NASA Technical Paper 3491

Design Tool for Multiprocessor Scheduling and
Evaluation of Iterative Dataflow Algorithms

Robert L. Jones 111
Langley Research Center « Hampton, Virginia

National Aeronautics and Space Administration
Langley Research Center ® Hampton, Virginia 23681-0001

|
April 1995

The use of trademarks or names of manufacturers in this report is for
accurate reporting and does not constitute an official endorsement,
either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Acknowledgments

This paper has benefited from numerous discussions with Sukhamoy
Som of Lockheed Engineering & Sciences Company and Paul Hayes
of the Langley Research Center. Rodrigo Obando of Old Dominion
University and Asa Andrews of CTA, Inc., provided invaluable tech-
nical discussions during the software implementation of the Design
Tool. Asa Andrews developed the Graph-Entry Tool.

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)

800 Elkridge Landing Road

5285 Port Royal Road

Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390

(703) 487-4650

Contents

NOMENCIALUIE e e v

AT ACT. . o o oo e ———— 1

L INIrOAUCHION . . L e 1

2. Dataflow Graphs and Scheduling Diagrams 2....

3. Dataflow Graph Analysis. 6

4. Performance Metrics and Resource Requirements. 9.......
4.1. Critical Path Analysis. e 9
4.2. Calculated Speedupt 10
4.3. Run-Time Memory ReqUIrEmMeNtSttt e e e 10. ...
4.4, Control EAQES.o e 13

5. DeSigN TOO ——— 17
5.1. Design Tool Use in Graph Optimization i 21, ...
5.2, CaSE StUAY e 23
5.3. Algorithm Implementation Performance 7. .. 2

6. Tool Applications and Future Research et e 28..

7.Concluding RemMarks e 29

Appendix—Implementation d&S Algorithm andLF Algorithm 30

RefereNCeS e 35

Tables

Table 1. Summary of DFG Attributes for TBO = 333 clock units, TBIO = 667 clock units,
ANAR = 3 L —— 17

Table 2. Design Tool Performance ResuUlts. i, 28 ...

Figures
Figure 1. Dataflow graph. e 2

Figure 2. Single graph play diagram= 600 clock units

Figure 3. Linked-list graph representation 4. .

Figure 4. Segmented single graph play diagram i 5..
Figure 5. Total graph play diagram. TBO =333 clock units.
Figure 6. Constructing the modified dataflow graph. 7. ..
Figure 7. The modified dataflow graph equivalentoffigure 1.

Figure 8. Single graph play diagram showing slack tsme.600 clock units

Figure 9. Example function implementation.10 ..

Figure 10. Petri net representation of dataflow graph 11....

Figure 11. Petri model of self-loop circuit. i . 13

Figure 12. Diagrams with ' Ccontroledge. i e e
Figure 13. Periodic behavior with € Ccontroledge
Figure 14. Periodic behavior with€ Cand8 Dcontroledges
Figure 15. Equivalent MDFG model of figure 14(D)o

Figure 16. The design ProCeSSot it ettt e et 18
Figure 17. Speedup display i . 18

Figure 18. Metrics and SGP window displays. e 19....

Figure 19. TGP WINAOW o o oo e e e e 19

Figure 20. Total resource envelope WindoWttt e 20. ..

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for

TBO =300 clock units and TBIO =600 clock units
Figure 22. Adding a control edge by using SGP window
Figure 23. Selecting the initial node of controledge 22. ..
Figure 24. SGP window with control edge<€ G
Figure 25. Windows with control edge€ C..... .. it e
Figure 26. Windows with controledges€ Cane&KB D.......t

Figure 27. Optimized graph summary window of three-processor schedule shown

in figure 26(a) for TBO = 334 clock units and TBIO = 666 clock units.
Figure 28. DFG2 with initial token on forward-directed edge.

Figure 29. Speedup potential of figure 28 DFG. i e 25....

Figure 30. Dataflow schedule of figure 28 for four processors
Figure 31. Dataflow schedule of figure 28 for Seven processors.
Figure 32. Graph summary of figure 28 for SeVen proCesSOrS. v vttt e

Figure 33. Test grapho 27

Nomenclature
AMOS
ATAMM
G

CMG

D; (T)
D;

D, (T)
DFG
DSP

d

EF

ES

F(M
GVSC

ATAMM multicomputer operating system
algorithm to architecture mapping model

sum of node latencies ith circuit

computational marked graph

relative data set associated with finish of task T
total number of tokens withirth circuit

relative data set associated with start of task T
dataflow graph

digital signal processing

number of initial tokens on edge or within path
earliest finish time

earliest start time

TBO-relative finish time of task T

generic VHSIC spaceborne computer

ith element ir_; latency ofith task

set of task latencies

latest finish time

initial marking of graph

modified dataflow graph

ith node in DFG

output empty; number of initially empty output queue slots
output full; number of initially full output queue slots
maximum data set number

parallel-interface bus

total number of required processors

speedup

TBO-relative start time of task T

single graph play

steady-state single graph play

transient-state single graph play

single resource envelope

ith task inT

maximum time per token ratio for all graph circuits
time

set of tasks

time between inputs

time between input and output

lower bound time between input and output

\'

TBO
TBO},
TCE
TGP
TRE

VHSIC

time between outputs

lower bound time between outputs
total computing effort

total graph play

total resource envelope

utilization

very-high-speed integrated circuit
EF - LF for a given task

schedule length

partial ordering of tasks

Vi

Abstract

A graph-theoretic design process and software tool is defined for selecting a
multiprocessor scheduling solution for a class of computational problems. The prob-
lems of interest are those that can be described with a dataflow graph and are
intended to be executed repetitively on a set of identical processors. Typical applica-
tions include signal processing and control law problems. Graph-search algorithms
and analysis techniques are introduced and shown to effectively determine perfor-
mance bounds, scheduling constraints, and resource requirements. The software tool
applies the design process to a given problem and includes performance optimization
through the inclusion of additional precedence constraints among the schedulable
tasks.

1. Introduction the resource requirement specifies the minimum amount
of memory needed for data buffers as well as the proces-
This paper describes methods capable of determin-sor requirements. Obtaining this information is useful in
ing and evaluating the steady-state behavior of a class oéllowing a user to match the resource requirements with
computational problems for iterative parallel execution resource availability. In addition, the nonpreemptive
on multiple processors. The computational problemsscheduling and synchronization of the tasks that are suf-
must be capable of being described by a directed graphficient to obtain the theoretic performance are specified
When the directed graph is a result of inherent databy the dataflow graph. This property allows the user to
dependencies within the problem, the directed graph isdirect the run-time execution according to the dataflow
often referred to as a “dataflow graph.” Dataflow graphs, firing rules (i.e., when tasks are enabled for execution) so
generalized models of computation, have receivedthat the run-time effort is reduced to simply allocating an
increased attention for use in modeling parallelism inher-idle processor to an enabled task (refs. 5 and 6). When
ent in computational problems (refs. 1 through 3). This resource availability is not sufficient to achieve optimum
attention can be attributed not only to the ease at whichperformance, a technique of optimizing the dataflow
dataflow graphs can model parallelism but also in their graph with artificial data dependencies, called control
amenability to direct interpretation of program flow and edges, is discussed.

behavior (ref. 4). Predicting the computing performance, resource

requirements, and processor utilization connected with

¢ asklsn ;E(Ijs F;Zpﬁ r,e dgrgghren?gssntriﬁée(sjz?; Zghiﬂgfﬁéﬁhe execution of a dataflow graph requires the determina-
grap 9 P P i5n of steady-state behavior. Dataflow graph analysis

between the tasks. Because the data dependencies Impéllgorithms and rules are defined in this paper for deter-

Sarﬁﬁ-%?ggpcsit' rter:?l?ci)gszlc?r’netrt]:sk;ai(jst rgiléiutgpin minin.g the schedulir_1_g constraints, that is, earliest execu-
particular order ’Wherea’s other tasks may execute inde&flon times anq mobility, for all tasks .“”.d‘?f steady_—;tate
pendent of othe’r tasks. When a computational problem Orcondltlons. It is al;o shown that certain initial conditions
algorithm can be described with a dataflow graph the_represented .by initial data in a_dataﬂ(_)w graph may result
inherent parallelism present in the algorithm car’1 ben @ transient-state execution dlff_erent f_rom the
readily observed and exploited. The modeling methodsSt%Ldy_State execution. Th_e analys_|§ algorithms are
' shown to detect such transient conditions. The method

presented in this paper are applicable to a class of dataf'or determining periodic steady-state behavior is based

zg\rllvsgr?{) sz]vr:tegfattigi ttlgqietetroat(ie())(r?cvl#]ee;azizéitgzsng%n first describing the execution of data associated with a
single computational iteration, referred to as a “data set.”

set of identical Processors. Also, .the da}taflow grap.h' ISSecond, the transient state is distinguished from the
assumed to be data independent; that is, any decisions

resent within the computational problem are containedsteady state if necessary when initial data are present.
\F/)vithin the araph nodes Fr)ather thanpdescribed at the ara Finally, the periodic execution for multiple iterations is
grap . N€ 9rallyetermined from the steady-state single iteration
level. The dataflow graph provides both a graphical and o
i .S .~ “description.
mathematical model capable of determining run-time
behavior and resource requirements at compile time. In For the mathematical models presented, an efficient
particular, dataflow graph analysis is shown to be able tosoftware tool which applies the models is desirable for
determine the exploitable parallelism, theoretical perfor- solving problems in a timely manner. A software tool
mance bounds, speedup, and resource requirements afeveloped for design and analysis is presented. The soft-
the system. Because the graph edges imply data storageyare program, referred hereafter as the “Design Tool,”

provides automatic and interactive analysis capabilities
applicable to the design of a multiprocessing solution.
The development of the Design Tool was motivated by a
need to adapt multiprocessing computations to emerging
very-high-speed integrated circuit (VHSIC) space-
qualified hardware for aerospace applications. In addi-
tion to the Design Tool, a multiprocessing operating sys-
tem based on a directed-graph approach called the
ATAMM multicomputer operating system (AMOS) was
developed. AMOS executes the rules of the algorithm to
architecture mapping model (ATAMM) and has been
successfully demonstrated on a generic VHSIC space-
borne computer (GVSC) consisting of four processors
loosely coupled on a parallel-interface (Pl) bus (refs. 5
and 6). The Design Tool was developed not only for the Figure 1. Dataflow graph.
AMOS/GVSC application-development environment
3:::;5253 dapl)?alirfa]:ﬁgig?eli 05r ae?(g;p?; t tfr? é 3?;;#%225% scheduled for execution (ref. 10). If the set of tasks are

dures based on ATAMM solve signal processing prob- not independent of one another, a precedence relation-
._ship is imposed on the tasks in order to obtain correct

lems addressed by Parhi and Messerschmitt Incomputational results. A task system can be represented
reference 3. (See ref. 8.) Information provided by theéormally as a 4-tupleT(< , L, M) where

Design Tool could also be used as scheduling constraint

Sink

as done in reference 9 to aid other scheduling algorithms set ofn tasks to be executedl{, T,, Tg, ..., Tp}

