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Abstract

A formalism is developed for evaluating the momentum distribution

for proton production in nuclear abrasion during heavy ion collisions

using the Glauber multiple-scattering series. Several models for the one-

body density matrix of nuclei are considered for performing numerical

calculations. Calculations for the momentum distribution of protons

in abrasion are compared with experimental data for inclusive proton

production.

Introduction

The prediction of the secondary distribution of
particles produced in heavy ion collisions is re-
quired for performing cosmic-ray transport calcula-
tions (ref. 1). The fragmentation cross sections in
heavy ion reactions may be described in the abrasion-
ablation models in which abrasion describes the
knockout of nucleons and clusters during the projec-
tile and target overlap and ablation describe the de-
excitation of the projectile or target remnants. The
abrasion cross sections are typically described us-
ing a geometric model (ref. 2) or semiclassical meth-
ods based on the Glauber or eikonal approximation
(refs. 3{5).

In this report we consider the use of the Glauber
multiple-scattering model for formulating the pro-
ton momentum distribution from abrasion. This for-
malism will be useful for obtaining both a better
understanding of the physics of nuclear abrasion and
estimates of secondary yields of light particles from
direct processes. We will also relate the inclusive nu-
cleon scattering observables to the internal nuclear
density matrix that di�ers from the intranuclear cas-
cade (ref. 6) or hydrodynamic model (ref. 7) descrip-
tions of these observables. The calculations may then
provide tests on nuclear structure calculations for the
internal momentum distribution when all secondary
nucleon mechanisms are considered. The same for-
malism describes proton or neutron production from
nuclear abrasion; however, because of increased mul-
tiplicity for evaporation neutrons as compared with
that of protons, we present calculations for proton
production in this report.

Several mechanisms for proton (or neutron) pro-
duction occur in heavy ion collisions. Figure 1 il-
lustrates the mechanisms for proton production in
nucleon-induced reactions. The contributions from
the scattering of the incident nucleon from the tar-
get ground and low-lying excited states are close to
the beam energy. Below the beam energy we �nd,
�rst, the quasi-elastic peak where the projectile has
knocked target nucleons into continuum states, and
this is followed by the nucleon excitation peak which
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Figure 1. Schematic of mechanisms of proton production in

nucleon-induced reactions.

at intermediate energies is dominated by the delta
resonance. The nucleon excitation peak is observed
to grow in importance with increasing beam energy
and with the production angle of nucleons. For inci-
dent neutrons (protons), a quasi-elastic peak of pro-
tons (neutrons) is observed because of charge ex-
change. At lower energies, the two contributions to
proton production are (1) the evaporated particles
from the deexcitation of the target nucleus and (2) a
higher energy contribution from the knockout or cas-
cade particles and the multiple scattering of such par-
ticles inside the target. The cascade particles extend
out to several hundred MeV because of the multiple
scattering and the internal Fermi motion of the tar-
get, and these particles will overlap with the quasi-
elastic peak at forward angles if the beam energy is
not too high.



For heavy ion reactions, many of the same mech-
anisms will contribute to proton production however
modi�ed, because both the projectile and target nu-
clei are a source of evaporation and knockout pro-
tons. An illustration of the contributions to proton
production in heavy ion collisions is shown in �g-
ure 2. The internal Fermi motion of the projectile
allows secondary protons (or neutrons) to be pro-
duced at appreciably higher energies than the beam.
The nucleon excitation peak will still appear in the
intermediate region between the projectile and tar-
get. One important di�erence between the nucleon-
induced and heavy-ion-induced proton production is
the possibility of coherence e�ects which may lead to
stronger multiple-scattering contributions for heavy
ion reactions. In this report we will describe the cal-
culation of proton spectra from the knockout mecha-
nism. The contributions from nucleon excitation and
evaporation will be described elsewhere.
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Figure 2. Schematic of mechanisms of proton production in

heavy ion reactions.

