the following format:

1 COMPONENT RATE FEHM

The program lists the o�ending line that has either fewer than or more than 4 entries. FEHM
may be a �lename or the keyword NONE or VALUES.

Action: Edit the .DIC �le so that it conforms to the above rules.

*** RDIDS: ERROR I625 - NUMBER OF FEIDS/TAIDS DOES NOT MATCH

THE NUMBER OF COMPONENT TYPES IN THE DICTIONARY

File: FIFACE

Subroutine: RDIDS
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Meaning: At the bottom of the dictionary �le are listed the state id numbers of all FEn
(failure due to exhaustion) states and/or TAn (truncation aggregation) states. Since there can

be one FE/TA state for each type of component in the system, the number of FEn and/or TAn

state ids should be the same as the number of dictionary entries (which de�ne the types of

components in the system). If there are not the same number of FEn or TAn state ids listed

than as component types de�ned in the dictionary �le, this error message is produced.

Action: The .DIC �le is probably corrupted. Rerun tdrive to recreate it.

*** ERROR I710: A ZERO ROW IN ROUTINE ORDER

File: TRANSPOSE

Subroutine: ORDER

Meaning: During the transposition, the routine was trying to set the zeroth entry of an array.

Action: Check the input �le for an error.

*** ERROR I725: ERROR IN EXPRESSION, CHAR

File: PARSE

Subroutine: TOCNVT

Meaning: A character has been found that should not be in the expression.

Action: Edit the input �le to remove the o�ending sequence.

*** ERROR I730: ILLEGAL CHARACTER, ****, IN EXPRESSION

File: PARSE

Subroutine: OPRTOR

Meaning: A character has been found that should not be in the expression.

Action: Edit the input �le to remove the o�ending sequence.

*** ERROR I735: STACK IS EMPTY

File: PARSE

Subroutine: POP

Meaning: During parsing an attempt has been made to pop a value o� the empty stack.

Action: If a reason for the error cannot be found, then send a copy of the input �les and

version number to the �rst author of this Technical Paper.

++++ CONVRT: WARNING U100 - CHAR WORD TO BE CONVERTED TO NUMERIC

CONTAINS NO DIGITS

File: TFHUTL

Subroutine: CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real
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number in fact contains no digits, this warning is produced. This error probably represents an
internal programming error in tdrive.

Action: In the calling routine, check for a nonnumeric character string being passed to

CONVRT().

++++ CONVRT: WARNING U101 - EXPONENT CONTAINS NO DIGITS ---> string

File: TFHUTL

Subroutine: CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real

number contains exponential notation and the exponent contains no digits, this warning message

is produced.

Action: In the calling routine, check for an invalid numeric character string being passed to

CONVRT().

++++ CONVRT: WARNING U102 - INVALID CHARACTERS: characters DETECTED DURING

CONVERSION OF string FROM CHAR TO NUMERIC

File: TFHUTL

Subroutine: CONVRT

Meaning: CONVRT() converts a character string representation of a real number into its

numeric data type representation. If the character string that is purported to contain a real

number contains nonnumeric characters, this warning message is produced.

Action: In the calling routine, check for an invalid numeric character string being passed to

CONVRT().

++++ DBCHR: WARNING U104 - ... ROUNDING TO ZERO

File: TFHUTL

Subroutine: DBCHR

Meaning: DBCHR converts a double precision number (RNUM) to a character representa-

tion. To convert the decimal portion of the number, at each iteration the number (RNUM) is

multiplied by 10 and the integer value subtracted (RNUM = RNUM � INT(RNUM)). Once

RNUM is less than EPSIL, RNUM is rounded to zero.

Action: If this is not satisfactory, change the value of EPSIL. It is initially set to 1.0e-6.

**** ALLOC: ERROR U400 - BOUNDS OF MEMORY POOL EXCEEDED

File: DYNMEM

Subroutine: ALLOC,PSHPTR

Meaning: ALLOC() allocates regions of a large bu�er array for use in linked list type

applications (emulates a simple dynamic memory facility). If an attempt is made to allocate

space beyond the end of the bu�er array, this error message is produced.
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Action: Increase the size of the bu�er array in the calling routine where it is de�ned (in
this case, increase the MPLEN or DMPLEN parameter, whichever applies, in FT2MC()) and
recompile the entire program.

**** POPPTR: ERROR U401 - STACK UNDERFLOW

File: DYNMEM

Subroutine: POPPTR

Meaning: An under
ow situation (stack is empty) was encountered while trying to pop an
item from a stack. This error represents an internal programming error in the tdrive program.

Action: Report error to the �rst author of this Technical Paper.

**** GETNOD: ERROR U402 - NODSIZ nodesize IS > MAX NODE SIZE max nodesize

File: DYNMEM

Subroutine: GETNOD,DSPNOD

Meaning: While requesting the allocation of memory for a node from the dynamic memory
emulation routines, the caller has requested a node size greater than the declared maximum
allowable node size. This error represents an internal programming error in the tdrive program.

Action: Report error to the �rst author of this Technical Paper.