The modeling of a computational problem with a < precedence relationship @rsuch thafl; < T;
dataflow graph and analysis diagrams is discussed in signifies thaff; cannot execute until completion
section 2. A forward-search algorithm is defined and is of Ty

shown to determine the earliest execution times for all
tasks. Section 3 discusses a modification to the dataflo) :
graph described in section 2, which lends itself to cies such that task takesl; amount of time to
the modeling of initial conditions. In addition, a execute, Ly, Ly, Lg, -..,Ln}

backward-search algorithm is defined and shown to Mo initial state of system, as indicated by presence
determine the mobility of the tasks and transient condi- of initial data

tions which affect the steady-state behavior. The perfor- . .
mance metrics and resource requirements procedures SUCh task systems can be described by a directed
implemented in the Design Tool are described in graph where nodes _(vertlces) represent the tas_ks ar_1d
section 4. The memory requirements of data sharedd9es (arcs) describe the precedence relationship

among tasks, as described by a directed graph, is Showp_etween the tasks. When the precedence constraints
to be bounded. Rules for determining the minimum 9'V&N by < ‘are a result of the dataflow between the

memory requirements for buffering-shared data aretasks, the directed graph is referred to as a “dataflow

defined. The Design Tool displays and features are prengaph (DFG)” as sho_wn in figure 1. Special transitions
sented in section 5 where the performance results aré:alled sources and sinks are also provided to model the
compared with the theoretical results derived in the pre—Input and output data streams of the task system. The

vious sections. Section5 also presents execution time?fésence of data is indicated within the DFG by the

results regarding the Design Tool implementation of the placement of tokens. The DFG is initially in the state

algorithms presented in sections 2 and 3. Applicationsmdicated by the markiniyl,. The graph moves through

and future research are summarized in section 6. other m_arklngs as a result of a sequence of node firings
(executions); that is, when a token is available on every

input edge of a node and sufficient resources are avail-
able for the execution of the task represented by the
A generalized description of a multiprocessing prob- node, the node fires. When the node associated with task
lem and how it can be modeled by a directed graph isT; fires, it consumes one token from each of its input
presented in this section. Such formalism is useful inedges, delays an amount of time equaljoand then
defining the graph analysis algorithms and rules which deposits one token on each of its output edges. Sources
determine scheduling constaints. A computational prob-and sinks have special firing rules; sources are uncondi-
lem (job) can often be decomposed into a set of tasks tdionally enabled for firing, and sinks consume tokens but

nonempty, strictly positive set of run-time laten-

2. Dataflow Graphs and Scheduling Diagrams

2

do not produce any. By analyzing the DFG in terms of its asterisks. A node object points to just onput and
critical path, critical circuit, dataflow schedule, and the oneoutput . All other input and outputs are connected
token bounds within the graph, the performance characto the node by tha@ext input and next output
teristics and resource requirements can be determinegbointers. Anull pointer indicates that no other input or
a priori. The Design Tool depends on this dataflow repre- output exists.

sentation of a task system, and the graph-theoretic per-

formance metrics presented herein. Given a linked-list graph representation as shown in

figure 3, the following forward-search algorithm deter-
The graph execution for a single iteration, unlimited mines the earliest start times for all nodes (tasks). The
resources assumed, can be portrayed with a Gantt chaslgorithm employs the depth-first searching method
where horizontal bars are used to indicate when tasksvhere the graph is penetrated as deeply as possible from
may be scheduled for execution. Such a chart is referred given source before fanning out to other nodes. For
to hereafter as a “single graph play (SGP) diagram,” each node encountered in the search, the algorithm calls
which is shown in figure 2 for the DFG of figure 1. The the proceduré&SearchFwd recursively for each output
SGP can be constructed by calculating the earliest staredge associated with the node. The recursive nature of
(ES) times for all tasks. The ES times can be calculatedhe algorithm allows a depth-first search of the graph to
by envisioning the migration of a single data set through be done while implicitly retaining the next edge (starting
the graph. Since the condition for a node to fire (begin point for the next path to traverse when fanning out) and
execution) is having a token present on all its inputs, theaccumulated path latency on the memory stack. The
ES time for a given task is equal to the longest patharguments passed intS8earchFwd are an address
latency (starting from the source) for all paths leading to pointer €dge) to an edge structure (fig. 3) and the cur-
its inputs. The longest input path latency would indicate rent path latencypath_latency) up to theedge.
the time at which all input tokens would be present for Also, letnode specify a pointer to a node structure. An
execution. The amount of time required for all nodes of aedge will point to anext_output if present, and will
graph to execute a single data set or graph iteration ide null if no other output edges for the currente
referred to as the schedule length, denoted &or gen- exist. TheES Algorithm is stated as follows:
erality, the task latencies shown in figure 1 are given in
clock units , and therefore the schedule length is
shown in figure 2 to be equal to 600 clock units.

A. Initialize earliest start times for all nodes to
Zero

B. Execute proceduré&earchFwd (source.
output , 0) for every source in graph by start-
ing with first output edge of source; path
latency, the second parameter, initially set to
zero

|

SearchFwd (edge, path_latency)

O O m

.
1. If edge.next_output is not null,

call SearchFwd (edge.next_out -
| | put , path_latency).

us]

2. Get the node that uses theslge for
| | | | | input by setting node equal to

100 200 300 400 500 600 edge.terminal_node

Time, clock units

>

3. Determine the earliest start ofode,
Figure 2. Single graph play diagrasm= 600 clock units. ES (ode), such that ESnpde) = max
[ES (hode), path_latency .

The two algorithms, defined in this paper, that 4. Increasepath_latency by thenode
implement a forward and backward search of the directed latency,Lnoge
graph and other analyses are based on a linked-list repre- ¢
sentation of the graph. In this way, pointers can be used
for efficient progression through the graph from any

. Setedge equal to the first output edge of
node, edge = node.output

given starting point. An example illustrating the connec- 6. If a sink has been reacheatige = null),
tions between node objects and edge objects is shown in return from this procedure; else repeat
figure 3. The object address pointers are denoted by Step 1.

(@) Example graph.

~ EdgeA-B

(o)—{o

|—>- Node B

Edgel-A

Node A

Initial*
Terminal*

Input*
Output*

Next_|nput*
Next_Output*

gL

Sourcel

Input*
Output*

=

Initial*
Termina*

Next_Input*
Next_Output*

— Null

| —

Edge A-C

Initial*

Input*
Output*

Node C

Termina*

Next_|nput*

J: Next_Output*

N

|—> Edge C-D

Edge B-D

Initial*
Termina*

Next_Input*

j_N ext_Output*

Node D

I nput*
Output*

‘|— Input*

Output*

Initial*
Terminal*
Next_Input*

:

Edge D-O

Initial*
Terminal*

(b) Linked-list representation.

Figure 3. Linked-list storage of dataflow graph.

Next_Output* :|_

Next_|nput*
Next_Output*

Sink O

I nput*
Output*

1]

TheES Algorithm execution time is graph depen- Of particular interest are the cases when the algo-

dent and is bounded by rithm modeled by the DFG is executed repetitively for
different data sets. The iteration period and, thus,

Bound = Z N; Q) throughput is characterized by the metric TBO (time

Over all paths in DFG between outputs) where TBO is defined as the time

i i i between consecutive consumptions of output tokens by a
whereN; is the number of nodes in a given path. Becausegink |t can be shown that because of the consistency

the number of paths in a given graph with at most hroherty of dataflow graphs, all tasks execute with period
N nodes is bounded ?ENZ the expression (eq. _(1)) hasa 1go (refs. 11 and 12). This implies that if input data are
worst-case bound of°. Therefore, th&S Algorithm injected into the graph with period TBI (time between
hassa polynomial-time complexity of the order, or inputs) then output data will be generated at the graph
O(N?). sink with period TBO equal to TBI.
The elapsed time between the production of an input

token by the source and the consumption of the corre- The periodic graph execution for multiple iterations
sponding output token by the sink is defined as the timecan be portrayed in another Gantt chart referred to as a
between input and output (TBIO). When initial tokens “total graph play (TGP) diagram.” The TGP diagram
are not presentp will be equal to TBIO, otherwisey shows the execution over a single iteration period of
may be greater than TBIO. As discussed later, the SGPTBO. Like the single graph play diagram, the total graph
determined by the ES analysis given by H& Algo- play diagram represents task executions with horizontal
rithm when initial tokens in the forward dataflow bars. The TGP can be constructed from the SGP by
direction are present may not be representative of thedividing the SGP into segments of width TBO starting
steady-state behavior, SGfat run time but instead por- from the left of the diagram. The resulting SGP from the
trays a transient state, SGPRefinements to the com- previous example for an arbitrarily selected TBO period
puted earliest start times may be required to obtain theof 333 clock units is shown in figure 4. Each segment is
SGR,s A method for determining these refinements is representative of the execution associated with a particu-
included in the next section. lar data set when the graph is executed periodically.

E r
[
.

l«——— TBO = 333 clock units ——

|
] | | | | | |

100 200 300 400 500 600 700

Time, clock units

Figure 4. Segmented single graph play diagram.

Consequently, these segments are assigned relative dafsy numbering the SGP segments P tioom right to left,

set numbers, 1 1B, from right to left. Overlapping these a relative data set number&dwill refer to a data set
segments portrays the graph execution for multiple datainjected into the graph 1 TBO interval after a data set
sets within a TBO period as shown in figure 5. Note that numberedD —1 . Overlapped bars for a given task indi-
the relative data set numbers assigned to the task barsate that the task has multiple instantiations as for task B.
within the TGP of figure 5 correspond to the numbered That is, the task is executed on different processors
SGP segments of figure 4. The fact that within a TBO simultaneously for different data sets. Allowing multiple
period, every task will execute exactly once is obvious task instantiations is a key mechanism for increasing
from the nature of how the TGP is constructed by over- speedup.

lapping TBO-width segments from the SGP. The total)]

computing effort (TCE) within a TBO interval from SGP The inherent nature of dataflow graphs is to accept

segments would therefore equal the sum of all task latendata as quickly as the graph and available resources (pro-
cies within the latency sét cessors and memory) allow. When this occurs, the graph

becomes congested with tokens waiting on edges for pro-
cessing because of the finite resources available, without
resulting in an increase in throughput above the
graph-imposed upper bound (refs.2 and 13). When
tokens wait on the critical path for execution, however,
an increase in TBIO above the lower bound occurs. This
increase in TBIO can be undesirable for many real-time
applications. It is therefore necessary to constrain the
parallelism that can be exploited in order to prevent
resource saturation. Constraining the parallelism in data-
flow graphs can be controlled by limiting the input injec-
tion rate to the graph. Adding a delay loop around the
source makes the source no longer unconditionally
enabled (ref. 5). It is important to determine the appropri-
ate lower bound on TBO for a given graph and number
of resources. Determination of the lower bound on TBO
2 is deferred to section 4.

—{33.3

A 2 3. Dataflow Graph Analysis

In the absence of initial tokens within the graph, a
latest finish (LF) time analysis would be similar to the
Figure 5. Total graph play diagram. TBO = 333 clock units. depth-first searching method used to calculate the earliest
start times, only in the reverse direction. That is, search-
ing backward from all sinks, the latest time each task
Constructing the TGP by overlapping SGP segmentsassociated with an encountered node must complete in
is equivalent to mapping the ES times (relative to the order to prevent an increase in the TBIO given by the ES
SGP) to a time interval of width TBO by using the map- time analysis can be determined. The latest finish time
ping function ES modulo TBO. The number of SGP seg- for a given task is equal to TBIO (for a given sink) less
ments is equal to the maximum number of data setsthe maximum path latency to the associated node output
simultaneously present in the graph at steady state angtom all possible paths leading backwards from the sink.
indicates the level of pipeline concurrency that is being The combination of earliest start and latest finish times
exploited. This metric is given by applying the ceifing provide the means to calculate the float or slack time that
function to the ratio of the schedule lengitto TBO as might be present for each task. Slack time indicates the

t t+TBO

shown in the following equation: maximum delay in task completion that can be tolerated
0 without delaying the start times of successor tasks which
P = (TTO} (2) result in an increase in TBIO. Slack time for a task is
given by
Slacktime= LHKT;) —ES(T;) —L, 3)

The ceiling of a real numbey denoted a$ x| , is equal to the
smallest integer greater than with latencyL.

6

When initial tokens are present within the graph, the
ES and LF analysis presented here must be modified l ?

slightly. The method for determining the steady-state d d
behavior of a dataflow graph when initial tokens are
present is based on a simple extension to the earliest start

time analysis described in the previous section and a lat- Virtual
est finish time analysis to be discussed here. It will be @ @ source

shown in later examples that initial tokens within the Virtual
DFG not only affect the calculations of ES and LF times Sink

but may also be associated with recurrence loops (result; d T l d T l
ing in graph circuits), which tend to complicate the graph t t

search process. Modifications to the dataflow graph, @ @
which simplify the analysis, are defined here and can be

shown to result in an equivalent model of the original

graph. This modified dataflow graph is referred hereafter Figure 6. Constructing the modified dataflow graph.
as the MDFG.

The MDFG can be constructed by letting all edges
with one or more initial tokens undergo the transforma- 400
tion shown in figure 6 where such edges are terminated
with “virtual” sinks. Each virtual sink is labeled with the
identifier of the node that consumes tokens from the orig-
inal edge. In the cases where all input edges of a node
have initial tokens, a virtual source for each such node is
added so that the node is not left dangling without an
input edge. The addition of these virtual sources main-
tains compatibility with th&S Algorithm . The result-
ing MDFG of the dataflow graph in figure 1 is shown in
figure 7.