Symbols

A mass number

b impact parameter, fm

c speed of light, m/sec

E energy, MeV

F fragment

F� prefragment

f scattering amplitude, fm

fNN nucleon-nucleon scattering
amplitude

Im imaginary part of function

K initial wave number, fm�1

k wave number of knockouts, fm�1

M mass, MeV/c2

mN nucleon mass, MeV/c2

N1 single-collision term

n number of abraded nucleons

n(p) momentum distribution

P projectile

p momentum, MeV/c

Q de�ned in equation (13)

q momentum transfer, fm�1

r internal nuclear coordinate vector

Sn separation energy, MeV

s transverse part of r vector

T target

TF� kinetic energy of prefragment, MeV

t time, sec

X �nal target state

� pro�le function

� Dirac delta function

�n de�ned in equation (20)

� de�ned in equation (22)

�(r; r0) one-body density matrix, fm�3

�(r) one-body density, fm�3

� cross section, mb

� eikonal phase


 eikonal inelastic collision term
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Abrasion Theory

In the Glauber model the scattering operator for nucleus-nucleus collisions is written as

f =
iK

2�

Z
d2b eiq�b�(b) (1)

(refs. 8 and 9) where K is the projectile-target relative wave number, b is the impact parameter, q is the

momentum transfer, and the pro�le function representing the multiple-scattering series at high energies is

�(b) = 1�
Y
�;j

�
1� ��j(b� s�� sj)

�
(2)

where � and j label the target and projectile constituents, respectively. In equation (2), ��j is the two-body

pro�le function with the internal coordinate having components r = (s; z).

The scattering amplitude of equation (1) is related to the production cross section for a projectile nucleon

from the abrasion process by

d�

dk
=
X
X

1

(2�)2

Z
dEF�d

2q d2b d2b0 eiq�(b�b
0) �(Ei � Ef)

�

Z nY
j=2

�
dkj

(2�)3

�
hTP j�y(b0)jXF�kjihkjF

�Xj�(b)jPT i (3)

where kj denotes the wave numbers of the abraded nucleons, F� denotes the prefragment (with AF�= AP�n),

and we have inserted initial and �nal states in equation (3).

The state dependence of the �nal target energy prevents closure on these states from being automatic in

equation (3), although when energy conservation is not considered it is made outright (ref. 3). If we consider

the change in energy of the target from the collision

ET �EX = ET �

q
(pT � q)2 +M2

X

= ET

0
@1�

vuut1 +
q2+M2

X
�M2

T

E2
T

1
A (4)

where MT and MX are the mass of the target in the initial and �nal states, respectively, we expect that

performing closure on jXi will be valid for su�ciently large values of ET . In proceeding with closure on the

�nal target states, we now write

d�

dk
=

1

(2�)2

Z
dEF�d2q d2b d2b0 eiq�(b�b

0) �n
�
b;b0;k;q; EF�

�
(5)

where we de�ne

�n
�
b;b0;kj ;q; EF�

�
= hT j

(Z nY
j=2

�
dkj

(2�)3

�
�(Ei � Ef )

� hP j�y(b0)jF�kjihkjF
�
j�(b)jPi

)
jT i (6)
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In order to consider the energy-conserving delta function in equation (6), we introduce the Fourier transform

pair

�n(t) =

Z
dE e�iEt�n(E) (7)

and

�n(E) =

Z
dt

2�
eiEt�n(t) (8)

In the projectile rest frame we have

Ei �Ef = Sn� TF�+ ET � EX �
nX
j=1

k
2
j

2mN

(9)

where Sn is the separation energy and TF� is the recoil energy of the prefragment, including any excitation

energy of the prefragments. We next go into temporal space in order to consider the dkj integrals in equation (6)

and thus rewrite equation (9) as

Ei � Ef = E �
X
j=2

k
2
j

2mN

(10)

From equations (6) and (7) by using equation (10), we �nd

�n(t) = hT j

(Z nY
j=2

�
dkj

(2�)3

�
e
�i
P
j

k
2

j

2m
N
t

� hP j�y(b0)jF�
kjihF

�
kjj�(b)jPi

)
jT i (11)

In order to simplify equation (11), we �rst factor the pro�le function into projectile participant and spectator

terms as

�(b) = 1�

APY
l=n+1

Ql(b� sl)
nY
j=1

Qj(b� sj) (12)

where

Qj =

ATY
�=1

(1� ��j) (13)

In the abrasion model the orbits of the prefragments are assumed to be nearly the same as those of the

projectile. This is consistent with the use of the impulse and frozen nucleus approximations at high energies.