**** GETLIN: ERROR U500 - INPUT LINE TOO LONG, MUST BE <= vldlen CHAR'S

File: TFHUTL

Subroutine: GETLIN

Meaning: GETLIN() reads a line from an input �le and checks that the line is not longer
than a certain valid length. If such a line is longer than the program is expecting, the program
simply truncates the input line to the valid length, losing some of the input. When this occurs,
this error message is produced.

Action: Ensure that the input �le contains data of the proper format expected by the
program.

**** GETLIN: ERROR U501 - ERROR ENCOUNTERED READING INPUT LINE FROM FILE

File: TFHUTL

Subroutine: GETLIN

Meaning: GETLIN() encountered a read error while trying to read a line from an input �le.
This error represents an operating system error rather than a GETLIN() error.

Action: Consult the operating system manuals for the cause and possible solutions.

**** ADD2Q: ERROR U601 - QUEUE OVERFLOW ****

File: QUEUE

Subroutine: ADD2Q

Meaning: A queue over
ow occurred during an attempt to add a node to a queue that is
already full.
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Action: In the calling routine, check for an in�nite loop if the queue length is large enough
to hold the queue contents. If the queue really is not large enough to hold it contents, then

increase the size of the queue array.

**** POPQ: ERROR U602 - QUEUE UNDERFLOW ****

File: QUEUE

Subroutine: POPQ

Meaning: A queue under
ow occurred during an attempt to remove a node from a queue

that is already empty.

Action: In the calling routine, check for a programming error.

**** WRTQ: ERROR U603 - EXCEEDED BOUNDS OF QUEUE ARRAY ****

File: QUEUE

Subroutine: WRTQ

Meaning: While attempting to copy a queue node into the queue array, the bounds of the

queue array were exceeded before the entire node was copied. This error indicates an internal

programming error in the queue package.

Action: Report error to the author of the queue package.

**** PUSH: ERROR U701 - STACK OVERFLOW ****

File: STACK

Subroutine: PUSH

Meaning: A stack over
ow occurred during an attempt to add a node to a stack that is

already full.

Action: In the calling routine, check for an in�nite loop if the stack length is large enough to

hold the stack contents. If the stack really is not large enough to hold it contents, increase the

size of the stack array.

**** POP: ERROR U702 - STACK UNDERFLOW ****

File: STACK

Subroutine: POP

Meaning: A stack under
ow occurred during an attempt to remove a node from a stack that

is already empty.

Action: In the calling routine, check for a programming error.

*** NXTWRD: ERROR U801 - ERROR PARSING NUMERIC VALUE (token) IN LINE: line ***

File: UTIL

Subroutine: NXTWRD

Meaning: An inappropriate character was found in what is supposed to be a numeric token

while parsing that token from an input line (e.g., if an alphabetic character appears in what is
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supposed to be a real or integer number). This error indicates either an error in the data in the
input line or a programming error in the calling routine.

Action: Check the data on the input line passed to NXTWRD to make sure it is correct.
Then check the calling routine to be sure it is looking for the correct type of token in the input
line.

**** NXTWRD: ERROR U802 - ILLEGAL FUNCTION ---> f ****

File: UTIL

Subroutine: NXTWRD

Meaning: An illegal value was passed to NXTWRD in the FUNCT argument. FUNCT
indicates whether NXTWRD should look for a numeric value (FUNCT = 'N') or a character
value (FUNCT = 'C') for the next token on the input line. Any other value for FUNCT is not
supported.

Action: In the calling routine, correct the FUNCT argument in the call to NXTWRD.
FUNCT must be either 'N' or 'C'.

**** OPRNDS: ERROR U803 - OPERATOR op NOT FOUND IN WORD word ****

File: UTIL

Subroutine: OPRNDS

Meaning: The character speci�ed as the operator character in a binary operator expression
was not found in the expression.

Action: In the calling routine, check the value of the binary operator expression passed to
OPRNDS.

**** OPRNDS: ERROR U804 - ILLEGAL FORM FOR BINARY OPERATOR EXPRESSION ****

File: UTIL

Subroutine: OPRNDS

Meaning: The binary operator expression passed to OPRNDS did not have the form:
OPERAND1 op OPERAND2

Action: In the calling routine, check the value of the binary operator expression passed to
OPRNDS.

**** INTCHR: ERROR U805 - NUMBER OVERFLOWS CHAR STRING ****

File: TFHUTL

Subroutine: INTCHR

Meaning: The character representation of the integer value passed to INTCHR is too long
to �t in the output character variable provided to hold it.

Action: In the calling routine, provide a longer character variable to receive the converted
numeric value.
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**** DBCHR : ERROR U806 - NUMBER OVERFLOWS CHAR STRING ****

File: TFHUTL

Subroutine: INTCHR

Meaning: The character representation of the double value passed to DBCHR is too long to

�t in the output character variable provided to hold it.

Action: In the calling routine, provide a longer character variable to receive the converted

numeric value.