D

The MDFG can now model the more complex prob-
lem containing initial tokens but in a simpler, linear
(source to sink) fashion. Now, the same ES analysis from
all sources to sinks can be conducted as before. Howevekne ES Algorithm . However, since the next data set

in order to ensure that the new MDFG is equivalent to will arrive 1 TBO interval later, an additional time con-
the original dataflow graph, an additional time constraint straint will be imposed if initial tokens exist in the graph.
must be imposed on the graph at these virtual sinks.The nodeT, with d initial input tokens has the potential
Referrlng to flgure 6, the time constraint is defined as (depending on other input dependencies) of repeated fir-
follows: ings until alld tokens are consumed. With each node fir-
_ ing with period TBO, the elapsed time to consume
LF(T;) = ES(Ty +d(TBO) 4) d tokens is the product af and TBO. The predecessor
nodeT; must return a token withid(TBO) time relative
to the ES so that the next firing @f is not delayed.
Therefore, in order for nodg to generate its first token
in this timely manner which maintains the task schedule
defined by the first iteration SGE it must do so by the
time determined by equation (4). Otherwise, the firing of
nodeT,; will be delayed, resulting iISGF, # SGR_

Figure 7. The modified dataflow graph equivalent of figure 1.

where LFT;) represents the LF time @f due to the ini-

tial tokens, ESI;) represents the ES time ©f andd is

the number of initial tokens on tig < T, edge. Stated

in words, equation (4) determines the latest finish time of
taskT; which returns a token on the edge initialized with
d tokens such that the firing of task will not be
delayed. The ESY) is determined by th&S Algo-
rithm starting from all MDFG sources. If equation (4) Now that it has been shown that timing conflicts
results in a LF timéessthan the earliest finish (EF) time determined by equation (4) indicate the presence of a
of T;, a time constraint has been violated. Since a taskiransient stateSGR,__# SGF, . , a method is needed to
cannot complete execution sooner than its earliest finishtranslate theSGR,__ to th8GFE, . . By adjusting the ear-
time (as determined from the ES analysis), a transientliest start times of the nodes affected by this delay, the
condition has been detected. For the first iteration, thesteady-state behavior when initial tokens are present can
graph will execute according to the SGRs defined by be determined. When equation (4) indicates a timing

7

conflict, determine the time difference between the result
of equation (4), LF;), and the earliest finish of thg,
EF(T;) = ES(M;) + L;, and denote this difference Ry

A = EF(T;) —LF(T;) (5)

The method to translate trf®GR_ to tBEF, sim-
ply involves addingh to the ES time of;. An ES time
analysis is then conducted again on the graph nodes con-
tained in the paths dependentTynAfter completing this

ES time adjustment, an LF time analysis is required as
before for all paths backward from the sinks. This pro-
cess is repeated until no time conflicts are detected by
equation (5); that isA<0 . The following algorithm
determines both the LF times and the transient adjust-
ments to the ES times and accounts for initial token tran-
sients as described above.

Given the linked-list graph representation shown in
figure 3, a depth-first search algorithm that employs the
same method used by tES Algorithm (only in the
reverse direction) will determine the latest finish times
for all nodes (tasks). The algorithm calls the procedure
SearchBkwd recursively for each input edge. As with
the ES Algorithm , the recursive nature of this
backward-search algorithm results in a depth-first search
of a graph from sinks to sources while implicitly retain-
ing the next edge (starting point for the next path to
traverse when fanning out) and accumulated path latency
on the memory stack. The arguments passed in to
SearchBkwd are an address point&dge) to an edge
object in figure3 and a latency valuepath_
latency). This latency value is defined as the TBIO at
the starting sink less the sum of node latencies along the
current path from the sink up to an encountered node. As
in the SearchFwd procedure, letnode specify a
pointer to a node structure of figure 3. Adge will
point to anext_input if present, and will be null if no
other input edges for the curramide exist. The itera-
tive nature of the.F Algorithm for the cases where
initial tokens are present within the DFG requires the
inclusion of a boolean condition. The boolean condition

edge with the initial token and set LF equal to
ES(Ty) + d(TBO) where ESI;) is the earliest
start ofT;, d is the number of initial tokens,
and TBO is the iteration period.

E. SetA equal to earliest finish d§ minus LF.

F. If Ais less than or equal to zero go to Step J;
else seDone to False.

G. Increase the earliest startlofoy A.

H. Call the procedur8earchFwd (T:.output
ES(Ty + L) of theES Algorithm in order
to propagate thé time shift for all descen-
dent nodes of;.

I. Increase LF by.

J. Call the proceduré&searchBkwd (sink .
input , LF).

K. Loop untilDone.
SearchBkwd (edge, path_latency)

1. If edge.next_input is not null, call
SearchBkwd (edge .next_input
path_latency).

2. Get the node that uses tladge for
output by setting node equal to
edge .initial_node

3. Determine the latest finish nbde , LF
(node), such that LF rfode) = min
[LF (node), path_latency .

4. Decrease path_latency by the

node latencyLoqe

5. Setedge equal to the first input edge of
node, edge =node .input

6. If a source has been reachedde =
null), return from this procedure;
else repeat Step 1.

Done in theLF Algorithm indicates when the process Since the method just presented to translate the
of determining LF times for all nodes is complete. The SGPR,_ to theSGP, _ is recurrent, one may question if a
LF Algorithm is stated as follows:

A.Initialize all LF times of tasks iff to maxi-
mum storage value and $2bne = False.

B. While notDone Loop through to Step K.

C. SetDone to True and repeat Step D for every
sink in the graph.

D.If thesink is not virtual, set LF equal to the
earliest start of the sink (already established
by theES Algorithm) and skip to Step J;
else determine the terminal nodk, of the

solution exists for all cases. This is important since, if a
solution does not exist, the method would hang in an infi-
nite loop. The answer is yes, there is a solution. The
proof lies in the fact that the only potential problem
results when circuits with initial tokens are present in the
dataflow graph. If adjustments were made to the ES
times of the nodes dependent on the edge initialized with
tokens that eventually led back to the original edge (due
to a circuit) with a new EF time, the new EF time would
again cause a conflict in equation (4), and the process
would repeat indefinitely—a run-away condition. Such a
condition implies that nodes firing on tokens propagating

through such a circuit could not produce a token on the —
initialized edge in a timely manner. It has been shown F T
that the minimum graph-theoretic iteration peridgl, is
given by the ratio of théth circuit latency,C;, to the E
number of tokens in the circuld; for all circuits within D
the DFG (refs. 3, 9, 11, and 14):
C -
T %E% for all ith circui 6 | | S |
= max or all ith circuitg B
A
| | | |

Equation (6) determines the minimum time in which

tokens can propagate through a circuit in one periodic
cycle and thus establishes a lower bound on TBO. The
only way this algorithm would fail to complete is if the Figure 8. Single graph play diagram showing slack time.
TBO of equation (4) is less than its lower bodidjiven 600 clock units.

by equation (6). Since TBO cannot be less thgrsuch

a timing conflict cannot occur and thus the ES/LF algo-
rithms previously presented will always have a solution.

|
100 200 300 400 500 600
Time, clock units

time between the completion of task E and the start of
task D is equal to 33.3 clock units.

As an alternative approach, the steady-state ES times
could be determined during the forward search of the4. Performance Metrics and Resource
graph by applying equation (4) (solving for BEg(with Requirements
LF(T;) set equal to the path latency) whenever encounter-
ing forward-path initial tokens. After determining all The two types of concurrency that can be exploited
steady-state ES times, the LF times could then be calcuin dataflow algorithms can be classified as parallel and
lated without requiring any further adjustments to the ES pipeline. The TBO and TBIO performance metrics
times, resulting in a one-time pass of the graph in the for-defined in the previous sections are important in evaluat-
ward and backward direction. The algorithms are pre-ing the efficiency of the algorithm execution, that is, how
sented in the potentially recurrent form for the purpose ofwell the inherent parallelism within the algorithm is
efficiently handling the frequent cases. That is, applica- being exploited. Therefore, it is important to determine
tion of equation (4) (solved for E®f) would be the bounds on these metrics which define the optimum
required each time an edge with initial tokens was scheduling solution.
encountered by traversing multiple paths that may con-
verge on the edge. Use of equation (4) once when begin- 4.1, Critical Path Analysis
ning with a virtual sink would tend to minimize its use.
Also, it is felt that the frequent cases involve uninitial- Parallel concurrency is associated with the execution
ized edges or initialization of recurrence loops (no Of tasks that are independent (no precedence relationship
forward-path tokens). Thus, this only requires the imposed by<). The extent to which parallel concur-
one-time use of equation (4) by thE Algorithm for rency can be exploited is dependent on the number of
the purpose of calculating slack time within the recur- parallel paths within the DFG and the number of
rence loop. Like th&S Algorithm , the time complex- ~ resources available to exploit the parallelism. The TBIO
ity of the LF Algorithm is bounded by equation (1). metric in relation to the time it would take to execute all

Thus, theLF Algorithm can also be executed in poly- tasks sequentially can be a good measure of the parallel
nomial time with a worst-case bound®@\?3). concurrency inherent within a DFG. If there are no initial

tokens present in the DFG, TBIO can be determined with

Applying the LF Algorithm to the DFG of the traditional critical path analysis, where TBIO is given
figure 1 for a TBO of 333 clock units is shown in as the sum of latencies linalong the critical path. When
figure 8. As expected, the slack time of task C extends allM, defines initial tokens in the forward direction, the
the way to the start time of task F. This would also be thegraph takes on a different behavior as represented by the
case for task E if it were not for the initial token on the new paths within the MDFG. Cases such as this include
E < D edge. Because of this token, the slack time of many signal processing and control algorithms where ini-
task E extends out only 33.3 clock units for the currenttial tokens are expected to provide previous state infor-
iteration period of 333 clock units. The fact that this mation (history) or to provide delays within the
slack is associated with the next iteration of task D is algorithm. For the example shown in figure 9, the task
apparent from the TGP diagram of figure 5 where the outputz(n) associated with theth iteration is dependent

9

Zn) = x(n) * y(n-dy) * w(n-dl) 4.2. Calculated Speedup

d; - y(ndy) Pip_eline concurrency is associated_ wit_h the_ repetiFive
/ 1 execution of the algorithm for successive iterations with-
out waiting for earlier iterations to complete.
Equation (6) defines the lower bound iteration pefigd
x(n) > * > 2(n) due to the characteristics of the graph alone. That is, if
circuits are present in the DFGI, is given by
equation (6), otherwis&, is zero. Given a finite number
W(n-d2)—/ of processors, however, the actual lower bound on itera-

tion period (or TBQ) is given by

d TCE
2 = r 0
TBO,, = maxaT g, (—WD (8)
Figure 9. Example function implementation.
where TCE (total computing effort) is the sum of laten-

cies inL,
on the current input(n), inputy (n—d;) provided by
the (n—d,) th iteration, and input (n—d,) produced _
by the (n— dy) th iteration. TCE igLLi ©)
Implementation of this function would requulgini- andR is the number of available processors. The theoret-

tial tokens on they (n—d;) edge amy initial tokens jcally optimum value ofR for a given TBO period,
on thew(n—d;) edge in order to create the desired referred to as the calculat&lis given as

delays. In such cases, the critical path and thus TBIO are

also dependent on the iteration period TBO. For exam- R = (Ew (10)
ple, given that a node fires when all input tokens are TBO

available, assuming sufficient resources, the earliest tim
at which the node shown in figure 9 could fire would be
dependent on the longest path latency leading to eithe
thex(n) ory(n—d;) edge. Assuming that tdeand

d, tokens are the only initial tokens within the graph, the
time it would take a token associated with tile itera- TCE

tion to reach thex(n) edge would equal the path latency = TBO (11)
leading to thex(n) edge. Likewise, the minimum time

at which the “token” firing thenth iteration on the and processor utilizatiod ranging from0 to 1 can be
y(n—d;) edge could arrive from the source equals the defined as

path latency leading to the(n— d;) edge. However,

since this “token” is associated with tlfje—d;) th itera- U
tion (producedd; (TBO) intervals earlier), the actual

path latency referenced to the same iteration is reduced _ _
by the product ofi; and TBO. From this example, it is 4.3. Run-Time Memory Requirements

easy to infer that the actual path latency along any path The scheduling techniques offered by this paper are
with a collection ofd initial tokens is equal to the sum- jntended to apply to the periodic execution of algorithms.
mation of the associated node latencies less the produqg, many instances, the algorithms may execute indefi-
of d and TBO. Thus, the critical path (and TBIO) is a pjtely on an unlimited stream of input data, for example,
function of TBO and is given as the path from source 10 gigital signal processing algorithms. Even though the
sink that maximizes the following equation for TBIO: multiprocessor schedules determined by ESeAlgo-

rithm andLF Algorithm are periodic, it is important
TBIO = max[%;'-i%_d (TBO)J (for all pathg (7) Lo determine if the memory requirements for Fhe data are

i ounded. Just knowing that the memory requirements are

bounded may not be enough. One may also wish to cal-
whered is the total number of initial tokens along the culate the maximum memory requirements a priori. By
path. It is easy to see that the critical path for the DFG inknowing the upper bound on memory, the memory can
figure 1 is A< B< F, resulting in a TBIO of be allocated statically at compile time to avoid the
600 clock units. run-time overhead of dynamic memory management.