A completely factored form in the participant and spectator coordinates is assumed for the projectile wave

function

jPi = jFij�ni (14)

where jFi and j�ni are the wave functions of the core (spectators) and of the knockouts (spectations),

respectively. The antisymmeterization is ignored in equation (14), which should be accurate if the mass of

F is much larger than the knockouts. Antisymmeterization in the subsystems of jFi and j�ni may still be

included. By using plane-wave states for jkji and substituting equations (12) and (14) into equation (11), we

�nd that

�n(t) = hTj

(�
AP

n

�
hFj
Y
l

Q
y

l

�
b
0�s

0

l

�
jF�ihF�j

Y
l

Ql(b�sl)jFi

Z
dr1dr

0

1
eik�x1Q

y

1

�
b
0�s

0

1

�
Q(b�s1)

�

nY
j=2

�Z
dkj

(2�)3
drjdr

0

j
eikjxje

�ik
2

j
t=2mNQ

y

j

�
b
0�s

0

j

�
Qj(b�sj)

�
�n(r1; : : : ;rn)�

y

n

�
r
0

1
; : : : ;r0n

�)
jTi (15)
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where xj = rj � r
0
j. Using the coherent approximation for the target wave function in the intermediate states

and the independent particle model for the fragment wave function leads to

�n(t) =

�
AP

n

�
PAP�n(b;b0) �n�1(b;b

0; t)
dN1

dk
(16)

where the function P(b;b0) describes the projectile spectators as given by

PAP�n(b;b0) = hTF j
Y
l

Q
y
l

�
b
0 � s

0
l

�
jF�ihF�j

Y
l

Ql(b� sl)jFT i (17)

We next perform closure on the prefragment states in equation (17) because we do not consider coincidences

with individual states. After closure we �nd that

PAP(b;b0) = hTF j
Y
l

Q
y
l

�
b
0 � sl

�
Ql(b � sl)jFT i (18)

In equation (16) we have de�ned

dN1

dk
=

1

(2�)3

Z
drdr0 eik�x�(r; r0)Q

y
l (b

0 � s
0)Ql(b� s) (19)

where �(r; r0) is the one-body density matrix of the projectile given by �(r; r0) = �(r)�y(r0). Next, from

equation (15), after evaluation of the integrals over kj for j > 2, we �nd

�n�1(b;b
0; t) = hT j

Z nY
j=2

�
drj dr

0
j

�mN

2�it

�
3=2e

�mNx
2

j
=2it

�
�
rj; r

0
j

�

�Qj

�
b
0 � s

0
j

�
Qj(b� sj)

�
jT i (20)

In energy space,

�n�1

�
b;b0; TF�;k

�
= hT j

Z nY
j=2

h
drj dr

0
j �
�
rj ; r

0
j

�
Q

y
j

�
b
0 � s

0
j

�
Qj (b� sj)

i

�
mN

2

�
1

2�

�
3(n�1)=2 �

[3(n�1)=2]�1

n�1

x
[3(n�1)=2]�1

n�1

J
(1)

[3(n�1)=2]�1
(�n�1xn�1)jTi (21)

where J
(1)

m is the cylindrical Bessel function of the �rst kind of order m and where

�n�1 =

s
2mN

�
TF�+

k2

2mN
� Sn� (ET � EX)

�
(22)

and

xn�1 =

vuut nX
j=2

x2j (23)

5



For n = 1, we have �0 = �(TF�). If we assume forward-peaked density matrices (about x = 0), a small

argument expansion of the Bessel functions can be developed (refs. 10 and 11) that results in

�n�1
�
b;b0; TF�;k

�
� Cn�1

"
TF�+

k
2

2mN

� Sn� (ET �EX)

#
n�1

��n�1
1

�
b;b0;

�n�1p
n� 1

�
+ O(�4x4) (24)

where, for example, C1 = 1, C2 = �=4, C3 = �=105, and C4 = �2=240.