**** DBCHR: ERROR U807 - MAXLEN TOO SMALL FOR ROUTINE ****

File: TFHUTL

Subroutine: DBCHR

Meaning: The length of the character array is too small for DBCHR. DBCHR concatenates

two arrays, each of size 10|one on each side of a decimal point.

Action: Set value of MAXLEN in calling routine to 21.

**** SKPICT: ERROR U900 - UNEXPECTED END-OF-FILE ENCOUNTERED WHILE READING

DICTIONARY FILE

File: DICUTL

Subroutine: SKPICT

Meaning: While the dictionary �le was being read, an EOF was encountered before it should

have been. The dictionary �le is probably corrupted.

Action: Rerun tdrive and recreate the dictionary �le.
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GLOSSARY

Most terms unique to reliability modeling and fault-tolerant systems are de�ned within the

body of each volume of this Technical Paper. The meaning of some terms are well known to
researchers and users of these technologies but may not be familiar to new users of Hybrid

Automated Reliability Predictor (HARP) integrated reliability (HiRel) tool system. Thus, the

purpose of this glossary is to primarily aid new users.

Availability

Availability is a probabilistic quantity that predicts the operational life of a system that is

subject to line maintenance (repair). Availability is the probability that a system under repair

is operational at a speci�ed time. In a Markov chain model representation, repair is modeled
by adding transitions from states with n+ 1 failed components to states with n components.

The transition rate is given as a repair rate. No fault tree model representation has yet been

developed to represent an availability model; therefore, a Markov chain model must be given

to HARP for solution. A fault tree model can be used to specify and generate a preliminary

Markov chain model that the user needs to modify.

Behavioral Decomposition

Behavioral decomposition is a mathematical approximation technique that reduces a complex
fault/error handling model (FEHM) to a branch point in a Markov chain. The e�ects of the

FEHM are compensated for by modifying state transition rates. The advantage of this technique

is that it greatly reduces the size of Markov models for solution and complex FEHM behavior

that can be non-Markovian modeled.

Bounds or Mathematical Bounds

Large or complex mathematical models often require approximations to keep their solutions

tractable. Bounds are the numerical expressions of the variation in a computed result due to
mathematical approximation or uncertainty in the accuracy of the input data to the models.

Combinatorial Model

A combinatorial model is a stochastic model that relates combinatorial component failure or

success events to a subsystem or system failure or success, respectively. Combinatorial models

do not distinguish the order of failure events.

Coincident Fault

A coincident fault exists at the same time one or more other faults are present. A coincident

fault is not a simultaneous fault.

Conservative Unreliability Result

Mathematical quantities can be expressed in two forms, in exact form, which is usually a

symbolic representation such as the symbol �, or in an approximate form such as a decimal

representation for � as 3.14159. When approximations are necessary, the di�erence between the

exact quantity (which may not be obtainable) and the computed result (which is obtainable) is

called the error. A conservative unreliability result is one where the error in the computed result

is in the direction of increased unreliability.
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Critical-Pair Fault

A critical fault is a near-coincident fault involving two faults. HARP uses three multifault

models to account for critical-pair faults: ALL, SAME, and USER.

Extended Behavioral Decomposition

Extended behavioral decomposition is a generalized behavioral decomposition technique that

allows multiple FEHM entry/exit transitions and multifault near-coincident modeling.

Fault Tree

A fault tree is a notational model that uses symbols resembling logic gates that relates failure

events of components or subsystems to failure events of a system composed of components and

subsystems.

Instantaneous JumpModel

An instantaneous jump model is a Markov model that is an approximation of a more complex

semi-Markov model that produces a conservative result with respect to the semi-Markov model

that is operated on mathematically to become the instantaneous jump model.

Multifault Model

A multifault model is a fault/error handling model that accounts for two or more faults, none

occurring simultaneously.

Near-Coincident Fault

A near-coincident fault is second fault that occurs during the time between the occurrence

of a �rst fault and its recovery.

Near-Coincident Failure

A near-coincident failure is system failure resulting from a near-coincident fault. To reduce

modeling complexity, a near-coincident failure is assumed to result from a near-coincident fault.

Typically, this assumption results in a conservative result.

Optimistic Unreliability Result

An optimistic unreliability result occurs when the error in the computed result is in the

direction of decreased unreliability.

Primitive

A primitive is any screen image that is an entity that can be manipulated without dissection,

for example, a line, a circle, a fault tree gate, etc.

Semi-Markov Models

Semi-Markov models are generalizations of Markov models. In particular, semi-Markov

models allow generalized state holding time distributions. Semi-Markov models are required
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for fault-tolerant system models to account for fault/error handling times that may not be

exponential.

Sequence-Dependent Model

A sequence-dependent model is a stochastic model that relates ordered component failure

or success events to a subsystem or system failure or success, respectively. Sequence-dependent

models distinguish the order of failure events. These models are more complex than combinato-

rial models and are also more di�cult to solve.

Simultaneous Fault

A simultaneous fault is second fault that occurs at exactly the same instant in time as a �rst

fault. Markov chain models do not allow such faults.

Weibull Distribution

A Weibull distribution is a two parameter distribution that can exhibit time increasing,

decreasing, or constant failure rates.
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