€. - . . .
Since every task executes once within an iteration period
Pf TBO with R processors and takes TCE amount of time
with one processor, speed8upsing Amdahl’'s Law can

be defined as

(12)

I
Tl

10

Since the dataflow graph edges imply physical storage oftokens in the OF place. Pairing every data edge with an
the data shared among tasks, graph-theoretic rules aracknowledgment edge assures that a buffer will be avail-
defined in this section capable of determining the boundable for the output data before a task begins execution. A
on memory required for the shared data. modeled task is enabled for execution when all necessary
input tokens to thé&ire transition are available. After
To present a slightly more detailed model of parallel firing, the node will produce a token in thasy place,
computation of tasks represented by a DFG is helpful forenabling theData transition. TheData transition for

the following discussion. The Petri net model shown in nodeT; of T will generate a token at the output places
flgure 10 describes the activities associated with the eXexqfter de|aying an amount of time equa“_ﬁoof L. The

cution of ordered dataflow taskg, < T;. A Petri net jdle place between thBata andFire transitions is

such as the one shown in figure 10 is a special class ofncluded to convey information about task instantiations
Petri nets called a marked graph (ref. 15). This model isat run time. The graph shown in figure 10(b) has been
equivalent to the ATAMM computational marked graph shown to be consistent (refs. 11 and 15). This implies
(CMG) shown in references 13, 14, and 16. As shown inthat given an initial marking, the total number of tokens
figure 10, the edges directed from left to right representyithin a circuit remains unchanged for all valid markings
dataflow while the edges from right to left represent con- reached by firing transitions. Therefore, the initial num-
trol flow. Of particular interest, the edges associated with her of tokens located in thidle place will ultimately

the output empty (OE) place can be regarded as anmjgrate to thebusy place; this indicates the number of
“acknowledgment edge.” That is, given the data depen-task instantiations at run time. Based on equation (6), the
dency T; < T;, the acknowledgment edge provides a pnumber of tokens that must be present in a circuit for a

signal to nodd; indicating that noddj has consumed a gjven iteration period, TBO, is given by the following
token from the output full (OF) place. The number of equation

tokens present at any one time in the OE place represents

the total number of empty data buffers available for out- c

put data tokens. The number of buffers currently occu- D, = (_Iw (for all i circuits) (13)
pied with data tokens is represented by the number of TBO

—(e-(—

(@) DFG model offj < Tj.

OE

T; i

/Q—>

Fire busy Dat a OF

HO—-®—

idle

(b) Petri net model.
Figure 10. Petri net representation of dataflow graph.

11

and thus the circuit formed by thdle place between In terms of the graph nodes, a negative
the Data andFire transition implies that the required Ds(Tp) —Ds(Ts) indicates that the successor node has
number of instantiations of tadk that was derived from fired more often than the predecessor node it is depen-
the TGP diagram is determined by the following dent on. The only way this could be possible is if there

equation: were initial tokens present in the OF place. A positive
difference Ds(Tp) —Ds(Ts) represents the number of
Instantiations off. = L, (14) times the predecessor node fires before the successor
! TBO node fires once. This difference would therefore be the

initial tokens required in the OE place. If
Because DFG tokens carry data values (or pointerss(-rp) >S(Ty) then the successor node would have
to where the data are located when the tokens becomeeturned the one token required in the OE place for the
heavy), the DFG edges which transport tokens from onepredecessor to fire again, and thus no additional tokens
node to the next, imply physical memory space. Again are needed. However, the conditi®aTp) <S(Ty) indi-
relying on the token conservation property, the summa-cates that the predecessor node must fire before or at the
tion of the initial OF tokens due to initial data and the ini- same time the successor node fires and returns the OE
tial number of OE tokens needed to satisfy equation (13)token. Therefore, th&(T,) <S(Ty) condition requires

determines the maximum buffer space required for thethat one extra token be included initially in the OE place.
data associated with the DFG edge at run time—ideally,

ignoring fault tolerant issues. The initial tokens required For example, theDE Rule utilizing the TGP of

in the OE and OF places can also be determined from thdigure 5 for the C< F specifies that @F=2 or in

TGP diagram, but in a less obvious way. other words, two empty data buffers are initially
required. Since the data edge did not have any initial

Initial OE tokens can be determined by examining (okens (no initially full buffers), two buffer spaces would
the relative firing times of the predecessor and successopo required at run time.

tasks along with the corresponding data set displace-
ments. The OE Rule can be used to determine the initial There is one item that must be mentioned concerning
number of OE tokens indicating the data buffers that arethe OE Rule. For all practical purposes the in the
initially empty and is as follows: S(Tp) =S(Tg) expression can be replaced with<a
This change has the effect of delaying the firing of the
predecessor node by oR@e transition time wherT,
andTgwould otherwise start simultaneously. If thiee
transition time which may represent the reading of input
data is considered negligible in the case of large-grained
algorithms, being conservative with tokens (and thus
buffer space) is easily tolerated. The rule represents the
S(T) = ES(T.) modulo TBO (15) more conservative case in order to satisfy the general
! ! problem. One special case is shown in figure 11 as a
The relative data set number can also be deter- Nnode with a self-recurrence circuit (representing the fact
mined from the TGP diagram or calculated that the task represented by the node has history)OEhe
directly by the equation Rule would indicate that one initially empty buffer is
needed in addition to the initial data occupying a second
ES(T) J buffer. Use of the conservative token approach would not
TBO

Let S(T;) represent the start time of tagkrel-
ative to a TBO interval as portrayed in the TGP
diagram, and leDg(T;) represent the relative
data set number associated with the start time of
task T;. The start timeS(T;) can be calculated
directly from the ES of; with the equation

(16)

make sense in this case because a node that is

D.(T) = P—L
self-dependent cannot wait on itself to fire.

where the floor function is applied to the ratio of

ES(T;) and TBO, and is given by equation (2). TheOE Rule determines the number of data buffers
Then, given a tasK,, let T, represent the suc- neededn addltlo'nt.o the buffers required for initial data
cessor task which uses the output datdphs for all edges within the DFG. Therefore, the resource
input and OF; be the initial OE tokens required requirement's in terms of total buffer space for a given
for the precedence relatidp < Te data edge is equal to the OE tokens given byQEe
Rule plus the number of initial tokens present on the
If Dg(Tp) —Ds(Ts) 20 edge. Calculating resource requirements in terms of pro-
Then If S(Tp) <S(Ts) cessors is more straightforward. The minimum processor
ThenOEps = Dg(Tp) —Dg(Tg) +1 requirementR for a given TBO at steady-state can be
Else OEps = Dg(Tp) —Ds(Ty) derived simply by counting the maximum overlap of bars
ElseOEps = 0 within the corresponding TGP. However, the

12

(a) Self-loop node.

(a) DFG diagram.

F
1
E
1
D I
C
]
B
| |
oo A
initial data I I I I I
100 200 300 400 500 600
(b) Petri net model. Time, clock units
Figure 11. Petri model of self-loop circuit. (b) SGP diagranw = 600 clock units.
determined may not be optimum for a giveh . For Figure 12. Diagrams with X C control edge.

example, given only three processors, TB@r the

DFG of figure 1 by equation (8) is equal to 333, which 4.4. Control Edges

by equations (11) and (12) would indicate that three pro-

cessors would provide maximum linear speedup with |mposing additional precedence constraints or artifi-
100 percent processor utilization. Even though the pro-cjal data dependencies onfo (thereby changing the
cessor requirements for a single graph iteration is threeschedule) is a viable way to improve performance (refs. 5
(determined by counting the maximum overlap of bars in and 17). These artificial data dependencies are referred to
fig. 8), the processor requirements for repetitive execu-as “control edges.” As an illustration, observe that there
tion with a period of 333 requires four processors as canis needless parallelism being exploited for the single
be derived from figure 5. This is because of the fact thatgraph execution shown in figure 8; that is, three proces-
the precedence constraints imposedby ~ makes findingsors are not necessary to exploit all of the parallel
this optimal solution NP-complete and the design processconcurrency—two would suffice. This presents an
presented in this paper only provides the determinationopportunity to take advantage of the slack time present in

of asufficientnumber of processors in order to guarantee the graph to reduce the processor requirement without
a schedule meeting TBO and TBIO requirements affecting the critical path.

(refs. 9 and 10). In fact, one cannot guarantee that a

multiprocessor-scheduling solution even exists when all Since task C does not need to complete execution
three parameters (TBO, TBIO, am)l are fixed (ref. 9). until 500 clock units as shown in figure 8, a control edge
Accordingly, it is necessary to find another schedule, if can be included in order to create the precedence rela-
one exists, that would provide the desired computationaltionship E<X C effectively delaying task C until the
speedup performance; a method for doing so is discussedompletion of task E as shown in figure 12. The subse-
in the next section. guent TGP with the added control edge is shown in

13

figure 13 with the resulting resource envelope showing dence relationship to delay the start of task D behind the
the processor utilization over the given TBO period. As start of task B by 67 clock units, resulting in a TBIO of
can be seen from figure 13, it is only necessary to effec-667 clock units, is an interesting concept. Since we know
tively move the amount of effort requiring four proces- that three processors are sufficient for tasks B and D to
sors in such a way as to fill the idle time shown in the start at the same time for the first iteration, the<B D
resource envelope. It turns out in this example that thisprecedence relationship has caused a transient condition.
can be done by delaying task D behind task B (a delay ofThe reason for this transient becomes apparent by exam-
67 clock units) in relation to the TGP description of ining the TGP schedule of figures 14(a) and (b). The
steady-state behavior. The new TGP diagram can belTGP schedule indicates that thila token (relative data
derived from the original by shifting all successor tasks set number 2) consumed by node D is tfre—1) th
of task D accordingly. The TGP diagram with the added token (relative data set number 1) produced by the prede-
B < D precedence relationship shown in figures 14(a) cessor node B; this implies that one initial token is
and (b) results in 100 percent processor utilization. Therequired on the B D control edge, as shown in
new steady-state SGP shown in figure 14(c) can be configure 14(d), to create the single-TBO delay required to
structed by shifting tasks D, E, C, and F to the right by achieve the steady-state schedule shown in figures 14(a)
67 clock units, as was done to obtain the new TGPand (b). Without the single-TBO synchronization delay
diagram. due to the initial token, the path
A< B< C< D< E< FwouldresultinaTBIO
equal to the graph TCE of 1000 rather than 667 clock
B 1 units (eqg. (7)). This is interesting in that the transients
caused by initial data token delays that tend to compli-
;‘ -2 cate the analysis become a useful trait for control edges.
2 Without initial tokens, control edges have only
intra-iteration precedence relationships between two
e tasks and consequently provide only limited rescheduling
1 options. The rescheduling options are those shown by the
B | SGP diagram between independent tasks. Control edges

properly initialized with tokens result imter-iteration
A 2 relationships between tasks that provide additional
—— : i
rescheduling options. Such control edges allow one to

t t+TBO choose rescheduling options from the TGP diagram
(@) TGP diagram. TBO = 333 clock units. which can provide more opportunities to find tasks to
delay behind other tasks.