The nucleon momentum distribution from abrasion then takes the form

d�

dk
=
X
n

�
AP
n

�
1

(2�)2

Z
d2q d2b d2b0 eiq�(b�b

0

)PAP�n(b;b0)

� dN1

dk

Z
dTF��n�1

�
b;b0; TF�;k

�
(25)

If

q2+M2

T �M2

X � E2

T (26)

we may approximate equation (25) as

d�

dk
�
X
n

�
AP
n

�Z
d2bPAP�n(b) dN1

dk

Z
dTF��n�1(b; TF�;k) (27)

The result of equation (27) suggests that for AP � 1, the momentum dependence of higher production terms

(n > 1) should be similar to the leading-order terms as described in the appendix. This supports the success

of the hard-scattering model of Hatch and Koonin (ref. 12) where only the single-scattering mechanism was

used to predict the shape of the inclusive proton distribution in heavy ion collisions. The model developed

herein di�ers from the hard-scattering model by our use of the target closure approximation in which the e�ects

of smearing of the secondary momentum from the target knockouts are not considered but are replaced by

averages represented by the target density and by using only on-shell two-body amplitudes. Also, the Glauber

model has a much fuller multiple-scattering structure than the hard-scattering model.

In order to include the e�ects of �nal-state interactions (FSI) of the nucleon knockouts, we use the eikonal

model described in reference 11 in which the plane waves are replaced by the distorted waves for the nucleon-

projectile recoil interaction evaluated at the relative energy between the knockout and recoil. Modifying

equation (19) as in reference 11 gives

dN1

dk
=

1

(2�)3

Z
dr dr0 eik�x �(r; r0)e�2Im�(�)(y)Q

y
l
(b0 � s

0)Ql(b � s) (28)

where �(�) is the outgoing eikonal phase. Equation (28) ignores o�-shell e�ects, whereas the energy dependence

of the FSI is included and a medium modi�ed interaction is assumed as described in reference 11.

Optical Limit for Pro�le Functions

For APAT � 1, the optical limit of the pro�le functions occurring in the previous expressions may be used

(refs. 8 and 13). From reference 13 we �nd in the optical limit that

PAP(b;b0) = exp
n
i
h
�(b)� �y(b0)

io
(29)
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where the eikonal phase is

�(b) =
APAT

2�kNN

Z
d2q eiq�bFP(q)FT (q) fNN(q) (30)

with F denoting the one-body form factor and fNN denoting the two-body scattering amplitude, which we

represent by

fNN =
�NN(�+ i)kNN

4�
e�

1

2
Bq2 (31)

where �NN is the two-body total cross section, B is the two-body slope parameter, and � is the ratio of the

real part to the imaginary part of fNN(q = 0). For the inelastic terms, we write in the optical limit (ref. 13)

Q
y
j

�
b0
� s0j

�
Qj(b� sj) =

n
exp

he
�b0
� s0j;b� sj

�i
� 1

o
(32)

with
e
�b0

� s0j ;b� sj

�
=

1

(2�kNN)
2

X
�

Z
d2q d2q0 eiq �(b�sj+s�)e

�iq�
�
b0�s0

j
+s0�

�
fNN(q) f

y
NN

(q0) (33)

Model for Nuclear Density Matrix

We next describe a local density approximation for the one-body density matrix. For a projectile nucleus

with AP nucleons, the one-body density matrix is de�ned in terms of the complete nuclear wave function (	)

as (ref. 14)

�(r; r0) =

Z
dr2dr3; : : : ; drAP	

y
�
r0; r2; : : : ; rA

P

�
	
�
r; r2; : : : ; rAP

�
(34)

The evaluation of equation (34) requires knowledge of the complete nuclear wave function; however, in practice

a model is introduced. In the Fermi gas model (ref. 14),

�(r; r0) = �o
3j1(kF jr� r0j)

kF jr� r0j
(35)

where kF is the Fermi momentum and �o is the density of nuclear matter. The Fermi gas model is known to

provide a poor representation of the density matrix; however, its form suggests the use of a local density model

where the density matrix factors are given as

�(r; r0) � �(y) n(x) (36)

with x = r� r0 and y = 1
2(r+ r0), and where the one-body density is given by the diagonal part of the density

matrix

�(r) = �(r; r0 = r) (37)

Here, n(x) is the Fourier transform of the nucleon momentum distribution

n(x) =

Z
dp eip�xn(p) (38)

where n(p) is de�ned by

n(p) =

Z
drdr0 eip�x�(r; r0) (39)

with normalization Z
n(p)

dp

(2�)3
= 1 (40)