O O m T

4— Up to now, a general rule for calculating OF tokens
was not needed because the initial data tokens are given
by the algorithm description as portrayed in figure 9.
However, with the use of control edges it is necessary to
calculate the required number of OF tokens. The ques-
tion that may have been raised about @& Rule is
what if Ds(Tp) —Ds(Ts) is a negative number; this
would mean that the tokens bounded to this edge circuit
are initially located in the OF place. Just like any linear
algebra problem with two unknowns, two rules (equa-
tions) are required in order to solve for the total number
of tokens (OE and OF) needed within a given edge cir-

(b) Resource envelope. cuit. This second rule is referred to as tiad“Rule”

and determines the number of tokens, if any, initially

Figure 13. Periodic behavior with® C control edge. required on the forward (OF) edge. TB# Rule is
stated as follows:

w

Total processors
N
T

i
I

t t+TBO

Referring to the new SGP diagram in figure 14(c), it Let S(T)) and F (T;) represent the start time
is apparent that this scheduling solution for optimum and finish time of the taskg, respectively, and
throughput and processor utilization has been achieved at let Dg(T;) represent the relative data set num-
the cost of increasing TBIO. Inserting the< D prece- ber associated with the start of tagk S(T;),

14

> @™ O O m T

— 67

O O m T
=
N

t t+TBO

(@) TGP diagram. TBO = 333 clock units.

—
—| 67 |- —
E—
1
|
| | | | | |
100 200 300 400 500 600 700

Time, clock units

(c) SGP diagram. TBIO = 667 clock units= 667 clock units.

Figure 14. Periodic behavior with &

F(T;), and Dg(T;) are relative to a TBO
interval as portrayed in the TGP diagram. As for
the OE Rule, these values can be obtained from
the TGP diagram or from equations (15)
and (16) with the addition of

F(T,) = (ES(T,) +L;) modulo TBO (17)

Because the data set number associated with the

start of execution will be greater than the data
set humber associated with the completion of a
multiply-instantiated task, leD¢(T;) represent
the relative data set number associated with the
finish time of taskT;, which can be calculated
with

(18)

D(T,) = P—L—ES(Ti) +LiJ

TBO

Then, given a tasKy, let Tg represent the suc-
cessor task which uses the output datdpés

» 3
3
521
8
o
=1k
t t+TBO
(b) Resource envelope. TBO = 333 clock units.
(d) Modified DFG diagram.
Cand8 D control edges.

input and OFg be the initial OF tokens required
for the precedence relatidiy < Ts

If Ds(Ts) —D¢(Tp) 20
Then IfS(Tg) <F(Tp)
ThenOFys = Ds(Ts) —Df(Tp) +1
Else OFps = Ds(Ts) — D¢ (Tp)
Else OFys = 0

In terms of the graph nodes, a negative
Ds(Ts) —D¢(Tp) indicates that the predecessor node
has fired more often than its successor node which is the
frequent case. These tokens are accounted for i®Ehe
Rule . A difference Dg(Ts) —D¢(Tp) 20 represents
the number of times the successor node fires before the
predecessor node completes just once. The only way this
could occur is if there were initial tokens in the OF place.
This difference would therefore be the number of initial
tokens required in the OF place 3{ T) = F (T,) , then
the predecessor node would have deposited the one token
required in the OF place for the successor node to fire
again, and thus no additional tokens are needed. How-
ever, the conditionS(Ts) <F (Tp) indicates that the

15

successor node must fire before the predecessor node 400
deposits an OF token. Therefore, 8¢ Tg) <F (Tp)
condition requires that one extra token be included ini-
tially in the OF place.

Applying the conditions shown in figures 14(a)
and (b), theOF Rule indicates that one initial token is
required on the B D control edge as expected from
this discussion. Also, th®F Rule is general enough so
that not only will it compute initial tokens (if any) Virtual sink
required on inter-iteration control edges, but also agree D
with initial token conditions on data edges in most cases.
In some cases, initial data tokens may only serve the pur-
pose for which they were intended, that is, to create delay Figure 15. Equivalent MDFG model of figure 14(d).
conditions for computations as portrayed in figure 9.

When initial data tokens also affect the steady-state

schedule, th©F Rule applied to such data edges would The first application of the backward search by the
agree with the initial conditions. Just such a caselF Algorithm beginning at the real sink results in lat-
involves the EX D in the example graph. As one would est finish times of LF(F) = ES(sink) = EF(F) = 600,
expect, théOF Rule utilizing the TGP of figure 5 forthe LF(B) = LF(F) - L(F) = 500, LF(A) = LF(B)

E < D edge results in Qdp =1, which indicates that - L(B) =100, LF(C) = LF(B) = 500, LF(E) = min[LF(C)
one initial token is present. Likewise, tb& Rule spec- -L(C), LF(F) - L(F)] = 400, LF(D) = LFKE)
ifies that Ofp=0 indicates that an initially empty - L(E) = 300, and LF(A) = min[LF(B)- L(B), LF(C)
buffer is not necessary at run time, thereby the total- L(C), LF(D)- L(D)] = 100.

buffer space for edge K D is defined as 1. However,

just as the primary purpose of tB& Rule is to compute Next, applying the.F Algorithm beginning at the
the number of data buffers required in addition to the ini- virtual sink (D') corresponding to the® D data edge
tial data buffers, the primary purpose of BE Rule is gives an LF time for node E of ES(D) + (1)(TBO) = 100
to compute initial tokens for inter-iteration control edges. *+ (1)(333) = 433 clock units which is greater than its ear-
The OF Rule applied to data edges will only convey liest finish of 400 clock units. Progressing backwards
information that the user already knows. Likewise, since does not change the latest finish times of nodes A and D.
by definition, control edges do not require data buffers, Finally, applying theLF Algorithm beginning at the
the OE Rule does not serve a purpose for control edgesVirtual sink (D) corresponding to the 8 D control
unless for some reason the user wanted to implement &dge gives an LF time for node B of ES(D) + (1)(TBO) =
graph management operating system that treated datd00 + (1)(333) = 433 clock units. However, since the

edges and control edges the same, except for the attactrevious ES analysis indicates that node B cannot com-
ment of physical buffers. plete until 500 clock units, a transient condition has been

found with aA (eq. (5)) equal to 67 clock units. There-
One last example would be appropriate before pre-fore, node D initially starts execution as soon as node A
senting the Design Tool which implements the algo- completes during the transient state but at steady state,
rithms and rules discussed in this and previous sectionspode D will be delayed after the completion of node A by
It has been shown that the addition of the<E ~ C and67 clock units. Adding\ = 67 clock units to the ES time
B < D control edges for a TBO of 333 clock units along the path X K & F results in adjusted

results in linear speedup with three processors and @arliest start times oES(DY = 167 ES(E) = 367
TBIO equal to 667 clock units. Since this particular solu- ES(Cy = 467, andES(F) = 567.

tion includes an initial token in the forward direction of

the B< D edge, analyzing this graph with &8 and Applying theLF Algorithm again at the virtual

LF Algorithms should confirm the correctness of the sink D' gives anLF(B) = ES(D) + (1)(333) = 500
solution. The modified dataflow graph of figure 14(d) equal to the earliest finish time of node B, as expected.
with the additional control edges is shown in figure 15. After calculating the latest finish times once more, the
Utilization of theES Algorithm results in earliest start steady-state scheduling contraints in terms of earliest
times of ES(A) = 0, ES(B) = ES(A) £(A) = 100, start and latest finish times are defined. The TBIO is the
ES(D) = ES(A) + L(A) = 100, ES(E) = ES(D) earliest start of the sink and is determined to be
+ L(D) = 300, ES(C) = ES(E) H(E) = 400, and EF(F) = ES(F)+L(F) = 667 clock units. As a final
ES(F) = ES(C) 4(C) = ES(B) +L(B) = 500. check, the TBIO of 667 clock units should agree with

16

Table I. Summary of DFG Attributes for TBO = 333 clock units, TBIO = 667 clock unitdRan8

Output Total
Task Latency ES LF Instantiatigns task OE OF buffers

A 100 0 100 1 D 1 0 1
C 2 0 2
B 1 0 1
B 400 100 500 2 D 1 1 2
F 2 0 2

C 100 467 567 1 F 1 0 1

D 200 167 367 1 E 1 0 1
E 100 367 467 1 C 1 0 1
F 1 0 1
D 0 1 1

F 100 567 667 1 Sink 1 0 1

equation (7) which finds the critical path. By of the class of dataflow graphs described in section 1. A
equation (7), the path KX B B K & F software tool is presented in this section which analyzes
(containing all nodes and 1 initial token) has a total dataflow graphs and implements these design principles
latency of (TCE- (1)(333)) = 667 clock units and is larg- to aid the user in the implementation of a multiprocessing
est over all paths. Thus, the path<A <8 D E application. The software, referred to as the “Dataflow
< C< Fiscritical. Table | lists the steady-state earli- Design Tool,” or “Design Tool” for brevity, was written
est start and latest finish times obtained by applying thein Borland C+% for Microsoft Windows® The software

ES andLF Algorithms to the DFG of figure 15. The can be hosted on an i386/486 personal computer or com-
reader is invited to construct a single graph play diagrampatible. The Design Tool takes input from a text file
using the ES times in table I. Likewise, a total graph play which specifies the topology and attributes of the DFG.
diagram can be constructed by using start times equal t&A graph-entry tool has been developed to create the DFG
ES modulo TBO. The SGP and TGP should agree withtext file. The various displays and features are shown to
figures 14(c) and (a), respectively. provide an automated and interactive design process
which facilitates the selection of a multiprocessor data-

A summary of other DFG attributes for the schedul- {4 solution

ing solution presented above is also provided in table I.

The attributes listed include task instantiations, data The process flow of the Design Tool, upon loading a
memory requirements (buffers), and control edges for aDFG or making modifications to the number of proces-
TBO of 333 clock units, while utilizing three processors sors R), iteration period (TBO), or adding control edges
100 percent of the time. As noted, this solution is opti- (new <), is shown in figure 16. After loading a DFG,
mum in terms of TBO and processor utilization but is not the Design Tool will search the DFG for circuits in order
optimum in terms of TBIO. Note also that even though to determine the minimum iteration period,Y using

an optimum solution does not exist for this example equation (6). The TBO will initially be set to the lower
where TBO, TBIO, anR are fixed to optimum values, bound given in equation (8) wheflg is zero if no cir-
depending on the real-time constraints of the application,cuits are present. The calculafedhill initially be given
one could have designed a solution which made otherby equation (10). Next, the MDFG is automatically con-
trade-offs in performance. For example, another solutionstructed due to initial tokens, if present, defined by the
might maintain a minimum TBIO of 600 clock units algorithm. All further analysis is based on the MDFG
while letting TBO increase above the lower bound of using theES Algorithm andLF Algorithm in order
333 clock units. In general, depending on the availability to determine the TBIO, steady-state schedwleand

of processors, the user has a two-dimensional regiorbuffer requirements (using th@E/OF Rules). Any
(TBO by TBIO) in which to make trade-offs. This region changes to TBOR, or < results in a reapplication of
is referred to as an operating point plane in references She analysis algorithms and rules.

and 17; TBQ, and TBIQ, define the minimum values

for the two dimensions, respectively. The same dataflow graph example shown in figure 1

is used for demonstration purposes. In this way, the tool

5. Design Tool can be presented while verifying the theoretical results

The algorithms and rules presented in the previous 2Version 3.1 by Borland International, Inc.
sections have been shown to be applicable to the analysis version 3.1 by Microsoft Corporation.

17

0 Userinput m
Speadl
IZI OUtpUT 4 I;l 2 3 i 31 3% 3
(T, <, L, Mg) :
i
Analyze DFG IZI %':técal circuit :
Construct MDFG T |
TBO | : : I
V) Processirs

[/] Earliest start times

Figure 17. Speedup display.