The one-body density is reasonably well known from elastic electron scattering. The nucleon momentum

distribution at small to modest values of p is known from inclusive inelastic electron scattering. For large

values of p, the backward production of protons suggests that large enhancements occur because of correlation
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e�ects in contract to predictions of single-particle models and that the enhancements are largely independent

of the nuclear mass (refs. 15{17). Before introducing phenomenological parameterizations of n(p), we note

that by using equations (36) and (33), equation (19) can be written as

dN1

dk
=

1

(2�)2

Z
d2xd2p ei(k?�p?)�x?n

�q
p2
?

+ k2L

�

�

Z
d2y �(y)

h
e
(b;x;y)� 1

i
(41)

where k
?

is the transverse part of k and kL is the longitudinal part of k0. Equation (41) shows that the

production spectrum in the longitudinal direction corresponds closely to the internal momentum distribution

independent of the collision dynamics in the Glauber model, whereas the transverse spectrum is modi�ed by

multiple scattering.

Haneishi and Fujita (ref. 17) have introduced

n(p) = n0

3X
i=1

Ci e
�p2=2p2

i (42)

where Ci and pi are constants listed in table 1. The last term in equation (42) is expected to directly re
ect

the nuclear correlations. In equation (42), p1 is related to the Fermi momentum by p1 =
p
2=5kF . Values for

kF from experiments of Moinz et al. (ref. 18) are listed in table 2. For 12C we use a value for kF corresponding

to the matter radius of 1.69 fm.

Table 1. Parameters forMomentumDistribution
Model of Equation (42)

i pi, MeV/c Ci

1
p
2=5k

F
1

2
p
6=5k

F
0.03

3 500 0.003 (0.0002)a

a
Value foundempirically.

Table 2. Experimental Determination of Fermi
Momentum for Several Nuclei

Nucleus k
F
, MeV/c

12C 184

40Ar 251

208Pb 265

Amado (ref. 19) has considered many body correlations by solving the Schr�odinger equation directly for the

case of delta-function potentials where, for large values of p, he �nds

n(p) �

p

sinh(
p)
(43)

An analysis of backward proton scattering supports the value 
 = 90 MeV/c independent of the nuclear mass.

We continue equation (43) to small values of p by using

n(p) = n0

�
e�p2=2p2

1+ d0

p

sinh(
p)

�
(44)

and consider several values for d0 below. We note that the normalization in equation (44) is given as

n0 =

"�
2�p21

�
3=2 +

d0�
5
3

2

#
�1

(2�)3 (45)
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and for n(x) we �nd that

n(x) = n0

"
(2�p21)

3=2e�p
2

1
x2=2+

�4
2d0

x
sech2

��
x
2

�
tanh

��
x
2

�#
(46)

In �gures 3, 4, and 5, we compare the models of equations (42) and (44) for 12C, 40Ar, and 208Pb, respectively.

For display, n(p) has been normalized to unity rather than to the condition given by equation (40). For a pure

0
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1

Eq. (44); d0 = 0
Eq. (41); d0 = 0.1
Eq. (43)
Eq. (42); C3 = 0.003
Eq. (42); C3 = 0.0002

Figure 3. Logarithm of internal momentum distribution for
12C versus momentum for several models.
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Figure 4. Logarithm of internal momentum distribution for
40Ar versus momentum for several models.
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Figure 5. Logarithm of internal momentum distribution for 208Pb versus momentum for several models.
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Gaussian model (d0 = 0 in eq. (44)), the momentum distribution is vanishingly small above about 3 fm�1.

The model of equation (42) is shown using C3 = 0:003 and a value of C3 = 0:0002 determined empirically, as

discussed below. Including the correlation term with no Gaussian component (dashed line) is seen to show a

large depletion of strength at small values of p in order to preserve the normalization condition. The use of

equation (44) with 0:01 < d0 < 0:1 will provide a reasonable momentum distribution at small values of p and

account for some correlation strength at large values of p.

Results and Discussion

In �gure 6 we show calculations for the momen-
tum distribution of produced protons in 12C on 12C
reactions at an energy of 1.028A GeV in the forward
direction. The �rst three terms in the series of equa-
tion (25) are shown corrected for the production of
protons only with the �nal-state interactions (FSI)
neglected. The invariant momentum distribution is
shown which is found by multiplying equation (25)
by the energy of the secondary proton. The calcu-
lations are made by neglecting the correlation term
(the third term) in equation (42). The leading-order
term is seen to dominate, but with important contri-
butions from the higher terms. The shape of the dis-
tribution for the higher order terms is similar to the
leading term except at high momentum values where
they fall o� more rapidly. In �gure 7 we compare
calculations which include the �nal-state interactions

106

100
0 3.0

p, GeV/c

Total
1
2
3

105

104

103

102

101E
 d

3 σ/
dp

3 , m
b 

– 
c3  –

 G
eV

–2
 –

 s
r–1

2.52.01.51.0.5

n

Figure 6. Calculations of invariantmomentumdistribution for

proton production from abrasion in 12C{12C collisions at

1.028AGeV. Shown are�rstthree collision termswithout

�nal-state interactions.

using the same internal momentum distribution as
in �gure 6. The absorptive e�ect of the FSI leads
to a decrease of about a factor of 2 in the momen-
tum distribution. This large decrease indicates the
importance of cascade e�ects of the knockouts with
the projectile fragments which must account for the
decrease in �gure 7.

In �gure 8 we compare calculations for proton
production from abrasion for several targets with
the experimental data from references 20 and 21 for
inclusive proton production. The calculations shown
by the solid line include the correlation contribution
in equation (42). However, the strength has been
adjusted to C3 = 0:0002 from the suggested value
of C3 = 0:003 from Haneishi and Fujita (ref. 17)
because their value was found to be much too large
in the high-momentum region. The dashed lines in
�gure 8 neglect the correlation term (d0 = 0). A
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Figure7. Calculations of invariantmomentumdistribution for

proton production from abrasion in 12C{12C collisions at

1.028AGeVwith and without �nal-state interactions.
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Figure 8. Comparison of calculations with experiments of references 20 and 21 for proton production for 12C collisions on several

target nuclei at 1.028AGeV. Calculations include �nal-state interactions with and without correlation e�ects as described in

text.

treatment of phase space that is more accurate than
the Glauber model employed here may allow for
a larger correlation term; however, we note that
most of the cited calculations on backwards proton
production (refs. 15{17) neglect the absorptive ef-
fects that would cause some renormalization of their
results. The agreement between calculations and ex-
periments in �gure 8 is fairly good except in the low-
momentum region where other processes will con-
tribute to the inclusive proton production. The
calculations shown include the production from the
target knockouts, but these make only a small con-
tribution at large momenta. The largest di�erences
in the high-momentum region occur for the 1H tar-

get where we note that the experimental results are
obtained indirectly by using a CH2 target.

In �gure 9 we compare calculations with exper-
iments for proton production in 12C{12C reactions
at 2.062A GeV. The agreement between calculations
is also good as in the lower energy data for the 12C
projectiles. In �gure 10 we repeat the comparison
made in �gure 9 shown in the rest frame of the pro-
jectile. Also shown for comparison are plots of the
internal momentum distribution times the proton en-
ergy normalized to the data. The comparison made
in �gure 10 illustrates the modi�cation of the mo-
mentum distribution by the collision dynamics.
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Figure 9. Comparison of calculations with experiments of references 20 and 21 for proton production in 12C{12C collisions at

2.062AGeV.
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Figure 10. Comparison of calculations with experiments of references 20 and 21 for proton production in 12C{12C collisions at

2.062AGeVin projectile rest frame. Also shown is plot ofEn(p) for models discussed in test.
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In �gure 11 we show calculations of proton production in Ar{KCl collisions at 0.8A GeV at a scattering

angle of 10� in comparison with the data of Nagamiya et al. (ref. 22). For calculations, the target is assumed

to be Ar, and the agreement is again good in the high-momentum region. At low values of momentum, other

contributions to the inclusive proton production, as discussed in the introduction of this report, are present

and have not been estimated here. Production mechanisms other than those from abrasion will become more

dominant at larger scattering angles. Finally, in �gure 12 we show comparisons with the data of reference 231

for proton production at 5� from 40Ar projectiles interacting with Be and Cu targets.
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Figure 11. Comparison of calculations with experiments of reference 22 for proton production at 10� in 40Ar{40Ar collisions at

0.8AGeV. Data are for Ar{KCl and showcalculations both with and without correlation term and protons fromtarget.