Latest finish times
New <, R, TBO O | Analyze MDFG glacktime
TBIOIp taining buttons and menus for displaying performance
Y 2peedup bounds, setting TBO an®, or invoking the various
. - graphic displays. For example, the display shown in
Ad%(u)fxnggxgule IZI%}'SaJ path figure 17 can be invoked by pressing tRerfor-
mance button. The time measurements shown in the
Design Tool windows are given in clock units so that the
Y resolution of the measurement can be user interpreted.
7] SGP schedule Upon analyzing the DFG, the DeS|_gn Tool has deter-
Create graph TGP schedule mined that TCE is 1000 clock units. The TRJOs
play diagrams defined by equation (7) based on the graph precedence
relations < due only to the data dependencies (data-
flow). Due to the critical path X B F, TBIphas
Y been determined to be 600 clock units. The TBIO will be
Create ~ |[] Resource equal to TBIQ, until additional control edges are added
resource requirements . . e
envelopes Resource Utilization with the tool, which may change the critical path. The

Figure 16. The design process.

TBOy, has been calculated to be 300 clock units based on
the critical circuit D< E, and consequently, TBO is set
egual to this lower bound. The calculafs determined

to be 4, which is the optimum number of processors for

obtained in the previous sections. The initial perfor- repetitive, steady-state execution at the given TBO and
mance analysis, without any graph modifications, in TBIO.

terms of potential speedup is shown in figure 17 for up to
six processors. The performance display shows speedu
verses the number of processors. The display automati-
cally increases or decreases the abscissa each time t
number of processolR is changed. Figure 17 indicates
that maximum speedup performance is attainable wit
four processors; additional processors will not result in
any further speedup. This leveling-off of performance is
attributable to the recurrence loop (circuit) within the
DFG. Without this circuit, the graph-theoretic speedup
would continue to increase linearly with the addition of

processors. Physically speaking, however, this linear o9 . i
increase in speedup would ultimately break off due to for taking time measurements. Figure 18 shows the cur

operating-system overhead, such as synchronizationiggs r?eall(surlqg the ﬁtir;aqgodolﬂrﬁt'i? tt'n][i?nOf tetstI;Ctt)otbe
costs and interprocessor communication. clock units each (the ext 1o ime at the bot-

tom of the display indicates the left-cursor time, whereas
The Design Tool has a user-interface panel, referredthe “100” in parentheses indicates the time between the
to as the “Metrics window” as shown in figure 18, con- left and right cursors).

The SGP window shown in figure 18, created by the
esign Tool, shows the steady-state execution for a sin-
e iteration. The SGP window can be compared with
that of figure 2. Slack time for task C is shown as an
hunshaded bar. Although there is slack between the com-
pletion of task E and the start of task F, the recurrence
relation E<X D at a TBO of 300 clock units as deter-
mined by equation (4) has reduced the slack of task E to
zero. The window also displays the two TBO-width seg-
ments with a vertical dashed line. Individually controlled
left and right cursors (solid vertical lines) are provided

18

Metrics window SGP window

_E'i-isplzr:.r Set ; Ispla'y' Halect
srap | 6 Node Graph B -) i
106 F [
- | LIEWT
wo | |E a
- 1
4 E’ -
B
A I
|
‘ TIME 100 (100)
=L 1 : ; i

Figure 18. Metrics and SGP window displays.

|l Grapd Flay

F _1 - EVEMNT
E 1 M B
| R S Priority :
D ? Max Instances: 2
| - Latarcy 400
L) Raad: 3
| ik 2 i | Process: J40
— — Write: . |
B 1 Earllest Start 100
P Shack: L]
BTE e : e | nputs: A
A 1 |:| Outputs: —»F

TIME 0 (300)
LeL1

Figure 19. TGP window.

19

The TGP window shown in figure 19 displays the task F, task D requires scheduling at the same time task E
steady-state schedule of tasks based on the current TB@ompletes. Note also that due to the<E D initial
value of 300 clock units. The bars are shaded (with col-token, task D will execute on a data set injected one TBO
ors or patterns) according to the relative data set numberinterval later than the data set produced by the comple-
shown above the bars. The TGP window has the sameion of task E.
measurements and viewing features as the SGP window,
including the time cursors. The time cursors are posi- Figure 20 shows how processor requirements and
tioned at the far left- and far right-hand sides to indicate utilization can be shown graphically with a resource
the TBO interval of 300 clock units as shown in paren- envelope diagram. The Design Tool provides a resource
theses. The mouse cursor (shown as a hand) can be usedivelope window for both the SGP and TGP displays
within the TGP (and SGP) window to point at a bar for referred to as the “single resource envelope” (SRE) and
quick access of information as shown to the right of the “total resource envelope” (TRE), respectively. The TRE
TGP window in figure 19 for node B. The information window for the TGP of figure 19 is shown in figure 20.
window shows, among other things, that task B requiresProcessor utilization for any time interval defined
two instantiations at a TBO of 300 clock units. This is between the left and right time cursors is automatically
also apparent by observing that there are two overlappedaalculated and displayed in a separate window. The pro-
bars associated with task B for relative data sets 1 and 2cessor utilization for the entire TBO interval of 300 clock
The circuit-imposed zero slack time of task E is por- units is shown in figure 20, indicating that a maximum of
trayed in figure 19 by observing that, even though therefour processors are required with 83.3 percent utilization.
is slack between the completion of task E and the start ofThe Utilization window also shows that, within the same

Total Resource Envelope

Display Select

6 Node Graph

4

—| Utilization

4 Processors.. 33.3 X
J Processors... 1000 %
2 Processors.,. 1000 %
1 Processors.. 10000 X
0 Processors.. 0.0 X

TIME 0 (300)
CHE

Computing Effort = 1000

Total LHilization = B3.3 %

Figure 20. Total resource envelope window.

20

time interval, three out of the four processors are utilizeddataflow may not lend itself to this analysis in terms of
100 percent of the time and all four processors arerequiring three processors at a TBO of 334 clock units.

utilized 33.3 percent of the time. Th€omputing Note that the optimum TBO for three processors is
Effort is the area under the envelope curve and is333 1/3 clock units. The Design Tool maintains the
equal to TCE. defined precision by rounding fractional times up to the

next integer value. The graph source will ultimately be

A summary of the task systei (<, L, Mg) is given controlled to inject data at a rate 1/TBO determined by

by a window referred to as the “graph summary window” the Design Tool such that predictable performance can
shown in figure 21 for the four-processor, 300-clock-unit pe attained and resource saturation avoided. The clock
TBO performance level. The graph summary window resoplution used in the actual multiprocessing system is
displays the values &f, ES, LF, slack, and instantiations assumed to be the same as that defined for the tool, and

(INST) for each task iff along with the initial tokens therefore fractional times are rounded to the next clock
and queue sizes for each edgesin . The ES times showqit for proper input-injection control.

in figure 21 are associated with the task start times in

figure 18. It is apparent from this window that task C is The inclusion of additional precedence constraints in

the only task with slack (measured to be 300 clock units)the form of control edges may reduce the processor
as already indicated by figure 18. The graph summaryrequirements of a DFG for a desired level of perfor-

window also indicates the earlier observation that task Bmance. Since such a problem of finding this optimum

requires two instantiations. The OE/OF column provides solution is NP-complete and requires an exhaustive
the initial state of the detailed Petri net model of search, the Design Tool was developed to aid the user in
figure 10 indicating the initial stat®, and maximum finding appropriate control edges when needed and to
queue size, also shown in the QUEUE column. The make trade-offs when the optimum solution cannot be
QUEUE column shows that two buffers are required for found or does not exist (ref. 9). The design of a solution

the data associated with edgessB FandC F. for a particular TBO, TBIO, anR is ultimately applica-
tion dependent. That is, one application may dictate that
5.1. Design Tool Use in Graph Optimization suboptimal graph latency (TBIO>TBj) may be

traded for maximum throughput (1/TRpwhile another
As discussed in the previous section, the exampleapplication may dictate the opposite. An application may
DFG has the potential of having a speedup performancealso specify a control/signal processing sampling period
of 3 with three processors as indicated by figure 15.(TBO) and the time lag between graph ingit) and
However, the precedence relationship given by thegraph outpuig(t — TBIO) that is greater than the lower

b Mo [:ir:1||l'| F.|||:||r||..-|r':,'
Display
HAME LATENCY ES LF SLACE INST OEIOF GUELE
Fat L]] 100 0 1 Wa=»D 1=>D
110=»C 1=
ifo—>B i—>B
B 400 100 00 LI 2 2iI0=*F Z=*F
G 100 100 5 300 1 2i0->F 2->F
K Joa 00 300 0 1 ida—>E i—>E
E 10a g [1]1] 400 0 1 1/0=*F 1=>F
0f—> 0 i—>D
F 100 S00 i 0 1 I =3 Snk 1 =3 Snk

Figure 21. Graph summary window of four-processor schedule shown in figure 19 for TBO = 300 clock units and TBIO = 600 clock units.

21

bounds determined from graph analysis, possibly making

it easier to find a scheduling solution. msm _
T | Pl LB =

frdm Togranh

L
Wi EgT

Use of the Design Tool for solving the optimum
three-processor solution is presented as an example SinC{ g s
the results can be compared with the theoretical results inI] il ; .
the previous section. First, the control edge<E (O ==y T
which eliminates the needless parallelism for a single | o _

iteration can be added from the SGP window by selecting o e |

‘A L=

theadd Edge menu option as shown in figure 22. Any =re— " _
1 i

control edge added within the SGP window will never be |.**

initialized with tokens resulting in only intra-iteration

precedence relationships. This is the desired effect withl ':J':[-"'?E-.':'-..Lf.'ﬂ_‘.._ = . —
the EX C relationship. Upon selecting thed Edge

menu option, the SGP window will prompt the user for a
terminal node to be delayed by the control edge. Once
the terminal node (task) has been selected as shown in o]
figure 23, all nodes (tasks) independent of the terminalP€cause a circuit would be generated without any tokens;
node (task C) will be highlighted. These highlighted t_hls is a nonexecu_table situation. The use of the _mforma-
nodes become the only candidates for selection as the inition window and time cursors may prove useful in mak-
tial node. Selection of a dependent node is prohibiteding use of slack time or delaying tasks such that any

Figure 22. Adding a control edge by using SGP window.

Single Graph Play

Figure 23. Selecting the initial node of control edge.

22

Indepaendent Node

Float

-E!I!'-.r.'lh'-l',' Select
6 Node Graph
F |
I
| L
E |
| |
D !
i |:| Mame: E
- | Priority: I
2 | Max Instances:
! Latency: 00
B | Read: 5
= | Process: a0
| Writa: =1
A | Earllest Start: 300
5 Latest Finish; 434
Hack: a4
Initial Node? ---= C i e inputs: D>
~ Outputs: > F
Path! Circuit >0

increase in TBIO is minimized. Since task C, duration of
100 clock units, has 300 clock units of slack time and
task E finishes 100 clock units short of the start of task F,
one can easily see that task C can be delayed behin
task E without increasing TBIO. Selection of node E
causes the Design Tool to create the control edge
E < C, reapply the analysis algorithms, and create the
expected SGP shown in figure 24.

Lispis Soad
& MNode Crraph
F

E < C control edge is shown in figure 25(a) with the
processor utilization portrayed in the TRE window of
figure 25(b). At this point, a search for additional prece-
dence relationships is necessary that could effectively
move the computing effort requiring four processors to
fill in the underutilized idle time requiring only two pro-
cessors. As noted in section 4.4, a control edge creating
the precedence relationship8 D provides a solution.
Addition of this control edge is done in the same way as
within the SGP window. However, unlike control edges
added within the SGP window, control edges added from
the TGP window are automatically initialized with
tokens as required to assure the desired steady-stat
schedule (using th@EandOF Rules). Insertion of the

B < D control edge from within the TGP window
results in the schedule and processor utilization as por-

TIME © { 600)

=

Figure 24. SGP window with control edge€ C.

Clapimy Jomrd

& Wode Graph

E

ent from figure 26(a) with the two additional precedence
relationships, EX C and B D, that an optimum
solution for three processors in terms of throughput has

uted to the rounding up of the ideal 333 1/3 clock units
TBO to 334 clock units for implementation purposes. As & = e - |
mentioned, this solution is only optimal in terms of)

throughput due to the 66 clock units delay of node D (@) TGP window.

(indicated by the left and right cursors in fig. 26(a)).