1Avital comparison was also made with data found in an unpublished report by V. Perez-Mendez et al. (LBL-7278, Dep. of

Physics, Univ. of California, 1978).
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Figure 12. Comparison of proton production on 40Ar{Cu and 40Ar{Be collisions with production at 5�. Data are taken from

reference 23 for 1.8AGeV beams.

Concluding Remarks

The production of nucleons from heavy ion abrasion has been formulated by using a multiple-scattering

model. The resulting formalism allows for the physics of nuclear abrasion, which is important in describing

heavy ion fragmentation cross sections to be directly related to the inclusive yields of nucleons. Comparisons of

theory with experimental data were made for inclusive proton production at small angles, and good agreement

was found. The model comparisons indicate an important role for �nal-state interaction e�ects and the internal

momentum distribution of nucleons in describing nuclear fragmentation.

NASALangley Research Center

Hampton, VA 23681-0001

August 25, 1994
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Appendix

Kinematical Phase Space and Inclusive Momentum Distribution

In this appendix we discuss the relationship of the multiple production terms of nucleons abraded from
the projectile to the kinematical phase space and also consider an approximation using the Glauber multiple-
scattering series in which energy conservation is ignored entirely.

The scattering amplitude for the heavy ion collision is related to the cross section by the phase space of
each particle that appears in the �nal state. We consider inclusive reactions in which a nucleon originating
in the projectile is measured. For simplicity, the �nal target state is not considered and we use closure on
these states with a single momentum vector denoted by p

X
to represent these states. The cross section is then

determined by

d� =
(2�)4

�

X
X

dp
X
dp
F�

X
n=1

nY
j=1

[dpj] �(Ei � Ef) �(pi � pf) jTfij
2 (A1)

where � is the relative projectile-target velocity, F� represents the prefragments, n is the number of nucleons
knocked out of the projectile in the overlap region with the target, and i and f denote the initial and �nal
states, respectively. The prefragment will decay through particle emission if su�cient energy is available. To
include the phase space of decay products of F�, we write

dp
F�

= dp
F

Y
r=0

dpr (A2)

where r denotes the ions (if any) emitted in ablation. In considering nucleon production from ablation, we
would study pr. We use the momentum-conserving delta function in equation (A1) to eliminate p

F
from

equation (A1).

We next consider using energy conservation in equation (A1). Working in the projectile rest frame, we
transform dp

X
to dq, where q = pT � pX is the total momentum transfer in the collision, and we use the

energy-conserving delta function in equation (A1) to eliminate dq
L
, where q

L
is the longitudinal momentum

transfer. We then �nd

d� = (2�)4
X
X

dq
T
K

"Y
r=0

dpr

#2
4X
n=1

nY
j=1

dpj

3
5jTfij2 (A3)

where the phase space factor is de�ned as

K =
1

�

�@Ef

@q
L

=
1

�

EXEF�

EF�(pT � q
L
) + EX

 P
j

pj cos �j � q
L

! (A4)

The momentum distribution of nucleons from abrasion is then

d�

dp
= (2�)4

X
X

Z
dq

T

X
n=1

Z nY
j=2

dpj
Y
r=0

dprKjTfij
2 (A5)

which corresponds closely to equation (3) if we make the replacement

K =

Z
dq
L
�(Ei � Ef )!

Z
dEF��(Ei � Ef ) (A6)

If energy conservation is ignored entirely, we would haveK = 1. By using the participant-spectator arrangement
of the Glauber series discussed previously, the inclusive momentum distribution is shown to become

d�

dk
=
X
n

Z
d2bPAP�n(b)

dNn

dk
(A7)
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where
dNn

dk
=
dN1

dk
[1�P(b)]n�1 (A8)

and Z
dN1

dk
dk = 1�P(b) (A9)

The result of equation (A8) indicates that the inclusive momentum distribution from abrasion essentially
follows the shape of the leading-order term in the approximations discussed because the absorptive factors in
equation (A7) change slowly with increasing n for AP � 1.
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