Since node D lies in the critical path, this delay results in
a TBIO of 666 clock units, as shown by the LF time of

task F in figure 27. The graph summary window in

figure 27 also displays the control edges added for opti-
mization, indicated by asterisks. Referring to the(B D
control edge, th®Fequal to 1, representing the presence
of one initial token, characterizes the inter-iteration rela-
tionship that is required betweenB and D (one TBO
delay) to assure the desired schedule in figure 26(a), a
expected from the analysis in the previous section.

[E '
& Mol Crraph

5.2. Case Study

Another example is given in this section for the pur-
poses of demonstrating the dependence that steady-stat
behavior has or< M,, and TBO. The same six-node
graph is utilized except for a different initial markikly

and the additional precedence constraint between (b) TRE window.
nodes C and B as shown in figure 28. These differences
result in a new graph which is referred to as “DFG2.” Figure 25. Windows with control edge& C.

23

24

p+a||.r Select
6 Node Graph
: :

E 1

Tatal Graph Play

=il

[risplay Select

6 Node Graph

(&) TGP window.

Total Resource Envelope

— Litilization

A Procassors,,, 7.4 %
2 Processars,,. 10000 %
1 Procassors,.. 10000 &
0 Processors,,, 000 %

Compuding Effort = 1000

TIME 0 (334)
e

Tatal LHilizatlan - 990 X

(b) TRE window.

Figure 26. Windows with control edges CandB D.

b Mode Graph Summany

HaMIE

[H]

F

LATEMNCY
fon

400

il
200

100

100

lag

4ih
166

A6k

bk

LF
[

hihih

Jab

46k

ffsfs

ALK IM5T QEMF
1] 1 110->D
2i0=»C
1fo-»B
L] z 111=*D
Ai0=»F
0 1 1ia=»F
1] 1 1/0-»E
a 1 0= G
110=3F
Bin->D
o 1 110> Snk

GUELUE
1-»0
2=rC
=B

2=»D &
£=xF

1—>F
1=>1
1=>C %
1=*F
i—>D

1 —* Gnk

=L

=

Figure 27.

TBIO =666 clock units.

Figure 28. DFG2 with initial token on forward-directed edge.

As a result of the additional token in the<D

E cir-

1 /] 3 |

]:'I LHACSSEN S

Optimized graph summary window of three-processor schedule shown in figure 26(a) for TBO =334 clock units and

%] =]

Figure 29. Speedup potential of figure 28 DFG.

theses using the SGP window cursors) which is less than

cuit, the graph-theoretic speedup bound has increaseo‘,he graph schedule length of 600 clock units (indicated

therefore a speedup capability up to seven processorQeXt to theSchedule button). At _this iteration per?od,
= both tasks B and C have slack time. The slack time of

(fig. 29) is provided. The initial token on the &
edge affects the steady-state performance differently b);_
making TBIO andw dependent on the iteration period,
TBO. For the purposes of illustrating this effect, the
scheduling solutions for two different iteration periods

are shown. The first example shown in figure 30, which iteration.

requires four processors for a TBO of 250 clock units,

The initial token on the B

ask B is shown to the left for the convenience of display-
ing an interval equal to the schedule time and because
any delay in the completion of task B affects the execu-
tion (start time of task F) for the next data packet

F edge also has the

results in a TBIO of 500 clock units (indicated in paren- potential of causing a transient condition such that

25

Display 5ot || Display Select
DataFlow Critical Path

10a0
500

240
00
]!}

LTI

TIME O (500) TIME 0O (250)
(77 S i i abia i

[Critical Path

Figure 30. Dataflow schedule of figure 28 for four processors.

Display Get |l Display Select IJ:!IEFIIzq.lI Salact |

DataFlow Crtical Path

l0oo

550

150

JE
nl|

TIME O (150)
it

[Critical Path

Figure 31. Dataflow schedule of figure 28 for seven processors.

SGP,_,#SGR_;, which has an effect on the than the TBIO of the graph; however, the critical path
steatfy-state performance. The second example, shown ihas changed from the previous example. The Design
figure 31 for the smallest possible iteration period of Tool has found the critical path to be
150 clock units for seven processors, results in a schedA < C < B < F. Also, the initial token at this TBO
ule length equal to 600 clock units, which is still greater performance has caused task F to delay 50 clock units

26

DataFlows ".il.llllrrl-:l.ﬁl'
Display ==
MAME LATENCY ES LF SLACE INST OEIOF QUEUE
A 100 0 100 (] 1 10> D 13D
110> C 1-3C
210-> B 2->B
B 400 200 B0 (] 3 2i1->F 3-3F
& 1100 100 200 a | 1103 B 1->B
A0 = F d=>F
(] 200 111 i [1]n] o F 2i0—>E 2—2E
E 100 300 400 a 1 1i0—»F 1->F
0i2->D 23D
F 100 450 550 (] | 110> Snk 1 =3 S0k

i .

Figure 32. Graph summary of figure 28 for seven processors.

(indicated by the SGP window cursors), as compared
with the case shown in figure 30, resulting in a TBIO
equal to 550 clock units. Because the calculated proces-
sors (eg. (10)) are equal to the seven “sufficient” number
of processors (derived from the TGP window) for the
optimum iteration period of 150 clock units, the
steady-state schedule shown in the TGP window is an
optimum solution for this example task system. The TGP
window also shows that the additional pipeline concur-
rency allows the simultaneous execution of four data
packets within a TBO interval.

Figure 32 shows the task system K, L, M) sum-
mary for a TBO of 150 clock units. The LF of task F with
no slack indicates that the TBIO is 550 clock units. Also, Figure 33. Test graph.
tasks B and D require three and two instantiations,
respectively. As one might ha\{e expected, the queue SIZ&n the execution of these algorithms within the Design
(memory requirements) has increased from the lower
speedup example examined in the previous section

(figs. 20 and 28). The performance results of tBS Algorithm and
LF Algorithm within the Design Tool were obtained
5.3. Algorithm Implementation Performance for the graphs in figures 1, 14(d), and 33. The graph in

figure 33 was chosen as a good test when the graph is
The ES Algorithm and theLF Algorithm can tightly connected. Since the three graphs have six nodes
be executed in polynomial time. For tygical graphs, the (N = 6) each, the worst-case complexity is givemésr
actual bound is somewhere betwe@(N?) and O(N°) 216. In addition, the graph-dependent bound given by
where equation (1) provides a conservative graph-equation (1) was determined for each graph for compari-
dependent bound. The C++ program code forE&e son with the actual complexity. The time it takes to exe-
Algorithm and theLF Algorithm is included in the cute steps 1 through 6 in both tB& Algorithm and
appendix. This section provides some performance dataghe LF Algorithm is assumed to take a constant time

27

Table II. Design Tool Performance Results

Graph in ES Algorithm LF Algorithm
figure— Bound Cc Duration,us| Bound C Duration,us
1 10 8 297 13 12 665
15(b) 15 10 390 20 18 920
34 64 32 934 64 32 1214

of K; andK,, respectively. The actual time complex@y offered today utilize the dataflow paradigm as a graphi-
to complete th&S Algorithm is defined as the num- cal programming language but do not incorporate data-
ber of times steps 1 through 6 are executed for a giverflow analyses in designing a multiprocessing solution.
graph such that the total execution time is on the order ofAlthough there are many advantages to graphical pro-
K4C. Unlike equation (1) which assumes that all nodes gramming, the full potential of the dataflow representa-
are traversed for every path, B8 Algorithm and the tion is lost by not utilizing it analytically as well. In the
LF Algorithm are more efficient in that each remem- absence of the analysis/design offered by this software
bers the previous nodes and path latency covered at angool, the commercial tool sets must rely on compile-time
given edge branch. Thus, the actual compleRityill be approximate solutions (heuristics) or run-time scheduling
less than the bound of equation (1) for most cases. which often results in a trial-and-error design approach.

The performance of the Desian Tool was measuredNOt only can this tool lend itself to NASA aerospace
P 9 DSP problems, but it is felt that this tool has high com-

on a Gateway2000 486/33 EISA personal computer. The . . oo
computer operated with a 33-MHz clock speed and Con_merC|aI potential as well. It could be readily incorporated

. into existing commercial DSP tool sets to determine a
tained 16 MB of RAM memory. From the performance . . : . L
results given in table |1, thBound (eq. (1)) and actual desirable multiprocessing solution at compile time. Other

complexity C for the graph in figure 33 without initial commercial uses of this tool include scheduling of DSP

tokens are equivalent for both algorithms. However algorithms for real-time applications, including those
X q _ag o ' found in aircraft, automotive, and industrial processes.
since the backward-seartk Algorithm will encoun-

. The tool could also provide front-end scheduling con-
ter more nodes than the forward-sed@e&Algorithm . : - .
when virtual sinks are present, tBeund an%leor the straints for other cor_nmermal toqls ut_|I|Z|_ng job-
graph in figures 1 and 14(d) wiih nitial tokens are differ- sche_dullng algorithms with the potential of finding better
ent. Note in all cases, however, tl@ats less than the solutions.
bound given by equation (1) indicating the degree of effi-

ciency in the algorithms. Extensions to the Design Tool planned include

incorporating heuristics to automate the selection of con-
trol edges for optimal or near-optimal scheduling solu-
tions. Also, enhancements to the underlying model and
For years, digital signal processing (DSP) systemscontrol edge heuristics are planned which will permit the
have been used to realize digital filters, compute Fourierdesign of real-time multiprocessing applications for both
transforms, execute data compression algorithms, and &ard and soft deadlines (ref. 18). For hard real-time mod-
vast amount of other compute-intensive algorithms. eling, the design would assume worst-case task latencies.
Today, both government and industry are finding that It has been observed that under such assumptions,
computational requirements, especially in real-time sys-run-time behavior may result in anomalous behavior
tems, are becoming increasingly more challenging. As asuch as requiring more processors than indicated from
result, many users are relying on multiprocessing solu-the worst-case scenario (ref. 19). However, such anoma-
tions to meet the needs of these problems. To take advarlies can be avoided by inserting additional control edges
tage of multiprocessor architectures, novel methods arewhich impose stability criteria (ref. 19). Incorporating a
needed to facilitate the mapping of DSP applications stability criteria algorithm similar to reference 19 would
onto multiple processors. Consequently, the DSP marketallow the Design Tool to not only determine control
has exploded with new and innovative DSP hardwareedges for increased performance, but to also guarantee
and software architectures which provide mechanisms tohard deadlines. In the context of DSP systems, the
efficiently exploit the parallelism inherent in many DSP Design Tool is capable of supporting only a single sam-
applications. The dataflow paradigm has also been getpling rate per graph. Many DSP algorithms require mul-
ting considerable attention in the areas of DSP andtiple sampling rates which is equivalent to graph nodes
real-time systems. The commercial products that areconsuming and depositing multiple tokens per firing as

6. Tool Applications and Future Research

28

opposed to only one token. Enhancements are planned tthe steady-state behavior from the transient state. A soft-
the graph-analysis techniques which will support multi- ware implementation of the design algorithms and proce-

ple sampling rates within a DSP algorithm. dures referred to as the “Design Tool” was presented and
shown to facilitate the selection of a graph-theoretic
7. Concluding Remarks multiprocessing solution. The addition of artificial data

)) i dependencies (control edges) was shown to be a viable
Graph-searching algorithms were defined and ShOW”technique for improving scheduling performance by

to effectively determine scheduling constraints on a tas"reducing the processor requirements. The selection of an
system represented by a dataflow graph. The dataflowgsimym solution is based on user-selected criteria, that

graph was shown to determine performance boundsg g particular TBO (time between outputs), TBIO (time
inherent in the task system, task instantiations, and buffefyanveen input and output), ami(number of required

requirements for the data shared between tasks. Ganfl.,cessors) or trade-offs when a solution which opti-
charts were shown to be useful in depicting periodic taskyizes all three parameters cannot be found or may not

schedules, scheduling constraints, processor requiregyist Optimizations with the use of the Design Tool by
ments, and processor utilization based on the dataﬂo""inserting control edges were demonstrated.

graph analysis. An equivalent modified dataflow graph

was presented for the modeling of initial conditions in

the graph. Such initial conditions were not only shown to

complicate the calculation of task mobility but may also Nasa Langley Research Center
cause a transient condition. A timing relationship Hampton, VA 23681-0001
imposed on the modified graph was shown to separaterebruary 1, 1995

29

Appendix

Implementation of ES Algorithm and LF Algorithm

The C++ program code which implements BfandLF Algorithms is provided in this appendix. These func-
tions are private to the C4#Graph object which constructs and analyzes the dataflow graphS@@ehFwd function
is called by thdindEarliestStart function to provide a depth-first search of the graph and determine the earliest
start times of all nodes. Th8earchBkwd function effectively mirrors theSearchFwd function to provide a
depth-first search of the graph in the opposite direction SEaechFwd andSearchBkwd functions are used by the
findLatestFinish function to determine the latest finish times of all nodes.

/[Declaration of node and edge types

/I DATA......data edges found in graph text file,

/I CONTROL...control edges already present in graph text file,

/I NEW....... control edges added by this tool,

/I VIRTUAL.. fictitious edges added to model inter-iteration dependencies, and
/l SPECIAL...control edges added to source input for input injection control.

enum nodetype { NODE, SOURCE, SINK, VIRTUAL_SOURCE, VIRTUAL_SINK };
enum edgetype { DATA, CONTROL, NEW, VIRTUAL, SPECIAL };

typedef int ClockTicks;

struct Times { ClockTicksread, /ltime to read input data
process, /ltime to process data
write, /ltime to write output data

earliest_start,//earliest possible start time
latest finish, //latest finish time
fire; }; /ftime to fire node

class Node { char name[SIZE]; //node name
nodetype type; /Inode type

int number, /Inode #
graph, llgraph #
priority, [Itask priority
instances, /lrequired instantiations
data_set; /Irelative data set #

Times time; //node times
public:
class Node *previous, *next;
class Edge *input, *output;

public/private methods...; };

class Edge { int number, /ledge #
token_limit, /lqueue size = initially empty + initially full
tokens, /finitial tokens = initially full queue slots

edgetype type; /ledge type
public:

class Edge *previous, *next;
class Node *initial, *terminal;

30

class Edge *next_input, *next_output;
public/private methods...; };

/I SearchFwd(Edge*, ClockTicks)
/I Implements a forward search of the graph starting from an Edge until
/I a sink is found. Used by findEarliestStart and findLatestFinish.

void SearchFwd(Edge *edgeptr, ClockTicks latency)
while (edgeptr '= NULL)
{

if (edgeptr->next_output = NULL)
SearchFwd(edgeptr->next_output, latency);

nodeptr = edgeptr->terminal;

/I exclude SPECIAL edges, which terminate on sources
if (edgeptr->terminal->Type() == SOURCE)
return;

if (latency > nodeptr->GetES())
nodeptr->SetES(latency);

if (nodeptr->Type() == NODE)
latency += nodeptr->Latency();

edgeptr = nodeptr->output;

} llend while
return;
MYlend.

[/l findEarliestStart()
/I Determine the earliest start times of all nodes by searching forward from
/l all sources. Calls SearchFwd.

void findEarliestStart()
{

Node *nodeptr;

/linitialize earliest start times to zero
for (nodeptr = first_node; nodeptr != NULL; nodeptr = nodeptr->next;)
nodeptr->SeteES(0);

nodeptr = first_node;
while (nodeptr = NULL)

/ffind and hold the place of a source
while ((nodeptr->Type() '= SOURCE) &&
(nodeptr->Type() != VIRTUAL_SOURCE) &&
(nodeptr->next != NULL))
nodeptr = nodeptr->next;

31

if ((nodeptr->Type() == SOURCE) ||
(nodeptr->Type() == VIRTUAL_SOURCE))
SearchFwd(nodeptr->output, 0);

nodeptr = nodeptr->next;

HYlend while
return;
MYlend.

/I SearchBkwd(Edge *, ClockTicks)
/I Implements a backward search of the graph from an Edge until a source is
/l found. Used by findLatestFinish.

void SearchBkwd(Edge *edgeptr, ClockTicks latency)
while (edgeptr = NULL)
{

if (edgeptr->next_input != NULL)
SearchBkwd(edgeptr->next_input, latency);

nodeptr = edgeptr->initial;

//determine latest finish time
if (latency < nodeptr->GetLF())
nodeptr->SetLF(latency);

if (nodeptr->Type() == NODE)
latency -= nodeptr->Latency();

if ((nodeptr->Type() == SOURCE) ||
(nodeptr->Type() == VIRTUAL_SOURCE))
return;

edgeptr = nodeptr->input;

M/ end while
return;
Y/ end.

/I findLatestFinish()

/I Determine the latest finish times of all nodes by searching backward from
/I all sinks. For sinks created from edges with initial tokens, the latest

/I finish rule states: LF(Sink) = ES(Nt) + d * TBO where Nt is the terminal

/I node of original edge (sink now points to this node) and d is the number of
/ initial tokens on the original edge. Calls SearchBkwd and SearchFwd.

void findLatestFinish()

{
ClockTicks ES, LF, delta;

struct Node *nodeptr, *succ_node;
BOOL Done = FALSE;

32

while ('Done)

{
Done = TRUE;

/initialize latest finish times to maximum storage value
for (nodeptr = first_node; nodeptr != NULL; nodeptr = nodeptr->next;)
nodeptr->SetLF(OX7FFF);

nodeptr = first_node;
while (nodeptr '= NULL)

/ffind and hold the place of a sink
while ((nodeptr->Type() != SINK) &&
(nodeptr->Type() = VIRTUAL_SINK) &&
(nodeptr->next != NULL))
nodeptr = nodeptr->next;

if ((nodeptr->Type() == SINK) ||
(nodeptr->Type() == VIRTUAL_SINK))

{

/lif sink is a result of initial tokens on an edge then
/I LF(sink) = ES(terminal node) + d*TBO
if (nodeptr->Type() == VIRTUAL_SINK)

{

/I node receiving tokens from sink
succ_node = getNode(nodeptr->Name());

LF = succ_node->GetES() + (nodeptr->input->Tokens() * TBO);
/['If delta = EF - LF > 0 then a timing violation has been
/I detected. Must increase ES(terminal node) by delta to satisfy
/I timing relationship. After doing so, propagate the updated
/I ES time to all descendents. Note: EF of initial node is
/I equal to ES of sink.
if ((delta = nodeptr->GetES() - LF) >0)
{
Done = FALSE;
ES = succ_node->GetES() + delta;

/[Delay the start time of node
succ_node->SetES(ES);

/I Propagate the updated ES to all descendents
SearchFwd(succ_node->output, ES + succ_node->Latency());

LF += delta;
MYlend if delta > 0
Ylend if virtual sink due to initial tokens

33

else LF = nodeptr->GetES();
SearchBkwd(nodeptr->input, LF);
MYlend if sink
nodeptr = nodeptr->next;
Ylend while more paths
}/end while not Done

return;
MYlend.

34

References

1. Deshpande, Akshay K.; and Kavi, Krishna M.: A Review of
Specification and Verification Methods for Parallel Programs, 11.

Including the Dataflow ApproacProc. IEEE vol. 77, no. 12,
Dec. 1989, pp. 1816-1828.

. Culler, David E.: Resource Requirements of Dataflow Pro- 1,
grams.Proceedings of the 15th Annual International Sympo-
sium on Computer ArchitectyrfEEEE, 1988, pp. 141-150.

. Parhi, Keshab K.; and Messerschmitt, David G.: Static
Rate-Optimal Scheduling of Iterative Data-Flow Programs Via
Optimum Unfolding.IEEE Trans. Computersol. 40, no. 2,
Feb. 1991, pp. 178-195.

. Kavi, Krishna M.; Buckles, Billy P.; and Bhat, U. Narayan:

Isomorphisms Between Petri Nets and Dataflow Graphs. 14-

IEEE Trans. Softw. Eng.vol. SE-13, no. 10, Oct. 1987,
pp. 1127-1134.

. Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour, 15.

M.; and Mandala, B.Algorithm to Architecture Mapping
Model (ATAMM) Multicomputer Operating System Functional
SpecificationNASA CR-4339, 1990.

. Hayes, P. J.; Jones, R. L.; Benz, H. F.; Andrews, A. M.; and
Malckpour, M. R.: Enhanced ATAMM Implementation on a
GVSC MultiprocessortGOMAC/1992 Digest of Paperd81,
Nov. 1992.

17.

. Jones, Robert L.; Stoughton, John W.; and Mielke, Roland R.:
Analysis Tool for Concurrent Processing Computer Systems.
IEEE Proceedings of the Southeastcon ‘¢dlume 2, 1991.

. Storch, MatthewA Comparison of Multiprocessor Scheduling
Methods for Iterative Data Flow ArchitecturedNASA
CR-189730, 1993.

. Heemstra de Groot, Sonia M.; Gerez, Sabih H.; and Herrmann,

Otto E.: Range-Chart-Guided Iterative Data-Flow Graph 19.

SchedulinglEEE Trans. Circuits & Systvol. 39, no. 5, May
1992, pp. 351-364.

10.

13.

16.

Coffman, E. G., ed.Computer and Job-Shop Scheduling
Theory John Wiley & Sons, Inc., 1976.

Som, Sukhamoy; Stoughton, John W.; and Mielke, Roland:
Strategies for Concurrent Processing of Complex Algorithms
in Data Driven ArchitecturedNASA CR-187450, 1990.

. Lee, Edward Ashford: Consistency in Dataflow GraffHsE

Trans. Parallel & Distrib. Syst.vol. 2, no. 2, Apr. 1991,
pp. 223-235.

Som, S.; Mielke, R. R.; and Stoughton, J. W.: Effects of
Resource Saturation in Real-Time Computing on Data Flow
Architectures.Twenty-Fifth Asilomer Conference on Signals,
Systems & Computersolume 1, IEEE, 1991.

Mielke, Roland R.; Stoughton, John W.; and Som, Sukhamoy:
Modeling and Optimum Time Performance for Concurrent
ProcessingNASA CR-4167, 1988.

Murata, Tadao: Petri Nets: Properties, Analysis and Applica-
tions.Proc. IEEE vol. 77, no. 4, Apr. 1989, pp. 541-580.

Jones, R. L.; Hayes, P. J.; Andrews, A. M.; Som, S,
Stoughton, J. W.; and Mielke, R. R.: Enhanced ATAMM for
Increased Throughput Performance of Multicomputer Data
Flow Architectures.|IEEE Proceeding of the NAECON ,91
Volume 1, 1991.

Som, S.; Obando, R.; Mielke, R. R.; and Stoughton, J. W.:
ATAMM: A Computational Model for Real-Time Data Flow
Architectures.Int. J. Mini & Microcomput, vol. 15, no. 1,
1993, pp. 11-22.

18. Stankovic, John A.; and Ramamritham, Krithi: What is Pre-

dictability for Real-Time SystemsReal-Time Syst.vol. 2,
1990, pp. 247-254.

Manacher, G. K.: Production and Stabilization of Real-Time

Task Schedulesl. Assoc. Comput. Maghvol. 14, no. 3, July
1967, pp. 439-465.

35

Form Approved

REPORT DOCUMENTATION PAGE o o166

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1995 Technical Paper

4. TITLE AND SUBTITLE
Design Tool for Multiprocessor Scheduling and Evaluation of Iterative
Dataflow Algorithms

5. FUNDING NUMBERS

WU 233-01-03

6. AUTHOR(S)
Robert L. Jones llI

7. PERFORMING ORGANZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

NASA Langley Research Center L-17408

Hampton, VA 23681-0001

9. SPONSORIING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration NASA TP-3491

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified—Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)
A graph-theoretic design process and software tool is defined for selecting a multiprocessing schedulin
for a class of computational problems. The problems of interest are those that can be described with

nal processing and control law problems. Graph-search algorithms and analysis techniques are intro|
shown to effectively determine performance bounds, scheduling constraints, and resource requirements
ware tool applies the design process to a given problem and includes performance optimization through
sion of additional precedence constraints among the schedulable tasks.

j solution
h dataflow

graph and are intended to be executed repetitively on a set of identical processors. Typical applications ificlude sig-

Huced and
. The soft-
the inclu-

14. SUBJECT TERMS

L J 15. NUMBER OF PAGES
Multiprocessing; Real-time processing; Scheduling theory; Graph-theoretical I;or‘*" 40
Graph-search algorithms; Dataflow paradigm; Petri net; Performance TRRICE CODE

Unclassified

Unclassified

Unclassified

Computer-aided design; Digital signal processing; Control law AO3
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

